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Climate change is impacting organisms in every region of the world ocean by acting
though on individuals in response to their local environments. Given projected future risks
derived from these changes, it is becoming increasingly important to understand regional
signals of how organisms respond to facilitate their governance and protection. Benthic
organisms structure ecological compositions and ecosystem dynamics, therefore not only
providing insights into their own response to climate change but also how ecosystems
might respond to future conditions. European seas are transitional areas including boreal,
warm-temperate, and subarctic waters with organisms frequently at limits of their
distributions. Here, we use a meta-analytical approach to assess how calcification,
growth, metabolism, photosynthesis, reproduction, and survival in European benthic
organisms respond to ocean acidification and warming. Using meta-regression, we
examine how study design factors influence effect-size outcomes. Longer experimental
periods generally amplified the effects of climate change on taxonomic groupings and
related physiological traits and against expectation do not result in acclimation. In
agreement with global studies, we find that impacts vary considerably on different
taxonomic groupings and their physiological traits. We found calcifying organisms are
an at-risk taxon in European waters, with climate stressors decreasing growth rates,
reproduction, and survival rates. Fleshy algal species demonstrate resilience to climate
stressors, suggesting future European benthic ecosystems will undergo restructuring
based on current climate emission pathways.

Keywords: climate change, benthic organisms, ocean acidification, ocean warming, meta-analysis,
european ecosystems

1 INTRODUCTION

Atmospheric carbon dioxide concentration is currently ~412.5ppm (Friedlingstein et al., 2020),
the highest level in 3.6 million years (Martinez-Boti et al., 2015). Depending on emission
scenarios, likely global atmospheric air warming is projected to be 2.5°C - 4°C by 2100 (IPCC,
2021). These emissions drive changes to ocean properties, chiefly ocean acidification from excess
CO, interacting with seawater (Doney et al., 2009) and increases to ocean temperature from
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absorbing excess atmospheric heat (IPCC, 2021). Such
warming is amplified in higher latitudes (Wu et al., 2011;
Singh et al, 2017) but lower in the ocean due oceanic to
thermal inertia (Abdussamatov et al, 2012). High latitudes
are absorbing most CO, as cold water can naturally store more
gasses (Cooley et al., 2022).

These changes in the ocean physico-chemical properties have
consequences for marine organisms including changes to
growth, calcification, reproduction, metabolic processes, and
survival; these effects though are highly variable across
taxonomic groups (Kroeker et al.,, 2013; Cattano et al.,, 2018;
Bindoff et al., 2019; Sampaio et al., 2021). While the development
of the climatic drivers over the next decades is broadly well
understood (Cooley et al., 2022) and a vast range of responses of
individuals and their developmental stages exemplified,
upscaling to the response of larger groups, ecosystems and
their services is a vast challenge, despite scientific literature on
individual studies accumulating (Bass et al., 2021).

Meta-analyses help focus knowledge on how marine
organisms may respond by condensing many independent
studies into a standardised and comparable format allowing
patterns to emerge, despite the variation between experiments,
across taxonomic groups and latitudes. Agenda setting studies
showed how climate change interacts with organisms and the
physiological responses at a global scale (Hendriks et al., 2010;
Harvey et al.,, 2013; Kroeker et al., 2013). These studies identified
potential generalised trends like calcifying organisms’ growth
rates decreasing under ocean acidification.

Organism responses to climate change though are not
homogenous and interregional variability is expected
(Krumhansl et al., 2016). For example, a meta-analysis showed
coral calcification rates to ocean acidification increase in the
tropics, decreases in the subtropics, and are unaffected in
temperate ecosystems in response to climate scenarios for 2100
(Kornder et al.,, 2018). The natural variability of the climate and
environment, as well as the synergies between drivers, might
predispose organisms to a wider range of impacts. Temperate
regions, for example, record greater annual variability in
temperature than tropical regions which may lead to different
responses to climate stressors (Sheldon et al., 2011; Verges
et al., 2014).

Two recent meta-analyses have taken a different regional
approach focussing on ocean acidification in the Southern Ocean
(Hancock et al.,, 2020; Figuerola et al., 2021) finding potential to
alter ecosystem interactions. Bove et al. (2020) investigated
Caribbean coral calcification indicating ocean warming reduces
calcification while ocean acidification and ocean acidification with
warming, does not. A study of Mediterranean benthic organism
responses to ocean acidification showed a replacement of calcifying
algae and corals by fleshy algae (Zunino et al, 2017). Regional
studies find trends that are less evident using global analyses
(Parker et al.,, 2013) such as resilience in calcification or growth
responses (Goethel et al., 2017; Zunino et al,, 2017; Kornder et al.,
2018; Bove et al.,, 2020) which are not identifiable when pooling
studies globally (Hendriks et al., 2010; Kroeker et al., 2013; Harvey
et al, 2013).

Given projected future risks derived from these changes, it is
becoming increasingly important to understand regional signals
of how organisms response. Here we use the approach of global
studies in the context of European waters to determine
vulnerability or resilience of taxonomic groupings to multiple
climate stressors. This understanding will be important to
prioritise conservation efforts and identify governance needs in
an international context. Across Europe multiple biogeographic
regions are in close proximity with organisms at the edges of
their distributions (Narayanaswamy et al., 2013; Kotta et al,
2017). Large volumes of experimental work analysing organism
responses to climate change exist for Europe, augmented by
long-time series data sets assessing natural variation of presence
and absence e.g. MarClim in the UK (Mieszkowska et al., 2006),
and the Helgoland Roads time series (Wiltshire et al., 2010).
Despite the large volume of data, studies assessing interactions
across multiple stressors and their potential cumulative impacts
within the wider context of European waters are lacking. It is not
clear which habitats are most vulnerable or which services are
most under pressure which hinders the effectiveness to conserve
European marine ecosystems through protected area networks
(Mazaris et al., 2019), and the sustainable development of coastal
resources (Qiu and Jones, 2013).

We focus on benthic organisms as these are habitat formers,
keystone species, and provide regulating and provisioning
services which are fundamental in structuring ecosystems.
Molluscs are food sources for other organisms (Coen et al.,
2007), form biogenic habitats (Koivisto and Westerbom, 2010),
and key economic resources (Mangi et al., 2018). Crustaceans are
key components of food webs often serving as a trophic link
between benthic and pelagic species (Szaniawska, 2018). Algal
species fix carbon via photosynthesis (Tsai et al., 2017), stabilise
shorelines (Currin et al., 2010), contribute to nutrient cycles
(Smale et al.,, 2013), and provide habitat for epiphytic
communities (Bates and DeWreede, 2007; King et al., 2021).
Echinoderms are dominant grazing species in ecosystems that
structure habitats (Norderhaug and Christie, 2009) and drive
trophic interactions (Hughes et al., 2012). Calcifying algae build
habitats both via their physical structures (Hofmann et al., 2012)
and shaping surrounding sediment profiles (Coniglio and James,
1985), and host epiphytic species (Nelson, 2009).

Additionally, meta-analyses have moved on technically since
earlier seminal studies. While the importance of study design in
experimental outcomes has been acknowledged and suggestions
for standardisation have been made (Riebesell et al., 2011), its
relevance has rarely been explored in meta-analysis. The
substantial increase in understanding of impacts of climate
change on marine organisms since publication of earlier
agenda setting work offers the chance to incorporate a larger
volume of data and develop meta-analysis studies to improve
understanding of the underlying mechanisms that may drive
observations. Duration of exposure and acclimation periods are
thought to impact how organisms respond to climate stressors
(Evans and Hofmann, 2012; Griffith and Gobler, 2017). Short
term experiments, often without days in the laboratory
conditions allowing equilibration, are perceived as shock to the
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physiology of the study organisms (Li et al., 2015) while long-
term response allow for acclimation and therefore are considered
to give a better idea of the responses to long term climate change
(Leung et al., 2021). New longer duration datasets allow us to
analyse the importance of these designs of experimental datasets
expanding from previous meta-analyses.

Using a meta-analytical approach, we examine peer-reviewed
literature focusing on how European benthic marine organisms
respond to climate change drivers. We focus our analysis on
organism calcification, growth, metabolism, reproduction,
photosynthesis, and survival. Based on global analyses and
understanding of the physiology of these taxa, we hypothesise
that calcifying organism will be impacted more strongly, and that
growth is negatively impacted while photosynthesis is enhanced.
These traits capture a range of key organism physiological traits
providing insights into organism fitness and allow of
comparisons with previous meta-analyses. Using meta-
regression, we examine how study design factors influence
effect-size outcomes.

2 METHODS

2.1 Study and Selection Criteria

This study gathered articles published between 1°* January 2000 —
1% January 2020 to cover most ocean acidification (OA) research
articles (Riebesell and Gattuso, 2015). Web of Science and
Scopus were used to find articles covering climate change
impacts on native European benthic marine organisms using
the keywords: “ocean acidification”, “acidification”, “ocean
warming”, “climate change”, “global warming”, and
combinations/permutations of these. The results were
snowballed following recommendations made by Orr et al
(2020); article lists from previous comprehensive reviews
(Harvey et al., 2013; Kroeker et al., 2013) and their reference

lists were used to locate additional studies. Article collection
occurred between March 2019 - Jan 2020, article list available in
Supplementary Data.

Data were limited to native European species (Figure 1),
excluding invasive species. Minimum standards for reporting of
meta data were: control condition, acidification and or warming
manipulated individually or synergistically within possible for
conditions for 2100 conditions in European seas. Plausible
conditions were determined based on author knowledge of
likely conditions at a study site or species might experience,
allowing inclusion of local contexts not identifiable in large,
averaged projections. We exclude unrealistic stress (i.e.,
conditions beyond high end emissions scenarios by 2100)
experiments in the context of climate change designed to
improve our understanding of physiology. Studies assessing
interaction with other stressors (such as heavy metal pollution
or nutrients) were included if they analysed the climate stressors
separately. Studies examining multiple species, biological
responses, seasons, or geographical locations were included if
they could be disaggregated.

Data on calcification, growth, metabolism, reproduction,
photosynthesis, and survival were extracted (Supplementary
Data). When the same biological trait was measured in
multiple ways (e.g. growth as organism length and biomass),
one was chosen at random following standard methodology
(Harvey et al.,, 2013; Kroeker et al., 2013; Sampaio et al.,, 2021).
To avoid higher weighting, one parameter was chosen when
multiple biological responses (e.g. length and biomass to
determine growth) were reported. Survival data were converted
from mortality for standardisation. Many identified articles
reported survival rates. However, these where often reported as
percentages and thereby did not provide variance, preventing us
from computing an effect size consistent with the rest of these
meta-analyses, resulting in exclusion from our study. Time-series
data were attributed to the endpoint of that experiment.

FIGURE 1 | A map of Europe detailing approximate collection locations of study organisms in identified articles for meta-analysis.
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Datapoints, a form or variance (standard error, confidence
intervals, or standard deviation), and sample size were extracted
directly from either text or tables. Graphs were data mined using
WebPlotDigitizer (Rohatgi,1 2019, See SI). Acclimation period
(experimental period whereby organisms were transitioned to
climate stressors e.g., increasing water temperature by 0.5°C daily
to reach temperature increase value), study duration (length of
organism exposure to climate stressor excluding acclimation
period), organism developmental stage (categorised as Egg/
larva, Juvenile, and Adult), pH change or temperature change,
organisms’ size were extracted when possible. Size at the start of
the experiment was converted to grams [g] or millimetres [mm])
based on the sample mean and log transformed. Insufficient data
were extracted to allow for taxonomic-biological trait responses
to organism size, so data were pooled combining biological traits
to identify general trends on traits alone.

2.2 Statistical Analyses

All analyses were conducted using the R (version 4.0.0; R
Development Core Team). The package “Metafor”
(Viechtbauer, 2010) was used to calculate effect size using the
“escalc” function and conduct the meta-analyses. Log Response
Ratio (LnRR) was chosen to measure effect size (Koricheva
et al., 2013).

Multivariate meta-analysis models (function “rma.mv”) were
used to calculate the mean effect and sampling variance of a
treatment on a biological response. Random intercepts of article
and species for each treatment were incorporated to account for
possible results correlation due to studies from the same article
or organism and account for pseudo-replication. Data were
subsetted into taxonomic groupings, calcifiers vs non-calcifiers,
heterotrophic vs autotrophic, and developmental stage when
possible. Climate stressors were used as model moderators
(mods = stressor -1). A result is considered significant if the
95% confidence interval for the overall mean calculated by a
model does not overlap zero. Tests for residual heterogeneity
(Qgp) were used to ascertain if additional moderators not
considered in the analysis might be influencing study results
(Hedges and Olkin, 2014).

To examine the impact of study duration and acclimation
period we modified the multivariate meta-analysis models to
include either of these as moderators within the models. E.g:
[model <- rma.mv (yi, vi, method=“REML”, test="“t", random =
~1|Article/species, data=data, mods = ~duration: stressor -1)].

2.3 Publication Bias

Standardized diagnostic tests for multivariate meta-analytical
methods are still evolving (Viechtbauer and Cheung, 2010;
Habeck and Schultz, 2015) and currently only applicable for
univariate models (e.g. models of class “rma”). To detect
publication bias within our data we modified our multivariate
models in accordance with Habeck and Schultz (2015) to
calculate Egger’s regression. Egger’s regression detects funnel
plot asymmetry, a common measure of publication bias, by
looking if there are statistically absent studies based on the
distribution of studies within meta-analysis datasets using

linear regression (Egger et al., 1997). Multivariate meta-
analysis models were extended to include the square root on
effect size variance as a model moderator variable to perform a
regression test (Habeck and Schultz, 2015). When this regression
test intercept significantly deviates from zero, a data set is
considered asymmetrical, thus biased (Sterne et al., 2005).
Following previous recommendations (Egger et al, 1997;
Habeck and Schultz, 2015) an analysis is considered biased if
the intercept differs from zero at P = 0.10. Results from tests for
residual heterogeneity (Qg) and publication bias are reported in
Supplementary Information.

3 RESULTS

171 articles matched our inclusion criteria (Figure 2),
totalling 791 experiments for meta-analysis (Supplementary
Data). Most studies were molluscs (n = 173), acidification (n =
423) and the traits of calcification (n = 126), growth (n = 266),
and metabolic response (n = 202). Average experimental
duration was 86.3 ( £ 102.1) days, acclimation period 7.1 ( +
20.4) days, pH change 0.26 (£ 0.17) and temperature change =
2.69°C ( £ 2).

The responses of benthic organisms to climate stressors were
highly variable across taxonomic groups (Figure 3). No stressor
consistently produced positive or negative changes. Crustaceans
were the most impacted with combined ocean acidification
and warming decreasing calcification (LnRR = -0.1448,
P = 0.0111, 95% confidence interval -0.2509 - -0.0387),
reproduction (LnRR = -0.144, P = 0.0014, 95% confidence
interval -0.2277 - -0.0604), and survival (LnRR = -0.4057,
P = 0.0001, 95% confidence interval -0.4086 - -0.3604), but
increasing metabolic rate (LnRR = 0.2211, P = 0.0188, 95%
confidence interval 0.0425 — 0.3996). Ocean acidification alone
lowered reproduction (LnRR = -0.111, P = 0.0109, 95%
confidence interval -0.1945 - -0.0276). Warming increased
metabolic rates (LnRR = 0.3993, P = 0.0001, 95%
confidence interval 0.2344 - 0.5641) but decreased
reproduction (LnRR = -0.1272, P = 0.0042, 95% confidence
interval -0.2108 - -0.0436), and survival (LnRR = -0.269,
P = 0.0053). Most calcifying organisms exhibit statistically
significant responses when taxa were examined individually
(Figure 3) and when data were aggregated to compare with non-
calcifying organisms with respect to growth rates and
metabolism (Figure 4).

Metabolism was both negatively and positively affected by at
least one climate stressor in every taxon except algae (9 statistically
significant observations in 5 taxa) (Figure 3). Fleshy algae are the
most resilient with no statistically significant signals in growth,
metabolism, photosynthesis, and reproduction (Figure 3). Ocean
acidification caused decreases in metabolism in calcifying and
heterotrophic organisms (Figure 4). Warming individually, and
combined with ocean acidification, increase metabolic rates except
corals where metabolic rate decreased and algae where no statistical
signal was detected. Egg/larval growth rates across all taxa increased
in response to combined acidification and warming (LnRR =
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FIGURE 2 | PRISMA diagram outlining article collection process for meta-analysis.
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0.1935, P = 0.0001, 95% confidence interval 0.1268 — 0.2603), but
decreased in juveniles and adults (LnRR = -0.3701, P = 0.0058, 95%
confidence interval -0.6283 - -0.1118; LnRR = -0.1715, P = 0.0404,
95% confidence interval -0.3353 - -0.0078 respectively) (Figure 4).

Experimental design greatly influenced the observed impacts
of organism responses to climate change stressors
(Supplementary Material) as revealed by meta-regression.
Study duration was important for responses of taxonomic
groups while acclimation period mostly had no statistical
significance suggesting that the current practise eliminates
impacts on study design (Supplementary Table). Increased
study duration period generally amplified responses, suggesting
that European benthic organisms do not readily acclimate to
acidification and/or warming within the same generation.
Metabolic responses increased with study durations (Table 1).
Survival was the only trait not significantly impacted by
experimental duration or acclimation periods (Table 1).

The impact on taxa scales with the degree of environmental
change with larger driver change resulting in higher impacts.
There are expectations for example metabolic activity for
molluscs and algae were metabolism decreased in response to
OA (Table 2). Climate stress negatively impacted growth across
all taxa except for polychaeta growth which showed an increase.

Interestingly, results suggest that larger organisms do not
increase metabolisms in response to climate stressors as larger
organisms grew more, while smaller organism’s growth rate was
lower (Table 3). Impacts on survival are not clear; for larger
organisms determined by volume or weight (g) survival rates
were negatively impacted by OA, but when organisms were
measured by length larger organism had higher survival with
increasing size.

4 DISCUSSION

While there have been meta-analyses of climate change impacts on
marine organisms in the past, climate change is acting on a local to
regional scale. Projected future risks originating from these changes
make it is increasingly important to identify regional signals of
organismal responses to guide conservation strategy and
governance. We chose European waters due to the geographic
proximity of different biogeographic regions driven by
environmental differences. Such analysis is fundamental to design
effective conservation strategies by providing granularity that is not
present in overarching datasets. In agreement with many
experiments on individual taxa, we found highly variable impacts.
Metabolic rates of molluscs, crustaceans, echinoderms, and
calcifying algae increased under ocean warming and combined
ocean acidification and warming, while mollusc and coral
metabolic rates decreased under ocean acidification and ocean
warming respectively (Figure 2). The physiology of calcifying
organisms is significantly impacted with decreased growth rates of
molluscs under all examined climate stressors and calcifying algae
under ocean acidification, crustacean calcification decreased under
combined ocean acidification and warming, while fleshy algal
species appear resilient to the tested combinations of climate

stressors. Using meta-regression, we found against expectation
that longer experimental periods generally amplified the effects of
climate change and did not result in acclimation.

4.1 Impacts on Habitat Formers

Growth and reproduction of calcifying organisms in particular
were reduced in response to warming and lowering of pH.
However not all calcifying taxa experienced calcification
reduction. Molluscs show negative impacts on calcification,
growth and increases in metabolic costs, adding to the body of
studies showing molluscs are a highly at-risk taxon globally
(Parker et al., 2013; Kroeker et al., 2013; Goethel et al., 2017;
Figuerola et al., 2021). Our findings contrast recent work on the
Mediterranean Sea and a global analysis which suggested mollusc
growth is unaffected by climate stressors (Zunino et al., 2017;
Sampaio et al., 2021). Our results likely differs from the signal
observed by Zunino et al. (2017) due to a larger sample size
encompassing a wider range of taxa and growth responses. We
interpret this apparent disagreement with the global analysis as
indication that European mollusc species are particularly
sensitive to climate stressors; a suggestion which is
corroborated by global studies which have a strong bias
towards temperate molluscan species in North Atlantic waters
resulting in a similar interpretation (Kroeker et al., 2013; Harvey
et al.,, 2013). European species have long been reported to be
altering distributions in response to climate change (Helmuth
et al., 2006) highlighting species at the edge of distributions are
sensitive to climate stressors.

Reductions in growth rates will not only affect size and fitness,
but also reduce molluscs ability to form biogenic structures,
limiting their ability to support biodiversity (Strain et al., 2021).
Many habitats created by these taxa are protected due to the
associated high biodiversity (Donnarumma et al., 2018).
Evidence suggests high food availability can buffer against
climate stressors (Thomsen et al.,, 2013), but primary
productivity globally is predicted to decrease by ~8.6% under
business-as-usual scenarios (Bopp et al., 2013) thereby
potentially amplifying the impacts depending on local habitat
and other inputs into coastal ecosystems.

Reductions in mollusc growth rates and survival paired with
reductions in crustacean survival and reproduction would
impact commercial fishing in Europe by lowering catch
potential and impacting livelihoods of European fishers.
France, the Netherlands, and Spain annually produce
approximately half of consumed European molluscs (Narita
and Rehdanz, 2017) suggesting these regions are particularly
susceptible to the economic repercussions of climate impacts on
mollusc species. Additionally, the resilience of mollusc and
crustacean populations against climate change has been
reduced by destructive fishing and pollution for decades (De
Groot, 1984). There are attempts to restore habitats in line with
historical distribution, e.g., recreation of oyster beds around the
UK (Harding et al., 2016) or red gorgonian in the Mediterranean
(Linares et al., 2008). Restoring historical habitats that are reliant
on calcifying organisms as keystone species may be a risky
approach and not provide longevity due to observed impacts
on growth rates, reproduction, and survival. Assessing local
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TABLE 1 | Study duration period impact on effect size (LnRR) for biological traits and climate change stressor treatment.

Calcification
Growth
Metabolism
Photosynthesis
Reproduction

Survival

Biological Trait Mollusc
Calcification
Growth

Metabolism
Photosynthesis

Reproduction
Survival

OA ow

Echinoderm

Calcifying algae

Algae

GAROWIon  ow on  ow

Polychaete Seagrass

Red shades refer to negative signals, blue shades are positive signals. At the bottom of the tables, light green refers to Ocean Acidification, orange refers to Ocean Warming, and dark blue
is Ocean Acidification and Warming. On Tables 1 and 2, gold/orange is meant to highlight "Biological trait"

environmental conditions, the vulnerability of specific taxa, and
options for reducing secondary local stressors are all needed to
improve the long-term viability of these habitats.

Other ecosystem builders are similarly impacted,
increasing the risk for coastal biodiversity. The decrease
growth rates of calcifying algae are supported by other
studies, highlighting the vulnerability of this group (Brodie
et al., 2014; Chan et al., 2020). As they lose suitable
environmental conditions (Simon-Nutbrown et al., 2020),
calcifying algae are predicted to experience increased
breakage due to increasingly intense weather, reducing
structural complexity of Mearl beds (Melbourne et al,
2018). The reduced growth rates of calcifying algae
suggested in our analysis will compound these problems
(Ragazzola et al., 2013; Marchini et al., 2019). Furthermore,
future sea level rise and changes in riverine input into coastal
setting due to changes in precipitation and land use all
threaten light attenuation in some habitats, for example
where habitats cannot migrate landwards due to artificial
coastal structures or cliffs, which exacerbates the impacts.

Our data suggest European corals are mostly unaffected by
climate stressors, likely because most studies investigated the
cold-water coral Lophelia pertusa which have been found in
experiments to be resilient to projected end of century ocean
conditions (Form and Riebesell, 2012; Wall et al., 2015; Biischer
et al,, 2017; Varnerin et al, 2020; Wang et al,, 2021). While
symbiont bearing tropical coral ecosystems are projected to be
lost with only small amounts of additional warming (Hoegh-
Guldberg et al., 2017), temperate deeper-water taxa appear more
resilient (Kornder et al., 2018, this study). However, the 3D
structure generated by deep water corals will be impacted by
dissolution after death and thereby reduce the habitat and
associated biodiversity (Hennige et al., 2020).

Our analysis suggests that autotrophic species, in our dataset
mostly fleshy algae, will benefit from climate change. We echo
the findings that algal species can display resilience to climate
change stressors, in both regional (Strain et al., 2015; Phelps
et al,, 2017) and global analyses (Krumhansl et al., 2016). This
finding is supported by field observations of intertidal habitats in
Scotland which have observed increases in canopy-forming algal
species (Burrows et al., 2017). However, the focus on the
physiology masks species interactions which suggest that
temperate algal communities may undergo simplification with
decreases in structural complexity and diversity as climate
change amplifies (Brodie et al., 2014; Agostini et al., 2021; King
et al., 2021). Algal species frequently grow in high energy
environments which experience rapid daily variations in tides
and temperature. Therefore, they have evolved rapid growth
responses to compensate frequent breakage in these
environments (Rai and Gaur, 2012) which may also benefit
under global change conditions. Due to their apparent
resilience, associated ecosystem services like helping shoreline
stabilisation and nutrient cycling may continue despite warming
and acidification. However, the complexity of these systems is
overlooked by our analysis of individual taxa as associated
epifaunal species might be negatively impacted and thereby
reduce biofim production on the algae (Berner et al.,, 2015). It
is important to note though that eutrophication, pollution and
habitat destruction from shoreline protection, fishing or future
sea level rise were not part of this assessment. This apparent
resilience may support endeavours to grow kelp or seagrass for
carbon sequestration (Unsworth et al., 2018; Bach and Boyd,
2021), or grow algae as part of the blue economy (Aratjo et al.,
2021). Our results suggest efforts to restore algal habitats, such as
kelp beds around Norway (Hynes et al., 2021), might benefit
from the sugested resilience to climate stressors.
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TABLE 2 | Stressor severity impact on effect size (LnRR) for biological traits and climate change stressor treatment (OA = Ocean Acidification, OW = Ocean Warming,
OA + OW = Ocean Acidification and Warming). Direction of response indicated by arrows, boxes with (-) indicate no statistically significant effect, blank boxes indicate
insufficient/no data for meta-regression. P values denoted by number of arrows; <0.0001 = 3 arrows, < 0.001 = 2 arrows, <0.01 = 1 arrow.

Calcification - - -
Growth -
Metabolism -
Photosynthesis
Reproduction -
Survival -
OA ow OA
Biological Trait Mollusc Crustacean
Calcification - - -
Growth - -
Metabolism - -
Photosynthesis -
Reproduction - - -
Survival
OA ow _OA
Echinoderm

Calcifying algae

Coral Algae

GAROWINoa  ow

Polychaete

GAROWINoa  ow

Seagrass

Red shades refer to negative signals, blue shades are positive signals. At the bottom of the tables, light green refers to Ocean Acidification, orange refers to Ocean Warming, and dark blue
is Ocean Acidification and Warming. On Tables 1 and 2, gold/orange is meant to highlight "Biological trait"

Our findings identify gaps in the experiments on some
European benthic organisms. For example, while there is a
high abundance of experiments on mollusc growth rates
comparatively less is known for crustaceans or calcifying algae.
This bias is replicated on a global scale (Kroeker et al., 2013;
Harvey et al, 2013; Sampaio et al., 2021). Limited work on
polychaetes and bryozoans hindered inclusion in our analysis
expect for the generalised categories (calcifiers vs non-calcifiers,
heterotrophs vs autotrophs). To gain a more differentiated
understanding of what European seascapes may look like in
the future and which services they can provide, greater efforts
need to be taken to determine impacts on less studied taxonomic
groups. Despite a clear importance of seasonal variation of
environmental conditions, for example marine heat waves
(Oliver et al., 2018), most studies were performed under stable
environmental conditions resulting in insufficient data to analyse

potential seasonal impacts on organism physiology. Such
extreme conditions and their projected increasing frequency
will threaten communities as the reducing time periods
between these extreme events reduce opportunities for
communities to recover (Bednar-Friedl et al., 2022).

4.2 Physiological Responses

The observed increases in algal metabolism in our analysis show
an increased demand for oxygen, indicating that climate change
is increasing standard physiological rates (Portner, 2008).
Whether these increases are beneficial or detrimental depends
on the relative deviation from optimal environmental conditions
for temperature and oxygen (Portner, 2002; Portner and Farrell,
2008). The detected impacts on the metabolic responses of
calcifiers corroborate Lefevre (2016) who found calcifying
organisms consumed significantly more oxygen when exposed

TABLE 3 | The effect of organism size at the start of an experiment on effect size (LnRR) for biological traits and climate change stressor treatment.

Calcification
Growth

Metabolism

Photosynthesis
Reproduction

Survival

Log(mm)

Log(9)
OA

Log(g)
ow

Log(mm) Log(9) Log(mm)

(OA = Ocean Acidification, OW = Ocean Warming, OA + OW = Ocean Acidification and Warming). Direction of response indicated by arrows, boxes with (-) indicate no statistically
significant effect, blank boxes indicate insufficient/no data for meta-regression. P values denoted by number of arrows; <0.0001 = 3 arrows, < 0.001 = 2 arrows, <0.01 = 1 arrow.
Red shades refer to negative signals, blue shades are positive signals. At the bottom of the tables, light green refers to Ocean Acidification, orange refers to Ocean Warming, and dark blue

is Ocean Acidification and Warming.
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to climate stressors. In contrast, previous meta-analysis
suggested that ocean acidification does not impact metabolic
responses (Kroeker et al, 2013; Sampaio et al, 2021) while
warming increased them (Sampaio et al., 2021). One potential
interpretation of this difference is the nature of the regional
marine environment. European waters experience large
temperature fluctuations and organisms in these environments
have shown to have limited ability to acclimate to climate
stressors (Seebacher et al.,, 2015). Increased physiological
demands can be compensated, for example by higher food
intake at warmer temperature or to facilitate calcification at
lower pH. However, future oxygen losses in the ocean
(Schmidtko et al, 2017) could prevent organisms increasing
their metabolic rates sufficiently. Therefore, interpretations on
metabolic responses must be viewed in a wider biological context
as increases in metabolism may result in negative responses in
other parameters like growth rates (Kordas et al., 2011) and
depend on the relative change in environmental conditions
relative to critical and optimum values at their respective life
stages (Portner and Farrell, 2008).

Organism size has been shown to greatly influence
ectotherm survival (Peralta-Maraver and Rezende, 2021).
Dynamic energy budget research shows organism metabolic
rates generally decrease concurrently with size (Ren and Ross,
2001; Agtiera et al,, 2015). Increasing organism size decreases
surface area to volume ratio, and oxygen uptake generally
decreases relative to size as organism size increases (Lefevre
et al., 2017). In general, metabolism increases in response to
climate stressors. Meta-regression revealed that increasing
organism size leads to negative metabolism responses
(Figure 3), but this is likely an artifact of established
metabolic theory. This result highlights the complexity of
impacts on organisms, and potentially explains discrepancies
between results of different studies. We were unable to explore
this in greater detail due to studies infrequently reporting
organism size and encourage experimentalist to make this
part of their data reporting.

4.3 Increased Stressor Exposure Duration
Amplifies Risk

Study duration (the period an organism was continuously
exposured a to climate stressor) clearly impacts organism
physiological responses to climate change. Using meta-
regression to examine how study duration period changed trait
responses to climate stressors suggests that impacts amplify the
longer organisms are exposed. We expect effect size signals to
shift towards zero if acclimation would occur. Our data though
for growth and metabolism generally increased their response
the longer experments were conducted (Table 1). We suggest
that European benthic organisms have limited capacity for
acclimation over the time of the experiments. While we also
detected many statistically insignificant signals, it is important to
note that this does not indicate acclimation; it only suggests that
study duration did not have a statistical relationship with
effect size.

The mean experimental duration period across our data was
only 86.3 days representing short-term exposure in contrast to
climate change over decades. Long term experiments assessing
acclimation are rare and typically conducted on organisms with
fast reproduction time such as Pseudokirchneriella or Emiliania
huxleyi (Schliiter et al., 2016; Limberger and Fussmann, 2021).
Study length has not increased much since the meta-analysis
Kroeker et al. (2013) clearly limiting our knowledge of the true
long-term ecological impacts. Our selection of organisms may
have a bias towards species which are adapted to deal with acute
stress such as exposure to air, and highly variable environments.
For example, photosynthetic performance of Fucus serratus in
Spain when exposed to sudden thermal stress recovered within
24hrs, while populations from Norway, Denmark, and France
did not recover (Jueterbock et al., 2014). Our results raise
concerns that even organisms currently considered resilient
and associated biological traits like algal growth rates can be
overwhelmed by prolonged exposure to climate stressors.
Chronic stress has been documented to lower the acclimation
ability of marine organisms, reducing the upper thermal
tolerances in mussels (Sorte et al., 2011) and coralline algae
(Page et al,, 2021).

Experiments used in this meta-analysis maintained stable
conditions. Climate change will be associated with increasing
frequency and duration of extreme events. Marine heat waves
have led to mass mortality (Garrabou et al., 2009; Smale et al.,
2019) and ecosystem restructuring (Wernberg et al., 2016;
Ainsworth et al., 2020). Such extreme events have the potential
to alter many currently statistically neutral responses) and are
projected to increase in the future with climate change
(Ranasinghe et al,, 2021), thereby reducing time intervals
which facilitate recovery (Cooley et al., 2022). Compounded by
destructive fishing (Pedersen et al., 2017) and habitat
fragmentation this increasing complexity of the currently
observed risks (Simpson et al., 2021) highlights our still limited
ability to project the true extent of the challenges marine
ecosystems will face.

5 CONCLUSIONS

These results suggest European benthic organisms have highly
variable responses to ocean acidification and warming. Future
European benthic ecosystems will undergo restructuring based
on current climate emission pathways. We highlight the
vulnerability of calcifying organisms, and the potential
resilience of fleshly algae. This study highlights the importance
of experimental design parameters when investigating climate
stressor interactions with marine organisms. Study duration in
particular is highlighted as amplifiying observed organism
physiological responses to climate change, but average
study durations are still limited in the context of decadal
changes to ocean chemistry. Our understanding of how
European marine ecosystems may evolve under future
conditions are still limited due to focuses on specific organisms
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like molluscs. Future experimental studies on marine organism
responses to climate change need to expand to under represented
groups like polychaetes.
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