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The structural characteristics of diatom cell walls (frustules) has led to their widespread use
in diverse biotechnological applications, some of which can be further improved by
surface chemical modification (functionalization). The use of coating agents can
significantly increase surface binding capacity for target compounds. Frustules of the
diatom Staurosirella pinnata used here were a by-product after applying a cascade-
extraction process (for other products) to mass cultures. The protocol for the cleaning and
functionalization of raw frustules using 3-Mercaptopropyl-trimethoxysilane and 3-
Aminopropyl-trimethoxysilane was optimized and reported. Functionalization efficacy
was observed using Electron Microscopy, Energy Dispersive X-ray Spectroscopy and
Fourier-Transform Infrared Spectroscopy. Optimally functionalized frustules were
evaluated for nickel removal from aqueous solutions. Incubations of 10 min, using 1 g/L
of frustules, gave almost complete Ni removal with functionalized frustules compared to
3% removal by raw frustules. The proposed protocol represents a reproducible and
efficient alternative for Ni removal from contaminated water.

Keywords: diatom frustules, diatom biotechnology, diatom biomass, heavy metal removal, nanoporous
silica, functionalization
INTRODUCTION

Diatoms are an abundant and widespread group of unicellular, aquatic, microalgae that produce an
external silicified cell wall, the frustule, made up of different parts (valves and girdle bands). Frustule
morphological features are highly elaborated and species specific. Valves and bands bear ordered,
hierarchical patterns of micro- and nano- pores that are inherited through generations, via a strong
genetically controlled deposition process (Heintze et al., 2020). Frustules confer adaptive advantages
to diatoms, such as mechanical resistance against grazers, hydrodynamic stress and buoyancy-
control (Hamm et al., 2003; De Stefano et al., 2009; Arrieta et al., 2020). In addition, the quasi-
periodic and highly regular diatom pore patterns showed interaction with light, providing
protection against harmful radiation and optimization of incident light for photosynthesis
in.org May 2022 | Volume 9 | Article 8898321
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(Di Caprio et al., 2014; Ferrara et al., 2014; De Tommasi et al.,
2018). Frustule architecture also produces an efficient interface
area and surface area:volume ratio enhancing the cell-
environment exchanges (Mitchell et al., 2013).

The combination of adaptability to changes in environmental
conditions and high growth rates has led to a recent
advancement in the knowledge of intensive diatom cultivation
for biotechnology purposes. This advancement takes advantage
of both cellular biochemistry and frustule porous characteristics
(aquafeed field, nutraceutics and pharmaceutics, nanotechnology
and biomimetics) (Lamastra et al., 2014; Gilbert-López et al.,
2017; Kiran Marella et al., 2020; Savio et al., 2021). Technological
exploitation of the nanoporous structure of frustules has been
further advanced by methods that modify frustules while
maintaining its hierarchical structures. Chemical modification
of frustule surfaces by functionalization using coating reagents
such as amino- and mercapto-silanes (Novelli et al., 2017;
Gutiérrez Moreno et al., 2020) improves their binding capacity
for certain target compounds. This type of functionalization has
been used for drug carriers (Rea et al., 2014; Terracciano et al.,
2015), optical sensors (Selvaraj et al., 2018) and adsorbents for
frustule application in water treatment, ion exchange and
filtration (Khraisheh et al., 2004). Water contaminated with
heavy metals is a wide-spread health concern, even when
present in trace amounts due to their chronic accumulation in
organs over time (Ali et al., 2019). Nickel, for example, is one of
the most toxic pollutants, and the by-product of its energy
intensive production is the generation of large amounts of
solid wastes that require proper handling and valorization to
avoid risks to environmental and human health. Nickel
consumption is associated with a wide range of acute or
chronic health conditions, including epidermal allergic
reactions, cardiovascular and kidney diseases, lung fibrosis and
lung and nasal cancers. In addition, nickel is able to cross the
placenta and alter maternal hormonal balances and can therefore
affect the fetus both directly and indirectly (Cempel and Nikel,
2006). When compared to food, water represents a minor
proportion of daily exposure to nickel (WHO, 2005), however,
the absorption of soluble nickel compounds from drinking-water
is significantly higher than that from food (Solomons et al.,
1982). Observations of the chemical status of Italian inland
waters under the Water Framework Directive have shown that
between 10 to 30% of surface waters (20 to 40% still unknown)
and 30 to 60% of groundwaters have not gained good status
(WISE, 2018). Of the 562 tons of chemical substances released
into Italian water bodies annually, around 80% are shown to be
heavy metals (Legambiente, 2020). Heavy metals are therefore
considered as priority pollutants and are monitored closely by
the controlling agencies in attempts to adhere to the 20 mg L-1

limit for drinking waters under the Water Framework Directive
(Directive 2000/60/EC). The most common and conventional
approaches to remove heavy metals from waters utilise activated
carbon, clay minerals, zeolites or polymers (Zhao et al., 2019).
Due to the scale of the heavy metal problem, the development of
effective and inexpensive adsorbents is an active area of research.
Abundant and inexpensive fossilized frustules (diatomite) have
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been previously used, but their real potential as adsorbent is
hampered by some intrinsic features. Diatomite is a highly
variable material, containing many impurities, like terrigenous
particles and inorganic oxides; it is also highly heterogeneous, as
type, shape, size and fragmentation of the frustules result in
unpredictable behaviour (Danil de Namor et al., 2012; Lamastra
et al., 2014; Uthappa et al., 2018).

To overcome the problems associated with diatomite,
frustules can be obtained from extant diatoms, especially when
cultivated in monospecific cultures. Cultured diatoms can be
considered as nano-factories, able to produce up to 106 frustules
per mL (Wang and Seibert, 2017) which would be structurally
identical with overall more predictable functions (Rogato and De
Tommasi, 2020). In addition, biorefinery of diatoms would result
in biomass from which different bioproducts could be extracted
beforehand (Gilbert-López et al., 2017; Savio et al., 2020). The
exhausted biomass at the end of cascade extractions, would be
constituted by frustules ready for functionalization, improving
the overall value of the biomass and the sustainability of
the process.

The aim of this study, was to optimize the functionalization of
frustules of the diatom Staurosirella pinnata (Ehrenberg)
D.M.Williams & Round, obtained from the exhausted biomass
of a diatom culture biorefinery (De Angelis et al., 2016; Savio
et al., 2020) and to use them in the treatment of a wastewater
contaminated with nickel. The main functionalization protocol
parameters will be adjusted to best preserve the frustule porous
ultrastructure and morphology whilst giving a homogeneous
silane coating. Then functionalized frustules will be compared to
raw (unfunctionalized) frustules for their capacity to remove
nickel from aqueous solutions, prospecting their potential as a
novel and efficient adsorbent.
MATERIALS AND METHODS

Frustule Preparation
Staurosirella pinnata was intensively cultivated on ten occasions
in an indoor, column-photobioreactor (8L), and then harvested
at the stationary phase. Clean frustules of S. pinnata were
obtained from biomass remaining after cascade extractions for
other potentially valuable co-products (Savio et al., 2020). Briefly,
the pooled biomass was lyophilized, manually grinded and then
extracted with a solution of milli-Q water and MetOH (20% v/v)
for 2 hours at 45°C to obtain a crude extract. Subsequently, the
residual biomass was treated with CHCl3 and MetOH (2:1 v/v)
following the method of Bligh and Dyer (1978) to extract total
lipids and, finally, the “leftover” material (exhausted biomass),
was treated with acid solutions to remove any organic residues
and to give clean frustules. Three different cleaning protocols
were tested, one based on H2SO4:HNO3:H2O (3:1:1 v/v/v) at 90°
C for 2 h, another on HNO3:H2SO4 (2:1 v/v) at 90°C for 2 h, and
the last using H2SO4:HNO3 (3:1 v/v) at 90°C for 1 h. Samples
were then centrifuged (3000 x g for 5 min); the supernatants were
discarded and the pellets were washed repeatedly with milli-Q
water until pH neutrality was reached. Finally, cleaned frustules
May 2022 | Volume 9 | Article 889832
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were lyophilized (hereafter referred to as raw frustules) and
preserved at -20°C for Scanning Electron Microscopy analysis
(SEM) and surface functionalization.

Frustule Surface Functionalization
Development of the surface functionalization of the raw frustules
was carried out using an ad hoc protocol in order to obtain a
homogenous coating while preserving their porous ultrastructure.

Following the protocol of Zhang et al. (2015), lyophilized
frustules (0.2 g) were resuspended in milli-Q water (20 mL) and
hydroxylatedwithNH4OH(1mL, 30%). Subsequently, thematerial
was functionalized using two silanizing agents: 3-Aminopropyl-
trimethoxysilane (APTMS, 1 mL, molecular weight: 179.29) and 3-
Mercaptopropyl-trimethoxysilane (MPTMS, 1 mL, molecular
weight: 196.34) to incorporate primary amine (-NH2) and thiol
(-SH) groups on frustule surfaces. After each adjustment of the
functionalization protocol the frustules were observed using SEM,
to determine the dispersal and ultrastructural properties of the
frustules and the any absence of APTMS and MPTMS aggregates.
First modifications of the protocol involved changing solvents to
improve the coating process, to better preserve frustule
ultrastructural features and to reduce the amount of silane
aggregates. In place of milli-Q water, two nonpolar solvents were
evaluated, the commonlyused toluene and the lowly-toxic andnon-
carcinogenic, hexane. Further, different functionalization
parameters were modified to regulate silane coating: i)
concentration of the hydroxylation reagent NH4OH, (4, 5, 10, 20,
30 and 40 mM); ii) concentration of the functionalization reagents
APTMS/MPTMS (1:1 v/v, 7 mM and 14 mM) and iii) time of the
functionalization reaction (1, 3, 5, 9 and 18 h).

The obtained functionalized frustules were washed with
ethanol, dried at 40°C and stored at -20°C.

Structural and Surface Analysis of
Functionalized Raw Frustules
Preparation of functionalized frustules for SEM observations
involved resuspending dried material in absolute hexane,
suspensions (5 µL) were then dispersed over aluminium stubs
and air dried in a fume hood. The dried material was examined
using a Gemini 300 field emission microscope at a voltage of 5
kV (Carl Zeiss AG, Jena, Germany), equipped with an XFlash 6-
60 Energy Dispersive X-Ray Spectroscopy (EDS) system (Bruker
Nano GmbH, Berlin, Germany). EDS analyses were performed
to determine the elemental composition of the samples at 10 kV
accelerating voltage, secondary detector and working distance 7.5
mm. Before SEM sessions, samples were gold coated for avoiding
charging effects by using Emitech K550 unit and Quorum-
SC7620 sputter instrument.

Fourier-Transformed InfraRed (FTIR) spectra of samples
were also collected in the 4000 – 650 cm-1 regions using a
Nicolet iN10 infrared microscope (Thermo Fisher Scientific IT,
Milano, Italy) equipped with a Mercury-Cadmium-Telluride
(MCT-A) nitrogen-cooled detector in reflection mode. Sixty-
four interferograms were averaged per spectrum; nominal
spectral resolution was 4 cm-1. Data acquisition and spectra
elaboration were carried out with the OMNIC SPECTA software
provided by Thermo Fisher Scientific.
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Nickel Adsorption Tests of Functionalized
Raw Frustules
Nickel adsorption capacity of raw material and functionalized
frustules was evaluated in a preliminary test using an adsorbent
concentration of 1.0 g/L in milli-Q water (20 mL) containing Ni
(1.10 mg/L). Samples incubation was carried out at three pH
values (4.0, 7.0 and 10.0) for 24 h. A second test was then carried
out to evaluate the removal efficiency of both frustule types as a
function of time, using Ni (30 mg/L) and collecting samples at
discrete times following the start of the incubation (10, 30, 60
min and 5 h). Each test was carried out in triplicate in conical
tubes shaken (15 mL) shaken (200 rpm) on an orbital shaker
(IKA® KS 130). All experiments were carried out at room
temperature (25°C). To terminate the incubations, the samples
were centrifuged at 3000 x g and the supernatants collected for
determination of Ni concentration, the pellets were analysed
using FTIR.

The conc en t r a t i on o f n i c k e l wa s d e t e rm in ed
spectrophotometrically at 560 nm using the 1-(2 pyridylazo)-2-
napthol (PAN) method. Deionized water was used as a blank and
standard curves prepared from 5 to 0.1 mgL-1 using a standard
Ni solution (1000 mg/L Ni(NO3)2, NIST).

Data Analysis
GraphPad Prism version 9.0 program (GraphPad Software, San
Diego, CA, USA) was used for statistical analysis. Two-Way
ANOVA and Tukey’s HSD test were performed (a p-value of
<0.05 was considered statistically significant) and, for each
treatment, standard deviations (SD) were calculated and reported.
RESULTS AND DISCUSSION

Cleaning Protocol Selection and Raw
Frustule Characterization
All frustules observed using SEM, irrespective of the cleaning
protocol, showed morphological and ultrastructural features
typical of the species as described from cultured (De Angelis
et al., 2016) and natural material (Haworth, 2007). Valves were
almost round in shape and beared bilateral rows of circular pores
(average diameter of 5.23 µm ± 0.73 µm), internally occluded,
separatedbyahyaline, unperforatedcentral area.Thevalvemargine
presented spines as triangular projections that link adjacent sibling
cells together. This indicates that the mass cultivation and the
sequential extractions performed on the biomass of S. pinnata did
not significantly alter the morphology of frustule valves and pores.

All three cleaning protocols removed residual organic matter
in the samples and no inorganic debris (mostly crystallized
culture medium) was found (Figure 1). Although cleaning
treatments in general did not significantly alter frustule
morphology, a higher degree of valve and girdle fragmentation
was evident in the treatments using H2SO4:HNO3:H2O 3:1:1
(Figure 1A) and HNO3:H2SO4 (Figure 1B). The best valve
integrity and organic matter removal were observed in samples
cleaned using H2SO4:HNO3 3:1; under this treatment there was
also minimal detachment of girdle bands (Figure 1C).
May 2022 | Volume 9 | Article 889832
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Frustule Surface Functionalization and
Protocol Development
During functionalization, solvent choice has been shown to be an
important factor to maintain the underlying morphology of
silicon surfaces and, thus, the adsorption capacity (Jaksǎ et al.,
2014). The effect of different solvents in 18 h functionalization
Frontiers in Marine Science | www.frontiersin.org 4
experiments is shown in the SEM micrographs (Figure 2). The
use of milli-Q water as a solvent caused a high number of
aggregates due to the uncontrolled aggregation of APTMS with
MPTMS and frustules (Figures 2A, D) that appeared
incorporated and overcoated by silanes. Following the protocol
proposed by Zhang et al. (2015) there was a loss of the frustule
A B C

A.1 B.1 C.1

FIGURE 1 | SEM micrographs of S. pinnata valves obtained with different hot acid cleaning protocols. (A) H2SO4:HNO3:H2O (3:1:1 v/v/v) at 90°C for 2 h; (B):
HNO3:H2SO4 (2:1 v/v) at 90°C for 2 h; (C): H2SO4:HNO3 (3:1 v/v) at 90°C for 1 h. (A1–C1) represent details at higher magnification of (A–C) respectively.
A B C

D E F

FIGURE 2 | SEM micrographs of frustules functionalized with the three solvents: (A): milli-Q water, (B): toluene and (C): hexane. (D–F) show details at high
magnification of the same solvent conditions as (A–C) respectively.
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ultrastructural properties due to excessive overlaying of
silanizing agents, which significantly altered the available
surface area for Ni binding. This type of surface simplification
and the coagulation of frustules significantly reduces the overall
porosity and the adsorption capacity of the frustules, which will
diminish their biotechnological potential in several applications
(Anedda et al., 2003; González-Fortuna et al., 2021). Toluene-
(Figures 2B, E) and hexane-functionalized frustules (Figures 2C,
F) greatly reduced the over-presence of silane precipitates and
frustule aggregation and gave a more even coating compared to
the samples functionalized in milli-Q water. However, on closer
observation, the less toxic solvent hexane gave the best performance
in terms of the coating homogeneity and was therefore used in the
subsequent experiments.

To optimize the homogeneity of coating, different
functionalization times (1, 5, 9 and 18 h) were also evaluated.
Analysis of SEM micrographs showed no time effect on surface
modification by APTMS and MPTMS, indicating that this
parameter did not influence coating homogeneity.

Hydroxylation of surfaces is an important requirement in
the functionalization process, because silane deposition is
strongly influenced by availability of hydroxyl groups that are
the binding sites for silane linkers (Parikh et al., 2002; Arranz
et al., 2008; Ogata et al., 2009; Mack et al., 2017). Therefore, the
tests performed over 9 h with decreasing hydroxylation reagent
Frontiers in Marine Science | www.frontiersin.org 5
(NH4OH) concentrations (30, 20, 10 and 5 mM) were expected
to reduce over-coating and frustule coagulation and preserve
frustule morphology.

At NH4OH concentrations of about one order of magnitude
lower than that proposed by Zhang et al. (2015) (30 mM,
Figure 3A and 20 mM, Figure 3B) there were still over-
deposition of silanes on frustules, reduction of the porous
pattern and presence of large frustule aggregates. At the lower
NH4OH concentrations (10 mM and 5 mM), the homogeneity
of the silane coating was improved with the original
morphology and ultrastructural features mostly preserved
(Figures 3C, D)

To further refine functionalization, on the basis of the
aforementioned results, two protocols were selected and tested,
i) 2.5 mM of NH4OH, 14 mM of APTMS and 14 mM µL of
MPTMS for 9 h of functionalization, hereafter referred to as
Protocol 1 (Figure 4A) and ii) 2 mM of NH4OH, 7 mM of
APTMS and 7 mM of MPTMS for 18 h of functionalization,
hereafter referred to as Protocol 2 (Figure 4B).

The SEM micrographs (Figures 4A, B) clearly showed that
samples treated with the two protocols exhibit a homogenous
coating of surfaces by silanes, with negligible differences. Both
protocols resulted in a coating that preserved the frustule
ultrastructural properties, with nanopores not obstructed by an
excess of silane linkers.
A B

C D

FIGURE 3 | SEM micrographs of functionalized frustules after 9 h functionalization with different concentrations of the hydroxylation reagent NH4OH. (A) 30 mM,
(B) 20 mM, (C): 10 mM and (D): 5 mM.
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Functionalized and Raw Frustule
Surface Characterization
To ascertain the successful incorporation of thiol and amino
groups onto the diatom frustule surfaces, Energy Dispersive X-
ray Spectroscopy (EDS) analysis was also performed (Figure 5).

TheEDSspectraof the functionalized frustulesclearlydemonstrated
the presence of nitrogen and sulphur which are not present in the raw
frustules. This clearly indicates the addition of thiol and amino groups
onto the frustule surfaces from the functionalizing coating of APTMS
and MPTMS. It is also likely that the increase in carbon in the
functionalized frustules is associated with the polymer coating.

As a further demonstration, FTIR spectra were obtained for
the functionalized and raw frustules (Figure 6).
Frontiers in Marine Science | www.frontiersin.org 6
The weak -SH signal expected at about 2750 cm-1 is not
clearly visible on the spectra of treated sample, but the -CH band
at 2928 cm-1, due to the symmetric CH2 stretching vibration, and
the -NH2 signal at 1562 cm-1, suggest the successful grafting of
APTMS and MPTMS onto the diatom silica surface and, thus,
the incorporation of amino and thiol groups.

Ni Adsorbance Capacity of Raw and
Functionalized Frustules
The adsorbance capacity of functionalized frustules was analyzed
in a preliminary adsorption test (24 h) using an artificial
contaminated water with Ni concentration of 1.10 mg/L under
three pH values (4.0, 7.0 and 10.0) (Figure 7).
A B

A.1 B.1

A.2 B.2

FIGURE 4 | SEM micrographs of frustules after application of the two protocols. (A): Protocol 1; (B): Protocol 2. (A1, A2, B1, B2) represent high magnification of A
and B respectively.
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The Ni adsorption of the functionalized frustules did not
show any pH dependence, with a removal efficiency of around
94% under all pH conditions (Figure 7). On the other hand, the
Ni adsorption of the raw frustules increased with pH, but only up
to 38% Ni removal from solution at pH 10.0. Ni removal by raw
frustules can be ascribed to the presence of free hydroxyl groups
on their surface which can serve as binding sites for metal ions
(Townley, 2011). The binding interaction is strongly dependent
from pH that affects the frustule degree of ionization and surface
charge (Tozak et al., 2013).

The data of the functionalized frustules contrastedwithprevious
findings for functionalized diatomite, diatom silica microparticles
andawide rangeoffunctionalizednanocomposites, that, despite the
Frontiers in Marine Science | www.frontiersin.org 7
promising heavy metal removal efficiencies, showed a strong pH
dependency (Zhang et al., 2015; Wu et al., 2021). For example,
magnetic chitosan nanoparticle appears as an efficient and fast tool
for removing Pb2+ from water, with an efficiency close to 100% at
acid and neutral pH conditions (Liu et al., 2009), but increasing pH
up to 7.0 seemed to affect the lead ion binding by chitosan, thus
decreasing its adsorption capacity. Similarly, functionalized diatom
microparticles are able to remove mercury from water with a
maximum removal efficiency at pH 6, however, at pH <5.0, the
interactions of the functional groups with Hg(II) decrease,
evidencing that pH plays an important role in the adsorption
mechanism (Yu et al., 2012). If Ni adsorption by functionalized
frustules is not pH dependent as shown in our work, it would be
FIGURE 5 | Representative SEM-EDS spectra of raw and functionalized frustules using Protocol 1 and Protocol 2. At 1.5 keV the aluminium signal arising from the
support used for samples deposition appears.
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highly favourable for removal of heavymetals, as there would be no
requirement for pre-treatment of the contaminated, realwastewater
pH. FTIR analysis of raw frustules after the adsorption test, showed
no significant changes in the FTIR spectrum with respect to that
of untreatedmaterial. In contrast, the intensity of the -NH2 band of
functionalized frustules decreases, indicating the involvement
of this functional group in the adsorption process. No significant
changes in the spectra were detected at different pH conditions,
indicating that the hydrogen ion potential does not imply the
degradation of frustule silane coating.
Frontiers in Marine Science | www.frontiersin.org 8
The rate of Ni removal surely indicates the potential of the
functionalized frustules as adsorbent material. After only 10 min,
the functionalized frustules removed 97.97% of Ni (from 30 to
0.61 mg/L), whilst the raw frustules removed only 3% (from 30 to
29.12 mg/L) after 5 hours (Figure 8).

After centrifugation, at the end of the experiment, the
functionalized frustule samples had dark red colour, in
contrast with the start of the experiment when both raw and
functionalized frustules appeared white. This evidence indicates
that the interaction of Ni with -amino and -thiol groups caused
the formation of Ni-NH2 and Ni-SH complexes on the surface of
modified biosilica (Figure 9).

These results suggest that functionalized frustules of S. pinnata
can be considered as a novel and alternative adsorbent material.

Alternative adsorbents for heavy metal remediation, such as
activated carbons, zeolites, clay minerals and nano- materials
(Burakov et al., 2018), have their limitations, i.e. the removal
efficiency is usually strongly dependent on temperature or pH
(Sharma et al., 2007; Priyantha and Bandaranayaka, 2011), they
are still for eco-compatibility and toxicity (Lu and Astruc, 2018),
and also too costly, limiting their widespread use (Lin et al.,
2018). For example, wollastonite, a regularly proposed adsorbent
for Ni remediation, has not reached the removal efficiency of
functionalized S. pinnata. In the present study, with only 0.2 g/L
of frustules there was 97.97% Ni removal in 10 min, to obtain the
same results with wollastonite around 20 g/L of adsorbent would
be required (Sharma et al., 1990). Comparable removal capacities
have been reached using alumina nanoparticles removing 96.6%
of Ni (0.0255 g/L) after 120 minutes (Sharma et al., 2007),
magnetic nanoparticles, are capable of removing 97.6% of Ni
(25 mg/L) after 35 min (Gautam et al., 2015), and electrospun
nanofiber membranes, can remove 80% of Ni (100 mg/L) after
120 minutes (Aliabadi et al., 2013). However, in comparison with
functionalized frustules, production costs of these other
adsorbents are high. This being so, there is still a need for
further investigations to improve the biosorption process and
to offset costs of using functionalized frustules which would
FIGURE 7 | Adsorption of Ni (1.10 mg/L) of functionalized (Protocol 1 and
Protocol 2) and raw frustules at three pH conditions after 24-hour treatment.
Data are reported as averaged values of triplicates ± standard deviation and
analyzed by two-way ANOVA (****p-value < 0.0001).
FIGURE 6 | FTIR spectra of raw and functionalized frustules using Protocol 1 and Protocol 2.
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include the possibility of regeneration of the biosorbent and the
recovery of metals for their potential reuse.

Diatomite, another alternative adsorbent, is much more
comparable to the frustules of S. pinnata (ElSayed, 2018) as it
also has high porosity, large surface area and small particle size.
Like S. pinnata frustules, raw diatomite, possesses a weak affinity
for metal ion binding, and functionalization is also required to
enhance their adsorption capacity (Wu et al., 2021). The
potential of modified and raw diatomite to remove metals has
been widely studied (Khraisheh et al., 2004; Danil de Namor
et al., 2012; Kabiri et al., 2015; Nosrati et al., 2017; Zhao et al.,
2019; El Ouardi et al., 2020), but there are some inherent
problems. The intrinsic heterogeneity of raw diatomite and the
Frontiers in Marine Science | www.frontiersin.org 9
presence of different impurities (such as metal oxides) can
influence heavy metals removal potential of diatomite and can
make the functionalization process of this material problematic,
thus affecting the production of a reproducible adsorbent. In
contrast, monospecific mass culture-derived frustules, present a
purer and more predictable substrate, allowing for reproducible
production that can be easily functionalized.
CONCLUSIONS

The results here reported indicate that functionalized frustules of
S. pinnata are highly capable of removing Ni from aqueous
FIGURE 8 | Ni removal efficiency of raw and functionalized frustules as a function of time. Data are reported as averaged values of triplicates ± standard deviation.
FIGURE 9 | Photograph of raw and functionalized frustules after 5 hours of Ni removal test. Dark coloration of functionalized frustules clearly indicates the interaction
with Ni.
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solutions. The surface functionalization method here proposed
avoids unwanted organosilane polymerization on the material
surface, allowing for porous structure retention while granting
consistent surface enrichment in specific metal-binding
functional groups. The removal efficiency of functionalized
frustules of S. pinnata is independent from the hydrogen ion
concentration, in contrast with other bio-silica based adsorbents
that are strongly dependent from pH, limiting their extensive
use. In addition, the frustules used in the present study were
essentially a by-product of diatom biomass cultivated in a
controlled system for other purposes, therefore this approach
valorizes the leftover of a diatom biorefinery and improves the
economical sustainability for the production at large scale of this
adsorbent. Finally, the use of frustules from a single species
allows for a predictable and structurally homogeneous
nanoporous material, making the functionalization process
more reproducible by the development and optimization of an
ad hoc protocol able to preserve frustule surface features,
nanoporous patterns and morphology. The system here
presented will be further characterized to determine the
maximum Ni concentration removable per unit weight of
functionalized frustules and to evaluate the removal capacity
toward other metallic species. Different functionalization agents
will be also considered to optimize the -NH2 and -SH surface
concentration. With further investigations on the recovery and
desorption mechanisms of metals and the original functionalized
biomass, the possibility to further reduce costs would allow for
much larger scale operations. Finally, the expansion of the
Frontiers in Marine Science | www.frontiersin.org 10
diatom cultivation process, and the increased drawdown of
atmospheric CO2, would certainly improve the ecological
sustainability of the whole process.
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