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Application of multi-regression
machine learning algorithms to
solve ocean water mass mixing
in the Atlantic Ocean
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and Eduardo Sáenz-de-Cabezón2

1Institut de Ciències del Mar-Consejo Superior de Investigaciones Científicas (CSIC), Passeig
Marı́tim de la Barceloneta, Barcelona, Spain, 2Universidad de La Rioja, Logroño, Spain, 3Centro
Nacional Instituto Español de Oceanografı́a, Consejo Superior de Investigaciones Científicas (CSIC),
A Coruña, Spain, 4Instituto de Investigacións Mariñas-Consejo Superior de Investigaciones
Científicas (CSIC), Pontevedra, Spain
The distribution of any non-conservative variable in the deep open ocean results

from the circulation and mixing of water masses (WMs) of contrasting origin and

from the initial preformed composition, modified during ongoing simultaneous

biological and/or geochemical processes. Estimating the contribution of theWMs

composing a sample is useful to trace the distribution of each water mass and to

quantitatively separate the physical (mixing) and biogeochemical components of

the variability of any, non- conservative variable (e.g., dissolved organic carbon,

prokaryote biomass) in the ocean. Other than potential temperature and salinity,

additional semi-conservative and non-conservative variables have been used to

solve the mixing of more than three water masses using Optimum Multi-

Parameter (OMP) approaches. Successful application of an OMP analysis

requires knowledge of the characteristics of the water masses in their source

regions as well as their circulation and mixing patterns. Here, we propose the

application of multi-regression machine learning models to solve ocean water

mass mixing. The models tested were trained using the solutions from OMP

analyses previously applied to samples from cruises in the Atlantic Ocean.

Extremely Randomized Trees algorithm yielded the highest score (R2 = 0.9931;

mse = 0.000227). Our model allows solving the mixing of water masses in the

Atlantic Ocean using potential temperature, salinity, latitude, longitude and depth.

Therefore, basic hydrographic data collected during typical research cruises or

autonomous systems can be used as input variables and provide results in real

time. Themodel can be fed with new solutions from compatible OMP analyses as

well as with new water masses not previously considered in it. Our tool will

provide knowledge on water mass composition and distribution to a broader

community of marine scientists not specialized in OMP analysis and/or in the

oceanography of the studied area. This will allow a quantitative analysis of the

effect of water mass mixing on the variables or processes under study.

KEYWORDS

machine learning, extremely randomized trees, optimum multi-parameter analysis,
water mass mixing, Atlantic Ocean
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Introduction

Determining the contribution of the water masses

composing a water sample is useful to trace the basin-wide

distribution of each water mass, to define its core-of flow

identifying the depth of maximum water mass contribution or

the depth-range where the water mass is dominant contributing

> 50% (e.g. Álvarez et al., 2014). Ocean biogeochemists and

microbiologists can also benefit from this knowledge to obtain

water mass weighted average concentrations of the studied

variables or basin-wide trends along cores-of-flow. Even more

interesting is the possibility of estimating the impact of water

mass mixing on the variability of any chemical (e.g. inorganic

nutrients and dissolved organic carbon; Álvarez-Salgado et al.,

2014 and Romera-Castillo et al., 2019, respectively) or biological

(e.g. prokaryotic heterotrophic abundance and production;

Reinthaler et al., 2013) property. In this regard the distribution

of any non-conservative variable N in the deep open ocean

results from the circulation and mixing of water masses of

contrasting origin and initial preformed composition, modified

during ongoing simultaneous biological and/or geochemical

processes, which add or remove that particular property.

Therefore, to isolate the, usually small, variability due to

biogeochemical processes (DN), the influence of water mass

mixing (usually dominant) is needed to be removed:

Ni =o
j
aj · xij + DNi

Where Ni and DNi are the measured and residual (mixing

removed) concentration of N in sample i; xij is the proportion

of water mass j in sample i; and aj s the coefficient of the

multiple linear correlation of Ni with xij. Therefore, we need to

know the contribution of each water mass to each sample. This

is not an easy task and requires expertise on the origin,

circulation and mixing patterns of the water masses present

in the study area. The most commonly used methodology is the

Optimum Multi-Parameter (OMP) analysis that was first

applied by Tomczak (1981). This methodology resolves a

system of n linear mass balance equations with n+1

unknowns and two constraints: i) the sum of all the water
Abbreviations: DOC, dissolved organic carbon; K-NN, K-Nearest

Neighbours; ML, machine learning; OMP, optimum multiparametric

analysis; EDW, Eighteen Degrees Water; ENACW, Eastern North Atlantic

Central Water of 12°C; WNACW, Western North Atlantic Central Water of

7°C; SPMW, Subpolar Mode Water; SACW-T12, Subtropical South Atlantic

Central Water of 12°C; SACW-E, Equatorial South Atlantic Central Water of

12° C; SAIW, Subarctic Intermediate Water; WW, Winter Water; AAIW,

Antarctic Intermediate Water of 5°C (Subantarctic Mode Water); AAIW,

Antarctic Intermediate Water of 3°C; MW, Mediterranean Water; LSW,

Labrador Sea Water; ISOW, Iceland-Scotland Overflow Water; DSOW,

Denmark Strait Overflow Water; CDW, Circumpolar Deep Water; WSDW,

Weddell Sea Deep Water; WM, Water Mass.
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mass proportions must be equal to 1 ( ∑jxij=1 ), and ii) all the

water mass proportions must be positive. The OMP can be run

in conservative mode, which includes mass balance equations

( Ci=Sj Cj·xij ) for potential temperature, salinity, conservative

(e.g. ‘NO ’ and ‘PO’) and semi-conservative chemical

parameters (e.g. silicate, Álvarez et al., 2014). It can also be

run in non-conservative mode, extended OMP, including

potential temperature, salinity, dissolved oxygen, nitrate and

phosphate (e.g. Poole and Tomczak, 1999; Pardo et al., 2012).

In this case, fixed stoichiometric ratios relating dissolved

oxygen and inorganic nutrients are imposed and an extra

unknown, dissolved oxygen consumption (DO2) has to be

added to the set of linear mass balance equations. In any

case, the mixing of a maximum of six water masses could be

solved with these equations using temperature, salinity and

non-conservative tracers (nitrate, phosphate and oxygen)

when, for instance, the deep Atlantic Ocean is a mosaic of

more than 15 water masses (Romera-Castillo et al., 2019).

Therefore, additional oceanographic criteria based on the

density and proximity of water masses have to be applied to

define mixing clusters and solve the mixing for each cluster. In

summary, an OMP analysis demands availability of a large set

of quality-controlled chemical variables together with a deep

knowledge of the oceanography of the studied area. Moreover,

those chemical variables are not always available or do not have

the required quality by contrast to potential temperature and

salinity that are high standard core variables in any cruise or

database. Therefore, resolving the water mass mixing with an

OMP analysis usually takes a large fraction of the time needed

to answer a biogeochemical question.

Moreover, for the study of water masses formation, mixing,

mineralization and transport, it is necessary to combine water

column high quality ship-based thermohaline and discrete

essential biogeochemical (BGC) data. These essential BGC

data are considered level 1 priority in traditional hydrographic

cruises (https://www.go-ship.org/DatReq.html) and require an

inversion in equipment, analytical reagents (including reference

materials) and data processing time by highly trained technical

personnel. Discrete BGC data are also useful to calibrate sensor-

based data from autonomous BGC platforms, offering a much

wider temporal and spatial coverage in the upper 2000 meters.

The more extensive use of these platforms leads to new

capabilities and challenges regarding biogeochemical processes

and ecosystem dynamics in the ocean (Claustre and

Johnson, 2016).

Within this context of new challenges to be solved in

oceanography, Machine learning (ML) is being increasingly

used in a variety of applications including ocean weather and

climate predictions, coastal water monitoring, habitat modelling

and distribution, species identification, marine resources

management, detection of oil spill and pollution and wave

modelling (Ahmad, 2019). ML has been also applied in some

biogeochemical studies. For instance, it has identified a link
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between warming and a reduction in primary production in the

North Atlantic Gyre (D’Alelio et al., 2020). Also, the use of

neural networks has been applied to estimate open ocean CO2

and inorganic nutrient concentrations (Bittig et al., 2018). The

main advantage of ML techniques applied to oceanography is

that they can help oceanographers in those processes that

involve taking decisions or making predictions based on data.

Nowadays, there is an increasing set of big, diverse, curated

oceanographic databases, and additionally, multiple ML

approaches to several problems have provided a profusion of

techniques that can be adapted to very different fields.

The aim of this work is to apply a supervised ML approach to

solve water mass mixing, evaluating several algorithms that are

applicable in this situation. To do so, we have used a database

compiling several cruises in the Atlantic Ocean including the

water mass composition of every sample obtained with an OMP

analysis. Besides, we added samples from areas where the water

masses were formed (100% proport ion) from the

GLODAPv2.2020 database (Olsen et al., 2020). Using only

potential temperature and salinity, we have validated our ML

algorithm against the results from the OMP analysis with a low

error, showing the usefulness of the ML approach. We also

provide the algorithm so any user can download it and easily

apply it to determine the water mass composition of any sample

in the Atlantic Ocean.
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Material and methods
Data selection

In order to train and test our models, we needed a database

of labeled data, i.e. a collection of water samples such that we

know the contribution of each water mass for every sample. For

that, we used a database previously analysed in Romera-Castillo

et al. (2019). Briefly, the database, consisting of 11,245 samples,

was composed of U.S. Global Ocean Carbon and Repeat

Hydrography cruises, covering the whole Atlantic Ocean

(Figure 1) and identified with the following alias and expocode

numbers (in brackets): A13.5 (33RO20100308), A22

(33AT20120324, excluding data from the Caribbean Sea), A20

( 33AT20120419 ) , A16N (33RO20130803 ) , A16S

(33RO20131223) and A10 (33RO20110926). An OMP analysis

was applied to those cruise data below 250m and potential

temperature lower than 14°C. Both the database and the

results of the OMP analysis can be found in PANGAEA

(https://doi.pangaea.de/10.1594/PANGAEA.904326). Three

additional data transect not included in the OMP analysis

were used to test the model: A9.5 (740H20180228), A25

(35TH20080610) and A03 (74AB20050501). In our ML

approach, other than the contribution of each water mass, we
FIGURE 1

Location of the sections included in the PANGAEA database (A16, A20, A22, A10 and A13.5, in blue) and three extra sections (A9.5, A25 and A03,
in red) used in this study to test the model. Figure plotted with the Ocean Data View software (Schlitzer, 2015).
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used location (Latitude, Longitude and depth), potential

temperature and salinity, for each sample.

We also used a set of 2,920 samples (Table 1) from the

GLODAPv2 database (Olsen et al., 2020) which had a 100%

contribution of each water mass (pure water masses database),

i.e., they were located where the water mass was formed

according to the characteristic potential temperature and

salinity ranges described in Romera-Castillo et al. (2019) as

well as latitude, longitude and depth from previous works

(Romera-Castillo et al., 2019; Liu and Tanhua, 2021). This set

of samples, hereinafter pure water masses dataset (pure WMs),

gave robustness to the algorithm since they coincide with the

characteristics of the water masses in their formation areas

(source water types) used to run the OMP analysis (Romera-

Castillo et al., 2019) and, in some cases, they are not contained in

the hydrographic sections composing the OMP database.
Model analysis

In order to find good ML models for the water mass mixing

problem, we trained ten multi-regression algorithms using the

scikit-learn library (Pedregosa et al, 2011); namely, we studied

the regression versions of K-Nearest Neighbors (K-NN) and

decision trees, four variants of linear regression (classical, i.e.

least squares linear regression; Lasso, i.e. linear regression

trained with L1 prior as regularizer; ElasticNet, that is linear

regression with combined L1 and L2 priors [AS1] [C2] [AS3] as

regularizer; and Ridge regression), and four ensemble algorithms

(extremely randomized trees, gradient boosting, random forest,

and AdaBoost).
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Due to the nature of our data, in particular to the fact that

there are samples in the same location at different depths, and

also due to the sort of models considered, we conducted a

previous exhaustive analysis in order to avoid overfitting and

data leakage.
Model selection, over-fitting and
data leakage

Over-fitting is a frequent problem in regression models

(Harrell, 2001) and it is usually due to bad quality of the data

labeling, bias in the data collection or model characteristics. This

issue arises when a model works properly with the training data,

but it does not generalize to new data; fortunately, it can be

detected by means of k-fold cross validation (Stone, 1974). This

technique splits the dataset into k independent groups; and each

of these groups is used to evaluate a model trained using the

remaining groups. It is instrumental that the k groups are

independent to assess the actual performance of the models.

Another common problem that might arise with regression

models is “data leakage” (Kaufman et al., 2012).

The original OMP database described in the previous section

was split using 80% for training (9,011 samples, subset called

train0) and 20% for testing (2,234 samples, subset called test0).

To avoid data leakage, the split was performed taking into

account that samples from the same location, even if they have

been collected at different depths, can only belong to either the

training or the testing set. In this way, the testing set is

completely independent from the training set.

An additional split was necessary since we were interested in

determining whether there is data leakage when both the
TABLE 1 Characteristics of the water masses used in this analysis in their respective formation areas, where they are considered to be pure
(xij = 1).

Water Masses Temperature (°C) Salinity Latitude (°) Longitude (°) Depth (m)

EDW 18 ± 0.4 36.54 ± 0.02 30N - 40N 75W - 55W 250-500

ENACW12 12.3 ± 0.4 35.66 ± 0.02 39N - 48N 25W - 12W 0-500

WNACW7 7 ± 0.1 35 ± 0.01 48N - 52N 45W - 15W 400-600

SPMW 8.2 ± 0.3 35.24 ± 0.01 42N - 65N 20W - 2E 0-1000

SACWT12 12 ± 0.2 35.01 ± 0.02 40S - 30S 0E - 20E 0-500

SACWE12 12 ± 0.1 35.17 ± 0.01 18S -2N 20W - 12E 0-300

WW -1 ± 0.1 33.90 ± 0.01 75S - 50S 65W - 20E 0-200

AAIW5 5 ± 0.08 34.14 ± 0.01 65S- 45S 70W - 30W 0-1000

AAIW3 3.1 ± 0.08 34.12 ± 0.01 65S - 45S 70W - 30W 0-1000

MW 11.7 ± 0.1 36.5 ± 0.01 34N - 37N 10W - 5W 1000-1500

LSW 2.9 ± 0.2 34.85 ± 0.12 30N - 60N 60W - 35W 500-1500

ISOW 2.4 ± 0.1 34.98 ± 0.02 50N - 70N 30W - 0W 1500-3000

DSOW 0.5 ± 0.1 34.88 ± 0.01 60N - 75N 60W - 0W 1000-3000

CDW 1.6 ± 0.03 34.72 ± 0.003 70S - 48S 67W - 0W 500-2500

WSDW -0.3 ± 0.03 34.66 ± 0.001 70S - 48S 60W - 0W 1500-4000
fr
Data from Romera-Castillo et al. (2019) and Liu and Tanhua (2021). See the glossary for water mass acronyms.
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training set and the testing set contain samples from the same

location, but at different depths, and if this leads to over-fitting.

To this aim, from train0 and test0, which do not share locations,

we built two training sets (train1 and train2), and two testing sets

(test1 and test2), see Figure 2. Train 1 is the same as train0, and

test0 is divided into test1’ and test1. Therefore, the subsets train1

and test1 do not share instances with the same location. Now,

test1’ is divided into test1’a and test1’b which do have samples

with the same location. Train2 is then composed by joining

train1 and train1’a and test2 is composed by test1’b and test1.

Using these mixture sets, we achieve that train2 and test2 have

samples with the same location (those shared by test1’a and

test1’b). In addition, neither the pairs train1-test2 or train2-test1

share instances with the same locations. If data leakage is

produced, the models trained using train2 would produce

much better results when evaluated on test2 than when they

are evaluated on test1.

Each training subset was employed to train several multi-

regression algorithms with the scikit-learn library (Table 2). The

algorithms were trained using the by-default hyper-parameters

provided by the implementation of the scikit-learn library. A k-

fold cross-validation (k=10) was used to select the model with

each training subset and algorithm, and to detect over-

fitting. Each fold of the cross-validation process was evaluated

with R2, being 1 the best possible score. The results were

statistically analysed using a Friedman test to compare the R2

means of each model since the parametricity conditions were not

fulfilled. The algorithm that achieved the best performance was

the extremely Randomized Trees Regression model (mean R2:

0.972991 and 0.963679 for train1 and train2, respectively),
Frontiers in Marine Science 05
closely followed by the Random Forest Model (mean R2:

0.962375 and 0.940631 for train1 and train2, respectively). The

rest of the models were far from such a performance (see

Table 2). It is worth noting that the linear models failed to

capture the relationship between the explanatory variables

(features) and the percentages of water masses. The analysis of

the Holm-Bonferroni method (Sheskin, 2011) gives that the

Extremely Randomized Trees model is significantly different

from all the other models except for K-NN, AdaBoost, and

Random Forest Regressor. These results confirm that the best

algorithm is Extremely Randomized Trees.

For this model, we performed a further exploration of several

combinations of their parameters and found that the best

p e r fo rmance was obta ined by us ing the de f au l t

implementation of the scikit-learn library. Once the model

with the best performance was selected, we checked whether

there was over-fitting, since non-linear models, in particular

decision trees, are known to be subject to over-fitting (Mitchell,

1997). To this aim, we built a model using the Extremely

Randomized Trees algorithm for each training subset (train1

and train2). In order to detect and avoid over-fitting, each model

was evaluated for each testing dataset obtaining the R2 score

summarized in Table 3.

Please, note that in the ML models, water masses are not

treated equally, without any weighting on their influence, but

this difference is hidden in the training process and is due to the

original OMP it is based on. Therefore, the different magnitudes

of the contribution of each of the water masses are captured by

the OMP and implicitly wired into the ML model during the

training process.
FIGURE 2

Diagram of the strategy to obtain the training and testing sets to test over-fitting and data leakage.
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From the obtained results, we can extract two lessons. First,

there is no over-fitting nor data leakage in the model since the R2

of the model train2-test2 (with repeated locations in both

subsets) is lower than train2-test1 (without them). Second,

without repeated locations in the training and testing datasets,

the model generalizes slightly better.

All the experiments were conducted in an Intel(R) Core

(TM) i7-4810MQ CPU at 2.80GHz, 16GB RAM.
Results

Features and results of the selected
extremely randomized trees model

Once the best algorithm was selected (Extremely

Randomized Trees), the model was built with the total

training dataset (train0) and evaluated with the total testing

dataset (test0). In this case, with no locations repeated in any

dataset, the R2 score obtained is 0.986902. Therefore, in the rest

of this section we consider samples in the same location to be

either in the training or testing data sets.

The relevance of each explanatory variable (feature) was also

analysed using the Gini importance measure (Breiman, 2001) for

the Extremely Randomized Trees regression model (Figure 3).

This importance score provides a relative ranking of the
Frontiers in Marine Science 06
employed features. In this model, the most relevant features

were potential temperature and depth; whereas, longitude is the

least relevant one.

Addition of a pure water masses dataset to the
existing model

In order to reinforce the model, we considered the impact of

including the pure water masses dataset. First of all, the pure

water masses dataset (2,920 data) was split using 60% for

training and 40% for testing (again taking into account that

samples from the same location only belong to either the

training or the testing set), and the capacity of our model to

be generalized to this dataset was analysed (Table 4). The

performance of the model considerably decayed when

evaluated in the new testing set (R2 = 0.8482) formed only by

samples from the pure water masses. This issue was handled by

retraining the model with the new training data, i.e. adding

samples from the pure water dataset to both the previous train

and test OMP datasets. This approach solved the problem with

the new data, improving the R2 score to 0.9978 in the pure water

masses dataset, and having a minimum impact in the OMP

testing dataset (R2 score only decayed by 0.0004). The R2 score

using the combined testing dataset was 0.9931. Therefore, even if

the trained algorithm may fail when modeling out-of-

distribution data, it can easily incorporate such data in a

continual learning process (Liu, 2020). Observe that this is also

an argument to discard over-fitting in our model.

Addition of a new water mass to the
existing model

Finally, we further analysed the robustness of the method by

including a water mass that was not considered in the OMP used

to initially train and test our model nor in the Pure Water

Masses dataset. In our case we used the SAIW water mass whose

characteristics are given in Table 5 according to Liu and Tanhua

(2021). We collected the data from the GLODAPv2 database

matching these characteristics and included them in the Pure

Water Masses dataset.

Following the same methodology as in the previous analysis,

we re-trained the Extremely Randomized Trees with the new

dataset including samples from the SAIW water mass. As

expected, the R2 score decreased when the testing dataset is

formed only by data from the OMP, since the SAIW water mass

was not considered in that dataset; while the R2 score improved

for the Pure WMs test set and, more importantly, for the

combined test data set (R2 = 0.9945, Table 6). Notice that the

R2 in the model trained and tested with the OMP data is not

exactly the one in Table 4, since we added a new water mass,

which implies a new column in the OMP database with all values

set to zero. This changed the model and the R2 decreased from

0.9869 to 0.9727. This effect is much bigger when testing the

Pure WMs set using a model trained with the OMP training set
TABLE 2 Mean and standard deviation (in brackets) of R2 score
obtained from k-cross validation for each model and each dataset
(train1 and train2) sorted in descending order.

Method Mean of R2 (stdev)

train 1 train 2

Extremely Randomized Trees 0.973 (0.008) 0.964 (0.024)

Random Forest Regressor 0.962 (0.012) 0.941 (0.059)

AdaBoost 0.838 (0.026) 0.803 (0.056)

K-NN 0.820 (0.028) 0.759 (0.171)

Decision Tree Regressor 0.574 (0.025) 0.526 (0.085)

Gradient Boost 0.508 (0.023) 0.507 (0.017)

Linear regression 0.338 (0.015) 0.315 (0.044)

Ridge 0.338 (0.015) 0.315 (0.044)

ElasticNet 0.182 (0.007) 0.176 (0.017)

Lasso 0.162 (0.008) 0.155 (0.017)
TABLE 3 R2 score obtained from the trained models with both
subsets of training and evaluated with both testing subset.

test1 test2

train1 0.96189 0.95878

train2 0.96030 0.95823
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TABLE 4 Minimum square error (mse) and R2 score of the Extremely Randomized Trees models when evaluated in the three testing sets: OMP
dataset, pure WMs dataset, and combined OMP and pure WMs dataset for each of the trained dataset.

Mse R2 score

Training Dataset Tested Dataset Tested Dataset

OMP data Pure WMs Combined OMP data Pure WMs Combined

OMP data 0.0002878 0.0070277 0.0026095 0.9869 0.8482 0.9209

Pure WMs 0.01459 1.65E-04 0.009621 0.3359 0.9964 0.7086

Combined 0.00029556 9.86E-05 0.00022774 0.9865 0.9978 0.9931
Frontiers in Marine Science
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TABLE 5 Characteristics of the SAIW water mass.

Water Masses Temperature (°C) Salinity Latitude (°) Longitude (°) Depth (m)

SAIW 4-7 <34.9 50N - 60N 55W - 35W 250-500
FIGURE 3

Feature relevance for the Extremely Randomized Trees regression model.
TABLE 6 Minimum square error (mse) and R2 score of the Extremely Randomized Trees models when evaluated in the three testing sets including
the SAIW water mass in the pure WMs dataset.

Mse R2 score

Training Dataset Tested Dataset Tested Dataset

OMP data Pure WMs Combined OMP data Pure WMs Combined

OMP data 0.0005614 0.03488 0.01512 0.9727 0.2667 0.5681

Pure WMs 0.01846 2.9E-04 0.0101525 0.14 0.9947 0.7102

Combined 0.001134 7.68E-05 0.0001926 0.9458 0.9983 0.9945
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(and vice-versa), due to the presence of the nonzero values in the

SAIW water mass columns of the Pure WMs datasets. The

model trained combining both datasets does not, however, suffer

this effect and maintains its good performance, showing the

robustness of the method.

Finally, the feature relevance for the new model including

the SAIW was analysed, obtaining similar results to those of the

previous model (Figure 4).

Our validated model and the code can be downloaded from

the Supplemental Information. The different models applied

here and the data for developing our selected model are found

in the folder "WaterMassMixing_models". Furthermore, we

provide several scripts with different options to use our model

on your own data. They are located in the folder

"WaterMasses_inference". This material is also available online

at the repositories github.com/joheras/WaterMassMixing and

github.com/joheras/water-masses-inference.
Visualization of the extremely
randomized trees model results

The water masses contribution to each sample obtained with

our algorithm was plotted for two transects included in the OMP

training dataset: A16 (Figure 5) and A22 (Figure 6), as well as for

another three ones not included: A9.5 (Figure 7), A25 (Figure 8)

and A03 (Figure 9). As expected, according to the low mse and

high R2 between the results of the algorithm and those from the

OMP analysis, the distribution of the water masses agrees with

that obtained with the OMP analysis for the A16 section

(Romera-Castillo et al., 2019). Also, the water masses in the
Frontiers in Marine Science 08
rest of the sections agree with previous works (e.g., Liu and

Tanhua, 2021; Talley et al., 2011) including the sections not used

in the OMP training dataset (A9.5, A25 and A03). Central water

masses (ENACW12, SACWT12, EDW) covered the upper water

column from 250m until 800 m for ENACW12, 600 m for

SACWT12 and 400 m for EDW close to the Caribbean and to

700 m in the Sargasso Sea. At intermediate levels, AAIW was

centered at 800 m while LSW core flow ranged between 1500

and 2000 m. SPMW descended in depth along the A25 section

from < 250 m near Greenland to around 1000 m near the Iberian

Peninsula. It is also visible in the A03 section from 45°W to the

east, centered at 1000 m. MW was centered at 1000 m and its

fraction did not exceed the 50% in any of the sections. SAIW,

which was not included in the OMP dataset and was obtained

from the model, was very low represented in the A03 section

with less than 0.02% of contribution in the middle of the section

from surface to 2000 m, while it was more abundant in the A25

section, close to Greenland, and decreased to the southeast

(Figure 10). Bashmachnikov et al. (2015) showed a

contribution of up to 50% of the SAIW along the 40°N,

located north than ours. The difference between their results

and ours, in which we found a lower contribution than them, is

likely due to the difference source water type characteristics that

they considered for the SAIW.

Deep waters occupied the bottom part of the water column

with ISOW spreading below 3000 m up to 30°S and WSDW

covering the South Atlantic up to the Equator. DSOW was

present below 3000 m in very low proportion (< 1%) from close

to Massachusetts coast to 19°N along A22 section. CDW sunk in

the South Atlantic Ocean and split in two branches on its way to

the north along the A16 section, being detected in the water
FIGURE 4

Feature relevance for the Extremely Randomized Trees regression model with the additional water mass SAIW.
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FIGURE 5

A16 section for the contribution of the water masses (A) AAIW5, (B) ENACW12, (C) AAIW3, (D) MW, (E) LSW, (F) ISOW, (G) CDW and (H) WSDW.
Figure with the Ocean Data View software (Schlitzer, 2015).
A B

D

E F
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FIGURE 6

A22 section for the contribution of the water masses (A) EDW, (B) LSW, (C) AAIW5, (D) MW, (E) ISOW, (F) DSOW. Figure with the Ocean Data
View software (Schlitzer, 2015).
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column from 1000 to the bottom. It arrived to the 24°S (A9.5

section) with a fraction lower than 50% (Figure 7) and it is still

recognizable until 54°N below 3500 m with a contribution of

30% (Figure 5). Note that North Atlantic Deep Water (NADW)

typically encountered in the Eastern North Atlantic is

decomposed into ISOW, DSOW, CDW and WSDW.
Frontiers in Marine Science 10
Discussion

We have proven that Machine Learning techniques provide

tools for the study of water mass mixing in the ocean based on

potential temperature, salinity, position and depth of the water

samples. We have performed an analysis of samples in several
A B

D

E F

C

FIGURE 7

A9.5 section for the contribution of the water masses (A) AAIW5, (B) SACWT12, (C) LSW, (D) CDW, (E) WSDW, (F) ISOW. Figure with the Ocean
Data View software (Schlitzer, 2015).
A B

D

E F

C

FIGURE 8

A25 section for the contribution of the water masses (A) ENACW12, (B) SPMW, (C) LSW, (D) MW, (E) ISOW, (F) CDW. Figure with the Ocean Data
View software (Schlitzer, 2015).
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cruises using different algorithms. Among these, we found that the

Extremely Randomized Trees (Geurts et al., 2006) is the most

suitable. The Extremely Randomized Trees is a supervised machine

learning algorithm that can be used for both regression and

classification tasks, and that has been widely applied to tackle

different problems. It consists of an ensemble of decision trees and

it is related to other similar algorithms such as bootstrap

aggregation and random forests, widely used in ML. This

algorithm creates a large set of decision trees from the training

dataset and, in the case of the regression version, which is the one

used here, acts by averaging the prediction of the decision trees. It

is a method that features both accuracy and computational

efficiency. In engineering, the Extremely Randomized Trees

algorithm has been used to predict the energy consumption of

buildings (Gong et al., 2020), performance for bioenergy crop

modeling (Huntington et al, 2020), or to estimate wind farm power

production based on atmospheric turbulences (Optis and Perr-
Frontiers in Marine Science 11
Sauer, 2019). This algorithm has been also applied in Earth

sciences, in Geology, to estimate pre‐eruptive temperatures and

storage depths on volcanoes (Petrelli et al., 2020) or to explore the

link between microseisms and sea ice (Cannata et al., 2019). In the

aquatic sciences context, this algorithm has been employed to

automatically map mangroves (Bunting et al., 2018), to classify

plankton on images (Ellen et al., 2019) or to model daily lake

surface water temperature from air temperature (Heddam et al.,

2020). However, the potential of this algorithm had not been yet

exploited in Oceanography, being their applications reduced to a

few marine science problems such as the determination of

bathymetry, bottom type, and water column optical properties

from hyperspectral imagery (Nock et al., 2019) or to classify

seamounts derived from bathymetry data (Lawson et al., 2017).

Furthermore, the application of ML algorithms does not

assume any particular form of mathematical relation between the

variables. OMP methods assume linear dependence between the
A B

D

E F

C

FIGURE 9

A03 section for the contribution of the water masses (A) EDW, (B) ENACW12, (C) SPMW, (D) MW, (E) LSW, (F) ISOW. Figure with the Ocean Data
View software (Schlitzer, 2015).
A B

FIGURE 10

SAIW contribution for the (A) A25 and (B) A03 sections. Note the different scale in Figure 2B.
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variables and impose a limitation on the number of water masses

contributing to a given sample, due to the limitation in the number

of variables (Tomczak, 1981). On the other side, nonlinear

methods applied in the literature, such as in De La Fuente et al.

(2017), do not give the proportions of the water masses, which is

one of the objectives sought here. Even if the method in De La

Fuente et al. (2017) assumes polynomial dependence among the

variables and does not have a limitation on the number of water

masses involved, it has, however, the limitations inherent to any

regression model, in particular, its accuracy depends on the

number of available samples, and one needs to decide on a

priori relationship between the variables involved (e.g. a

particular quadratic or cubical polynomial).
Advantages and applications of
our approach

The application of our ML approach to ocean water masses

identification and quantification has three main advantages

regarding previous methodologies. The first one is that our

method, other than position and depth, only needs two

characteristic variables, namely potential temperature and salinity,

which are the core conservative variables more commonly collected

and curated in oceanography both from oceanographic cruises and

autonomous vehicles (Boyer et al., 2018; Olsen et al., 2020; ARGO).

Our ML avoids the need of using less commonly measured

chemical variables and which require longer and time consuming

analyses of both the water samples and the data.

A second advantage is that previously used methods also

require an extensive knowledge of the oceanography of the

studied area, the Atlantic Ocean in our case. But our approach

will bring a wider range of marine scientists, non-particularly

expert in hydrography, to the resolution of water mass mixing.

This will allow marine scientists to go further in the

understanding of the biogeochemical processes affecting the

variation of chemical and biological variables.

Finally, a third advantage of this approach is the possibility to

coherently integrate data from different studies. The proposed

methodology can take advantage of previous knowledge about

water mass mixing in the ocean and can analyse new data using

earlier work. For instance, the data used in Section 2 applied the

OMP analysis from Romera-Castillo et al. (2019) and added

information about pure water masses from different geographical

zones, thus covering particular areas of the Atlantic Ocean. As we

observed, the newly introduced data did not significantly affect the

accuracy of the model on the original data set while, at the same

time, the accuracy of the predictions improved significantly on the

new data. Additional OMP databases obtained using the same

source water type characteristics than used here could be added to

further train the model by coherently incorporating their results.

We have also proven that the model can be fed with a new water

mass but the accuracy is higher if it is included in the trainingmodel
Frontiers in Marine Science 12
from the beginning. Also, note that if other source water types want

to be defined, then a new model should be trained with the new

pure WMs database and the corresponding OMP obtained with

them. Otherwise, the analysis of new samples using our model will

be assuming the source water types characteristics given here. Note

that using the trained model, the number of new samples to be

analysed is no longer important, even a single sample could be

analysed and the precision would be that of the full model. Our

model can be downloaded and the user can easily introduce the

required variables (latitude, longitude, depth, temperature and

salinity) of the chosen Atlantic samples and obtain the WM

proportion of each one in a fast and easy way. Actually, it would

allow the user to obtain this information in real time during a cruise.

Therefore, this will be a useful tool for anyone interested on

the subject.

In summary, using the proposed methodology, researchers

can take advantage of previous knowledge validated by the

community to solve the problem of water masses composition

in the Atlantic Ocean for any number of samples by just

considering the location, depth, potential temperature and

salinity of such samples. New research using other methods

like OMP and its variants can be incorporated to the existing

model increasing its accuracy and prediction capacity.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding author.
Author contributions

CR-C and ES-d-C had the original idea, designed the

research and coordinated the group. JH, GM and ES-d-C

implemented and run the algorithms. All the authors

contributed to the interpretation of the data and the

discussion of the results presented in the manuscript. CR-C

wrote the first draft of the manuscript and all the authors made

comments and amendments, and approved the final version.
Funding

CR-C was funded by grant PID2019-109889RJ-I00 / AEI /

10.13039/501100011033 (Ministerio de Ciencia e Innovación and

Agencia Estatal de Investigación, Spain). GM and JH were

partially supported by Ministerio de Ciencia e Innovación

[PID2020-115225RB-I00 / AEI / 10.13039/501100011033]. ES-

d-C was partially supported byMinisterio de Ciencia e Innovación

[PID2020-116641GB-100 / AEI / 10.13039/501100011033]. XA–S

was partially funded by grant number PID2019-109084RB-C22
frontiersin.org

https://doi.org/10.3389/fmars.2022.904492
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Romera-Castillo et al. 10.3389/fmars.2022.904492
(Ministerio de Ciencia e Innovación, Spain). MA was funded by

RADPROF and RADIALES IEO-CSIC projects.
Acknowledgments

We acknowledge the “Severo Ochoa Centre of Excellence”

accreditation (CEX2019-000928-S).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Frontiers in Marine Science 13
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fmars.2022.904492/full#supplementary-material
References
Ahmad, H. (2019). Machine learning applications in oceanography. Aquat. Res.
2 (3), 161–169. doi: 10.3153/AR19014
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