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Tropical storms (TS) are important drivers of short-term changes and affects the coastal
and marine environment. Based on in situ observational data from four locations in the
coastal area of the northern Beibu Gulf and satellite data, we analyzed the changes in
temperature, salinity, and turbidity during the transit of TS “Wipha” in 2019 and assessed
the environmental factors controlling chlorophyll a concenteation (Chl-a) increases in the
coastal area. Our results showed that in the coastal area, the growth of phytoplankton
after the TS was mainly controlled by the nutrient and light availability. The increased input
of freshwater by TS, including direct inputs from rainfall and increased river discharge,
reduced the salinity. The decrease in salinity may indicate an increased input of nutrient-
rich freshwater at all four stations (nutrients input: S1>S2>S3>S4). Nutrient concentration
at S1, S2, and S3 implied by salinity was high, but that at S4 was limited. The shorter
recovery time of turbidity after TS indicated the faster improvement of light conditions in
this area [recovery time: S4 (2 days)< S1 (3 days)< S3 (5 days)< S2 (10 days)]. The high
turbidity associated with poor light penetration was an important factor limiting
phytoplankton growth at station 2, with a slow recovery of the turbidity to pre-TS
levels. The rapid recovery of the turbidity to the pre-TS levels at S1, S3, and S4
suggested good light conditions soon after the TS, and probably led to a significant
increase in Chl-a after the TS ([Chl-a]: S1>S3>S4). The less of an increase of Chl-a at S4
was not only related to nutrient restriction but also related to weak mixing of the water
column, while the least significant decrease in the SST at S4 implied that the enhancing
mixing after TS was limited.
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INTRODUCTION

Variations in the concentration of chlorophyll a (Chl-a) are
closely related to the environmental quality and are used to
measure the spatial and temporal distribution of Chl-a (Zhao
and Zhang, 2014). Chl-a is a key index in the measurement of
phytoplankton biomass. It plays an important role in the marine
atmospheric carbon cycle, energy conversion, and environmental
monitoring. However, phytoplankton blooms also have a
negative impact on aquaculture, fisheries, marine environment,
and human health. Located in the northwestern South China Sea
(SCS), the Beibu Gulf is a semi-enclosed bay shared by China and
Vietnam (Lai et al., 2014), which is a shallow bay with a water
depth of less than 50 m (Figure 1B). The summer water
circulation in the Beibu Gulf is complex due to the combined
effects of wind, heat flux, and river plumes (Gao et al., 2017). The
summer circulation is cyclonic in the northern Beibu Gulf (Gao
et al., 2017). Environmental problems are increasing in coastal
areas worldwide as a result of rapid growth in the human
population and economy. The coastal area of the northern
Beibu Gulf is affected by a large amount of waste water from
agriculture and domestic as well as industry (Kaiser et al., 2013),
which has led to eutrophication and excess nutrients. High
concentrations of dissolved inorganic nitrogen and phosphate
are found in the northern Beibu Gulf (Lai et al., 2014). Some of
the high pollution loads in the northern coastal areas are input
from the Qinjiang, Maoling, and Nanliu rivers (Figure 1B)
(Kaiser et al., 2014; Lai et al., 2014; Lao et al., 2019). These
rivers provide abundant freshwater and nutrients to the coastal
areas of the gulf, affecting the sea surface temperature (SST),
salinity (SP), turbidity, and phytoplankton growth (Maren and
Hoekstra, 2005; Maren, 2007).

The northwestern continental shelf of the SCS is a region
intruded frequently by tropical cyclones from the SCS or the
Northwest Pacific Ocean (Liu et al., 2011), with an average of
nine to 14 tropical cyclones passing through every year (Chen
et al., 2012). Based on comparisons of two typhoons with
different moving speeds and maximum sustained wind speeds,
Frontiers in Marine Science | www.frontiersin.org 2
Zhao et al. (2008) found that the wind stress of fast-moving
strong typhoons has a limited impact on the upper ocean due to
their short forcing time, and the typhoon with a slower moving
speed can cause stronger entrainment and greater time-
integration displacement vertically, inducing one stronger
phytoplankton bloom. Typhoon “Damrey” caused two
phytoplankton blooms in the northern SCS through upwelling
and vertical mixing (Zheng and Tang, 2007). Based on a coupled
atmosphere-ocean model in the SCS, Wu et al. (2019) found that
the heat carried by the vaporization of the sea surface was one
also of the important factors for the decrease of sea temperature
under the influence of a typhoon. Storm events can alter
productivity patterns by flushing or mixing “new” nutrients
into the water column (Wetz and Paerl, 2008). In turn, these
nutrients may cause massive phytoplankton blooms and
compositional changes in the phytoplankton community (Paerl
et al., 2006; Miller and Harding, 2007). The variations of oceanic
responses induced by a tropical cyclone with different intensities
are different. A previous study showed that the upwelling velocity
induced by the cyclonic stress curl was roughly proportional to
tropical cyclone intensity, which implied that tropical cyclone
intensity had an important impact on the uplift of nutrients and
the growth of phytoplankton (Zhao et al., 2013). Zhao et al.
(2017) also proved that the Chl-a increase was shown to be
highly correlated with the tropical cyclone intensity. The weak
tropical cyclones (tropical storm) would also exert significant
influence on phytoplankton in the nearshore region, because the
relatively shallower nutricline, depth, and thermocline in the
nearshore region before the storm are favorable for uplift of
nutrients (Zhao et al., 2017). These weather events can promote
the proliferation of marine phytoplankton, thereby increasing
the primary productivity of the ocean (Foltz et al., 2015; Liu et al.,
2019) , and may have important effects on marine
biogeochemical processes (Shang et al., 2008).

There have been a number of studies on the impact of strong
tropical cyclones on phytoplankton and primary productivity in
open sea areas, such as the western Pacific and far from the
continental shelf of the SCS (Price, 1981; Lin et al., 2003; Babin
A B

FIGURE 1 | (A) Track and intensity of TS Wipha in the northwestern SCS. (B) Depth map of the northern Beibu Gulf in the study area (20.5° N-22.5° N, 117.5° E-110°
E). Black squares are the observational stations (S1-S4). Yellow stars mark the river estuaries. MSW: maximum sustained wind speed. Dates are given as mm/dd.
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et al., 2004; Zhao et al., 2008; Lin, 2012; Zhao et al., 2017). Wind-
induced upwelling and the mixing of “new” nutrients may
produce phytoplankton blooms and increase the primary
productivity in open ocean areas (Price, 1981; Chang et al.,
1996; Chen et al., 2003; McKinnon et al., 2003; Babin et al., 2004).
The response of continental shelf seas to tropical cyclones may be
different from that of open ocean areas as a result of the local
environmental conditions (Xie et al., 2017). The increase in
phytoplankton in the continental shelf region is regulated not
only by the near-inertial oscillations induced by the uplift of
nutrients, but also by the advection of nutrients, associated with
enhanced runoff (Zheng and Tang, 2007; Zhao et al., 2017). But
the effects of tropical cyclones on phytoplankton growth in
coastal areas, especially estuaries, require further study. The
influence of tropical cyclones on the Chl-a concentration at the
sea surface is significantly different in different areas. We need
to conduct long-term observations to accurately and
comprehensively understand how tropical cyclones affect Chl-a
concentration in coastal regions.

Wipha was the seventh tropical storm (TS) of 2019 and
occurred from July 30 to August 3. The TS originated in the
northern SCS (at about 115.4° E, 17.8° N) and had a maximum
sustained wind speed (MSW) of about 23 m·s-1 (Figure 1). The
storm initially moved gradually northwest and intensified
continuously. The TS first made landfall in Wenchang City,
Hainan Province, China on August 1, 2019. It then continued to
move north at a steady wind speed (about 23 m·s-1), made
landfall again at Zhanjiang, Guangdong, China, and then moved
westward. After passing over the coast of the northern Beibu
Gulf, the TS subsequently made a third landfall at
Fangchenggang, Guangxi, China. After landfall, the TS rapidly
weakened and moved southwest through Vietnam.

We used data from in situ observations and satellite to analyze
the spatial variation of the increase in the concentration of Chl-a
caused by the passage of TS Wipha. Different responses of Chl-a
concentration at four stations to the TS were further investigated
in the coastal waters of the north Beibu Gulf. Based on the
comprehensive analysis of the relationship between Chl-a
concentration and environmental factors, the possible
mechanism causing different responses of phytoplankton Chl-a
after the TS passage. The study is helpful to better understand the
effect of the environmental changes caused by TS on the increase
of Chl-a in coastal regions.
MATERIALS AND METHODS

Satellite Products
The TS data are available from the best-track typhoon dataset
from Typhoon Online (www.typhoon.org.cn) (Ying et al., 2014;
Lu et al., 2021), which includes the location and intensity of
tropical cyclones in the northwest Pacific Ocean including the
SCS every 3 to 6 h since 1949. The data include the MSW and the
longitude/latitude of the center of the TS every 3 h.

We used Advanced Scatterometer (ASCAT) 6 h sea surface
wind (SSW) data provided by the Remote Sensing System
Frontiers in Marine Science | www.frontiersin.org 3
(www.remss.com/) at a spatial resolution of (0.25°×0.25°). We
obtained daily precipitation data from the Tropical Rainfall
Measuring Mission (TRMM) of the National Aeronautics and
Space Administration (NASA) (https://gpm.nasa.gov/data) at a
spatial resolution of 0.10°.

The data of photosynthetically active radiation (PAR) derived
from four different sensors of Sea WiFS, MODIS, MERIS, and
VIIRS with GSM Model (Maritorena and Siegel, 2005;
Maritorena et al., 2010) are generated from GlobColour
database provided by HERMES. The merged daily products of
PAR with a spatial resolution of 0.04°× 0.04° are obtained for the
period from July 26 to August 16.

In Situ Observations
Four buoys equipped with water quality sensors were deployed in
the northern coastal areas of the Beibu Gulf from July 26 to
August 16, 2019 (Figure 1), respectively at the stations of S1-S4.
The Chl-a concentration (i.e., fluorescence), temperature,
salinity, and turbidity were continuously measured at a depth
of 0.5 m below the sea surface using a YSI 6600V2
multiparameter water quality instrument (YSI Inc., Yellow
Springs, USA). The dissolved inorganic nitrogen (DIN) was
measured at S3 using a Systea nutrient probe analyzer (NPA;
Systea S.p.A., Anagni, Italy). The above data were sampled every
30 min. After the observations were complete, the missing or
invalid data were linearly interpolated to obtain a complete
time series.

In situ Chl-a concentration derived from YSI 6600V2 multi-
parameter water quality instrument (YSI-derived Chl-a) was
measured every 30 min and first processed into daily Chl-a
through 24-hr average (i.e., 0:00-24:00). The sum of Chl-a for 7
days (Chl-a (sum)) was calculated:

Chl − a(sum) =o
n

i=1
Chl − a(i)

where the Chl-a(sum) was the sum of Chl-a concentration for 7
days (mg·m-3) and n was the number of days in a week (n=7).

All the above-mentioned data analysis methods were
performed in the software packages Origin, Ocean Data View,
ArcGIS, and MATLAB.
RESULTS

Distribution of Temperature and
Precipitation Before and After TS
The in situ observational data showed that the SST in the study
region was relatively uniform high before the TS (Figure 2A).
There was a lower SST patch near S3 during the TS (Figure 2A).
One week after TS, there was a low nearshore SST and a high
offshore in the study region. The SST increased slightly at S3 and
S4, and continued to reduce at S1 and S2 1 week after TS. The
SST recovered to roughly to the pre-TS SST (about 31°C-32°C)
(Figure 2A) roughly 2 weeks later. Precipitation in the study
region was significantly increased (>100 mm·day-1) during the
TS (Figure 2B), which may have increased the input of
June 2022 | Volume 9 | Article 887240

http://www.typhoon.org.cn
http://www.remss.com/
https://gpm.nasa.gov/data
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Chen et al. Responses of Chl-a to TS
freshwater, leading possibly to changes in the SST, salinity,
and turbidity.

Physicochemical Parameters Before and
After TS
The TS moved into the study region on August 1, 21:00, and left
the study region on August 3, 02:00 (Figure 1). The SSW time
series based on the regional average for the study region (20.5-
22.5° N, 107.5-110.0° E) (Figure 3) showed that the SSW was <
6.0 m·s-1 from July 26 to July 30, with a maximum SSW of about
11.5 m·s-1 on August 1. The SSW quickly decreased after the TS
had transited (Figure 3).

The SST at the four stations decreased significantly, with a
maximum reduction of 2-4°C 1-2 days after the passage of the TS
on August 3-4 (Figure 4A). The decrease in the SST (< 30°C)
lasted for about 6 days. The SST increased slowly and only
returned to the pre-TS level on August 11. The smaller standard
deviation for the four stations indicated a concentrated
distribution of the SST data (Table 1), which meant less SST
variation at S4.
Frontiers in Marine Science | www.frontiersin.org 4
The time series of the salinity (Figure 4B) showed that the
salinity of each station began to decrease after the TS had passed.
S1 located in the landfall area of the TS was seriously affected by
rainfall, and the salinity decreased by 13.5 1 day later. The
salinity at S3, which was affected only by the River Nanliu,
decreased by about 6.5 after the passage of TS. A low salinity
appeared at S2 at the intersection of two rivers, which decreased
by 8.5 2 days after the TS had passed. There was only a small,
slow decrease in salinity at S4. The salinity decreased
significantly at S1 and S2, resulting in large variations in their
standard deviations (especially S2) (Table 1).

Although S1 was located in the landfall region of the TS, the
maximum turbidity here after the TS (Figure 4C) was lower
than that at S2 and S3 and recovered to the pre-TS levels only
within 3 days. The turbidity of S2 was as high as 190 NTU on
August 4, about nine times the pre-TS values (Figure 4C),
which may be related to the greater influence of increasing
estuarine runoff from the Maoling and Qinjiang rivers. It took
10 days for the turbidity of S2 to recover to pre-TS levels
(Figure 4C). Similarly, the maximum turbidity of S3, which was
FIGURE 2 | (A) In situ SST data and (B) precipitation for four time periods (1 week before TS, during the TS, 1 week after TS, and 2 weeks after TS) in the northern
Beibu Gulf.
FIGURE 3 | Time series of SSW from July 26 to August 16, 2019, based on the regional average for the study region (20.5° N-22.5° N, 107.5° E-110° E).
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affected also by one river (i.e., Nanliu River), reached up to 120
NTU (about six times the pre-TS values) (Figure 4C). The
turbidity of S3 recovered to pre-TS levels within 5 days, faster
than that of S2 (Figure 4C). Due to the offshore location of S4, a
weaker increase in turbidity was recorded with the low
maximum value of 25.8 NTU during the TS (i.e., about two
to three times the pre-TS values), and quickly recovered to pre-
TS levels within 2 days (Figure 4C). Tabulated data illustrated
that S2 and S3 had high turbidity and large amplitude, while
relatively lower for S1 and S4 (Table 1).
Frontiers in Marine Science | www.frontiersin.org 5
Ch-a Before and After TS
Our in situ data showed that the Chl-a concentration increased
significantly in 1 to 2 weeks after the TS at all the stations except
S2 (Figure 5). There was no obvious change in the Chl-a(sum) at
S2 before and after the TS (Figure 5A). One week after the TS,
there was a significant increase in the Chl-a(sum) concentration of
about 60% (26.34 mg·m-3) at S1, 68% (25.62 mg·m-3) at S3, and
69% (14.86 mg·m-3) at S4; the changes were smaller at S2
(Figure 5A). Two weeks after TS, the Chl-a(sum) concentration
at S3 and S4 had decreased to roughly the levels 1 week before the
A

B

C

FIGURE 4 | Time series of (A) SST, (B) salinity, and (C) turbidity from July 26 to August 16, 2019.
TABLE 1 | Daily average Chl-a, SST, salinity, and turbidity at four stations.

Stations Chl-a (mg·m–3) SST (°C) Salinity (SP) Turbidity (NTU)

S1 10.49 ± 11.08 30.50 ± 1.53 19.68 ± 3.53 17.28 ± 12.09
S2 4.43 ± 0.62 30.40 ± 1.76 7.57 ± 3.11 33.88 ± 42.26
S3 6.93 ± 3.03 30.75 ± 1.50 20.48 ± 2.84 25.19 ± 26.82
S4 3.84 ± 2.19 30.74 ± 0.93 27.43 ± 1.26 7.83 ± 4.41
June 2022 | Volume 9
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TS (Figure 5A). At S1, the Chl-a(sum) concentration 2 weeks after
the TS was about two times that 1 week before the TS
(Figure 5A). The time series (Figure 5B) shows that the
average Chl-a concentration began to increase about 3 days
after the TS had transited, reaching > 10 mg·m-3 at S1, S3, and S4,
especially highest at S1. The larger standard deviations of Chl-a
concentration at S1, S3, and S4 indicate that the Chl-a
concentration at the stations was more variable compared with
S2 (Table 1).
Frontiers in Marine Science | www.frontiersin.org 6
Correlation Analysis of DIN and Salinity
Salinity was measured at all stations, while nutrient concentration
(i.e., DIN) was measured only at S3. A simple correlation analysis
between DIN and salinity at S3 was made to assess the possibility
of changes in nutrient concentration at all stations estimated by
salinity values, to a certain degree. The scatter graph (Figure 6) for
DIN and salinity exhibited a sensible trend. A correlation analysis
indicated that DIN was significantly negatively correlated with
salinity (R2 = 0.7528, p < 0.01) (Figure 6).
A

B

FIGURE 5 | (A) The sum of Chl-a concentration for 7 days for three time periods [1 week before TS (i.e., July 27- August 1), 1 week after TS (i.e., August 3- August
9), 2 weeks after TS, (i.e., August 10- August 16)] at S1-S4. Red arrows represent an increase in the Chl-a(sum); yellow arrows represent a decrease in the Chl-a(sum).
(B) Chl-a time series of S1-S4. Gray shading indicates the process from an increase to a decrease in Chl-a at S1, S3, and S4.
FIGURE 6 | Scatter diagrams of the salinity and DIN at S3 from July 26 to August 16, 2019.
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DISCUSSION

Effects of the TS on Chl-a Concentration
Monitoring of Chl-a by means of traditional in-situ sampling has
been difficult to be carried out under extreme weather events
such as tropical storms. In situ fluorescence measurements can
realize daily monitoring, hourly monitoring, and even
continuous monitoring, which greatly improves the integrity
and timeliness of monitoring data and helps to grasp the
overall situation of the water body. Moreover, Chen and Zhao
(2021) found the good relationship (R2 = 0.7407, p<0.01) existed
between Chl-a measured in the lab and YSI-derived Chl-a in
coastal regions of the northwestern South China Sea, indicating
that YSI-derived fluorescence can be used to estimate Chl-a.

There were significant changes in the SST, salinity, and
turbidity (Figure 4) in the study region as a result of mixing
following the passage of the TS. These changes will inevitably
affect the growth of phytoplankton in the water column and, in
turn, the Chl-a concentration. After the TS passage, the overall
Chl-a concentration at S1, S3, and S4 showed an increasing trend
(Figure 5B), roughly consistent with earlier studies (Wetz and
Paerl, 2008; Zhao et al., 2017; Liu et al., 2020).

A negative correlation between total nitrogen/total
phosphorus and salinity was generally assumed in coastal
regions (Lane et al., 2002; Schaeffer et al., 2012). Moreover, our
study confirmed also that the high correlation (R2 = 0.7528, p <
0.01) was presented between DIN and salinity at S3, suggesting
that the salinity can be used to imply changes in nutrients level
(Figure 6) in the study. From the time series of salinity
(Figure 4B), we knew that the nutrients at S1, S2, and S3 were
full, but limited at S4. The salinity of S1, located in the landfall
region of the TS (Figure 1B) and near the coast, decreased
significantly by 13.5 in 1 day during the TS (Figure 4B), implying
large amounts of nutrient-rich water input. The rapid (3 days)
recovery in the turbidity to pre-TS levels resulted in good light
conditions at S1 (Figure 4B), providing the conditions required
for phytoplankton growth. Therefore, the two favorable
conditions of the significant increase of nutrients and rapidly
reduced turbidity after TS caused probably greater increase of
Chl-a concentration and longer lasting time of high Chl-a
concentration at S1 than those at S2, S3, and S4 (Figure 5B)
after the passage of the TS.

S2 was located at the junction of two rivers (Figure 1B). The
lowest salinity observed at S2 during the observational period
suggested that there were large amounts of nutrient-rich
freshwater input and nutrients were always available during
the whole period before and after the TS (Figure 4B).
However, the highest turbidity and slowest recovery time (10
days) limited the amount of light available at S2. There was no
obvious increase in Chl-a concentration (Figure 5) despite the
nutrient-rich freshwater.

S3 was located in the Lianzhou Bay and was affected by the
inputs from the Nanliu River (Figure 1B). The salinity started to
decrease on August 1 and this decrease lasted for 3 days
(Figure 4B), probably suggesting a continuous supply of
nutrients. With the high turbidity restoring rapidly (within 4
days) to low turbidity after TS (Figure 4B), the phytoplankton
Frontiers in Marine Science | www.frontiersin.org 7
grew in large numbers, resulting in an increase in
Chl-a concentration.

S4 was located offshore with less influence of nutrient-rich
freshwater input from rivers (Figure 1). Therefore, the turbidity
was lowest and the turbidity recovery time (2 days) was most
rapidly at S4 (Figure 4C), reflecting the high availability of light in
the region. The salinity at S4 was always the highest among the
four stations and the decrease in salinity at S4 was less significant
compared with other stations even during the passage of the TS.
These suggested less of an increase of nutrient-rich freshwater at
S4 after the TS and the supply of nutrients at S4 may still be the
key to limiting the growth of phytoplankton. The temperature
decrease (Figure 4A) under the influence of TS was the least
significant at S4, which meant finite enhancing mixing implied
after TS. The above conditions would have caused the increase in
Chl-a concentration at S4 to not be the most significant (Figure 5).

Mechanism for the Formation of
Nearshore Phytoplankton Blooms After TS
Previous research using remote sensing data had shown that the
heavy rainfall caused by tropical cyclones increases generally the
runoff from rivers in nearshore regions. This can lead to the
transport of large amounts of nutrients, colored dissolved
organic matter, and suspended sediments to coastal areas,
contributing to the increase in Chl-a concentration (Chen
et al., 2003; Zhao et al., 2009; Zhao et al., 2013). A
fundamental limitation of remote sensing data is the inability
to produce nearshore reliable measurements. Due to this
limitation, our understanding of the response of Chl-a
concentration in coastal areas to the passage of a TS is
incomplete and needs to rely on the availability of in situ data.
In our study, the results of in situ data showed that the growth of
phytoplankton after the TS was not only affected by the nutrients
brought by the increase of runoff but also related to the turbidity
associated with light penetration.

Turbidity was negatively correlated with PAR (R2 = 0.2284,
p<0.01) (Figure 7) in our study, which meant that the greater the
turbidity is roughly coincided with the lower the PAR in the
study. Dou et al. (2019) also found that the light attenuation
coefficient decreases when the water transparency increases.
While turbidity was an important restrictive factor affecting the
transparency of water, which can be verified by the logarithmic
fitting equation based on the relationship between suspended
solids and transparency (Zhang et al., 2003). Therefore, in our
study, the rapid recovery of the turbidity after TS would mean
more favorable light conditions, and vice versa, the slow recovery
of the turbidity would limit light. With the decrease of turbidity
(increase of transparency), PAR increased, resulting in the
increase of phytoplankton photosynthesis and higher Chl-a
concentration. The recovering time of turbidity to pre-TS
levels was 3 days at S1, 10 days at S2, 5 days at S3, and 2 days
at S4 (recovery time: S2>S3>S1>S4) (Figure 4B), respectively,
suggesting the favorable light conditions soon after TS at S1, S3,
and S4, as well as the bad light conditions at S2. According to the
conditions of salinity (Figure 4B), nutrients were always
available during the whole period at S1, S2, and S3, but limited
at S4 (nutrients input: S1>S2>S3>S4). The intensity of the
June 2022 | Volume 9 | Article 887240
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phytoplankton blooms was the strongest at S1, followed by S3,
then S4 (Chl-a: S1>S3>S4); the increase in Chl-a concentration
was less significant at S2 (Figure 5). These may imply that
nutrients had a more important role in the growth of
phytoplankton at S1, S3, and S4 along with the favorable light
conditions suggested by the turbidity rapidly recovering to pre-
TS levels. Therefore, the most signifcant increase of nutrients
along with favorable light conditions had probably induced the
highest increase of Chl-a concentration at S1 after TS (Figure 5).
Hagy et al. (2006) also reported that the input of freshwater from
Hurricane Ivan led to one similar increase in the biomass of
phytoplankton for several weeks in Pensacola Bay after the event.

In turbid coastal environments, light availability is usually the
main driver of phytoplankton growth (Grobbelaar, 1990; Alpine
and Cloern, 1992; Cloern, 1996; Kocum et al., 2002). The slow
recovery of turbidity to pre-TS levels at S2 and the highest
turbidity after TS suggested that the unfavorable light conditions
into the water column, which was an important elementfor about
10 days after TS. Heavy rainfall during the TS (Figure 2B) led
probably to large amounts of suspended particulate matter in the
input from the Maoling and Qinjiang rivers, which may have
reduced the transparency of the water at S2. Ma and Zhao (2021)
have also found that, under normal circumstances, the Chl-a
concentration in the nutrient-rich Pearl River estuary is low as a
result of the high turbidity. Hence, the lack of available light
limited the growth of phytoplankton in the water column at S2,
although there were large amounts of nutrient-rich freshwater
input implied by the salinity decreasing after TS. Moreover, the
strong dilution from tropical rainfall during the storm and the
mixing effects of the river input with high suspended matter
limited also the accumulation of phytoplankton (Song et al.,
2011), leading to a similar pattern of Chl-a concentration at S2
(Figure 5) before and after the TS. In other words, the input from
rivers can change the hydrodynamic conditions to be unsuitable
for phytoplankton growth, meaning that it took longer for levels
to recover to those before the TS. Fu et al. (2009) showed that
Frontiers in Marine Science | www.frontiersin.org 8
Chl-a concentration near the Pearl River estuary decreased by
about 35% as a result of the high content of suspended matter
after the passage of a typhoon. In these examples, light associated
with the turbidity was the most important factor for the increase
in Chl-a concentration at S2 under the conditions of sufficient
nutrients, but a lack of light to promote phytoplankton growth.

A previous study indicated that the most significant response
of the ocean to the TS was a decrease in the sea temperature
(Yang and Tang, 2010). The data collected for this research
indicated that the whole study area had cooled down after the
passage of the TS (Figure 2A). The decrease in the SST (< 30 °C)
caused by the TS lasted for about 6 days, but the level of the
decrease in the SST was different at all four stations (Figure 4A).
The decrease in temperature indicated the degree of mixing of
the water column. The mixing induced by the TS forced the
redistribution of surface stratification, which caused the decrease
of SST and entrainment of nutrients into the upper layer of
oceans (Wang et al., 1998; Shao et al., 2015). The cooling of S1 by
about 4.3°C and S2 by about 5.0°C (Figure 4A), and the decrease
in the SST lasted for 1 week, which meant that they were fully
mixed. During the TS, on August 2, although the cooling of S3
was the fastest, its temperature quickly recovered 1 week later
(Figure 2A). In contrast, the degree of mixing of S3 was not as
significant as that of S1 and S2. S4 had slow cooling and fast
recovery, and the mixing of this station was weak. The less of an
increase of Chl-a concentration at S4 may be related to weak
mixing of water column, to a certain degree.
CONCLUSIONS

We investigated the different responses of Chl-a concentration at
four stations to the transit of one TS in a coastal region of north
Beibu Gulf, the South China Sea, when TS Wipha moved over.
The nutrient level and light availability were the two main
driving factors regulating phytoplankton growth during the
FIGURE 7 | The relationship between turbidity and PAR (R2 = 0.2284, p<0.01) from July 26 to August 16.
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study period. The better light conditions and richer nutrient
concentration at S1 and S3 soon after the TS were more suitable
for phytoplankton growth, shown as higher Chl-a concentration
after TS. The most significant increase of nutrients along with
favorable light conditions after TS caused the highest increase of
Chl-a at S1. Whereas phytoplankton growth was limited by
nutrients at S4 and light at S2, leading to less of an increase of
Chl-a concentration at the above stations, especially at S2 with
the highest turbidity. The increase in phytoplankton at S4 may
also be related to the weak mixing of the water column during the
TS. The growth of phytoplankton in the nearshore areas was
therefore affected not only by the nutrients available but also by
the other environmental factors, especially the turbidity.
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