
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Elodie Claire Martinez,
UMR6523 Laboratoire
d'Oceanographie Physique et Spatiale
(LOPS), France

REVIEWED BY

Ming Feng,
Commonwealth Scientific and
Industrial Research Organisation
(CSIRO), Australia
Shuohao Li,
National University of Defense
Technology, China

*CORRESPONDENCE

Lei Guan
leiguan@ouc.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 28 March 2022

ACCEPTED 29 November 2022
PUBLISHED 16 December 2022

CITATION

Wei L and Guan L (2022) Seven-day
sea surface temperature prediction
using a 3DConv-LSTM model.
Front. Mar. Sci. 9:905848.
doi: 10.3389/fmars.2022.905848

COPYRIGHT

© 2022 Wei and Guan. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply
with these terms.

TYPE Original Research
PUBLISHED 16 December 2022

DOI 10.3389/fmars.2022.905848
Seven-day sea surface
temperature prediction using a
3DConv-LSTM model

Li Wei1 and Lei Guan1,2,3*

1Sanya Oceanographic Institution, Ocean University of China, Sanya, China, 2College of Marine
Technology, Faculty of Information Science and Engineering, Ocean University of China,
Qingdao, China, 3Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao, China
Due to the application demand, users have higher expectations for the

accuracy and resolution of sea surface temperature (SST) products. Recent

advances in deep learning show great advantages in exploiting massive ocean

datasets, and provides opportunities for investigating regional SST predictions

in an efficiency approach. However, for deep learning-based SST prediction to

be adopted by users, the output must be accurate. This paper investigates the

7-day SST prediction over the China seas and their adjacent waters at a 0.05°

spatial resolution. To improve the prediction’s accuracy, we designed a deep

learning model combining the three-dimensional convolution and long short-

term memory under multi-input multi-output strategy. The Operational SST

and Sea Ice Analysis (OSTIA) SST anomaly was used as training data. To test the

model prediction ability, we verified the predicted results with the Sub-

seasonal to Seasonal (S2S) prediction data from 2015 to 2019. Validation of

the predicted SSTs using the OSTIA test datasets show that the root-mean-

square error increases from 0.27°C to 0.53°C during the 1- to 7-day lead time,

with predictability decreases from southeast to northwest in the study area.

Furthermore, the comparison of predicted SST and S2S data with Argo shows

that our model is slightly more accurate, which can achieve -0.08°C bias, with a

standard deviation of 0.35°C for a 1-day lead time and -0.07°C bias, with a

standard deviation of 0.59°C for a 7-day lead time. The results indicate that the

proposed deep learning model is accurate and can be applied in regional daily

SST prediction.

KEYWORDS

Long short-term memory, operational SST and sea ice analysis (OSTIA), sea surface
temperature (SST), spatiotemporal prediction, three-dimensional convolution
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1 Introduction

Spatially-complete maps of predicted sea surface

temperatures (SSTs) are in increased demand, specifically

maps with a higher accuracy and greater resolution, which

have an ever-expanding array of applications (Aparna et al.,

2018). As different water temperatures attract and concentrate

different fish species, predicted SST maps can help offshore

fishermen determine the inhabited regions of target fish

(IOCCG, 2009). For mariculture, SST is an essential factor

affecting shrimp, fish, and other animals' growth and survival,

and predicted SST data can be used to determine suitable

locations to transfer marine cages (Roxanne, 2016). In

addition, multiple studies have indicated that anomalously

warm water can cause coral bleaching and hurricanes (Liu

et al., 2013; McTaggart-Cowan et al., 2015). Thus, SST

prediction can support a range of adaptive and management

activities for marine ecosystems and tourism.

As a "learning from data" approach, deep learning has the

advantages of computational efficiency, accuracy, transferability,

flexibility and ease of use in ocean remote sensing data

(Boukabara et al., 2019; Li et al., 2020). Numerical model-

based forecasting face many challenges, and deep learning

provides new opportunities for SST prediction (Boukabara

et al., 2019). In 1997 and 1998, Tang et al. investigated SST

prediction of the Niño region using a multilayer perceptron

(MLP) (Tangang et al., 1997; Tangang et al, 1998a; Tangang et al.

1998b). Most early research chose meteorological factors as

predictors in the study area (Tang et al., 2000; Hsieh, 2001;

Wu et al., 2006; Garcia-Gorriz and Garcia-Sanchez, 2007;

Aguilar-Martinez and Hsieh, 2009). Regarding whether the

original data are preprocessed, Tangang et al. (Tangang et al.

1998b) thought that the sea level pressure data were significantly

compressed after the extended empirical orthogonal

decomposition. The model size was small, and the prediction

accuracy was slightly improved. Li et al. (Li et al., 1996) believed

that the network model had a strong learning ability for the

original data. After preprocessing, for example, transforming

SST into SST index as a prediction factor may lose much helpful

information and reduce the model's prediction ability.

Recent studies mainly used SST or SST anomaly (SSTA)

time series as predictors (Mahongo and Deo, 2013; Patil et al.,

2013; Patil et al, 2016; Patil and Deo, 2017; Aparna et al, 2018).

Moreover, researchers paid more attention to SST prediction at

the spatial scale. In this kind of study, the coordinates of the SST

were fixed and usually divided on regular grids. Each grid

contained a sequence of predictors. In this scenario, only the

future SST of each grid needs to be predicted. One solution was

constructing a model for each grid and combining the outputs to

form a regional SST prediction field. Zhang Q. et al. (2017)

research on Bohai SST prediction at a spatial resolution of 0.25°

showed that the long short-term memory (LSTM) network had

higher prediction accuracy than the MLP network. Based on
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their research, Yang et al. (2017) proposed adding convolutional

layers to the prediction model, and research in the East China

Sea showed that the root-mean-square error (RMSE) was 0.41°C

with a 1-day lead time and 0.63°C with a 7-day lead time. The

advantage of this approach is that the prediction model is well

targeted, and the prediction accuracy for a particular grid may be

higher. However, it is more suitable for site-specific or small area

SST predictions. In the case of high-resolution SST predictions

for larger areas, many models need to be trained, which is

computationally intensive. Another way was to construct a

generic prediction model for all grids. Xiao et al. (2019) used

the convolutional LSTM model with a spatial resolution of 0.25°

to predict SSTs in the East China Sea (27.5° - 33°N, 123.5° -

127.5°E), and the results showed that the RMSE was 0.85°C

when the lead time was seven days. Zhang et al. (2020) used the

gated recurrent unit neural network to capture the SST time

regularity. This approach is efficient in training and prediction

but also requires deep mining of the spatio-temporal

relationships in the regional SST. Shao et al. (Shao et al., 2021)

first put sea surface height anomaly and SST through

multivariate empirical orthogonal function analysis to establish

the spatial relationship between the discrete points. Then the

principal components were used as model inputs. The results of

this experiment showed that the model had high prediction

accuracy in the South China Sea. However, the method did not

predict SSTs at depths less than 200m.

In addition to pre-processing the SST series, the spatial

features of the original data can be mined directly by

convolutional networks. The construction of SST spatial

relationships mainly depends on two-dimensional (2D)

convolution (Xu et al., 2020; Yu et al., 2020; Patil and Iiyama,

2022). In processing time-series sequences, three-dimensional

(3D) convolution not only extracts the spatial features of the

data but also exploits its time-varying features. Qiao et al.

proposed (2021) 3D CNN and LSTM with Attention

Mechanism model to predict SST in the Bohai Sea and the

South China Sea. The method used the Pearson correlation

coefficients and XGboost model to extract seasonal, long-period

features of the SST data, which were then used as input to the 3D

CNN model with the raw SST data. Recent studies showed that

3D convolution neural network-based models can better capture

the complex spatiotemporal dynamical process than 2D neural

networks (Kamangir et al, 2022). Our previous studies focused

on the monthly mean SST prediction in 1- to 12-month lead

time. The prediction results showed that training the model with

the SSTA sequence can significantly improve the prediction

accuracy compared with directly using the SST sequence (Wei

et al., 2019). Moreover, we adopted ensemble learning method

and constructed a Fully Connected Long Short-Term Memory-

based Ensemble model under an iterative multi-step strategy to

improve the long-term SST prediction stability (Wei et al., 2020).

In multi-step predictions of SST, the most commonly used

method is direct multi-step, followed by iterative multi-step, and
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a less used method is the multiple-input multiple-output

(MIMO) strategy, although this method has proven to be most

effective in other prediction fields (Taieb et al., 2012). The

selection of training data sets is crucial in training processes.

The training data set with higher accuracy, greater resolution

and rich SST feature details can improve the application value of

prediction data. Evaluation of multiple SST L4 products

indicated that the quality of OSTIA SST data had high quality

in both offshore and open oceans (Xie et al., 2008; Woo and

Park, 2020). Previous research also lacked an assessment of the

proposed deep learning models with in situ data.

This paper aims to use a deep learning model to predict the

SST in the China Seas and their adjacent waters within a 1- to 7-

day lead time at a spatial resolution of 0.05° to improve the SST

prediction accuracy in complex seas. In contrast to the study of

Qiao et al. (2021), we used the SST interannual mean (SSTM) of

three decades as seasonal long-period data. Furthermore,

considering the strong interaction between the target SST and

the adjacent SST in daily prediction, this study used the SSTA

time series as a predictor and constructed a three-dimensional

convolutional LSTM (3DConv-LSTM) prediction model based

on a MIMO strategy. The predicted SSTA and SSTM were

summed to obtain the predicted SST in the study area from

2015 to 2019. To evaluate the feasibility of the model in practical

applications, we compared the predicted output of the model

with the Sub-seasonal to Seasonal (S2S) prediction data.

The study's main contributions can be summarized as

follows: We proposed a 3DConv-LSTM model for predicting

SST in the China Seas and adjacent waters; Furthermore,

compared with other deep learning-based SST prediction

models, the model improved the accuracy of SST prediction in

this sea area. The predictions were compared with in situ and

numerical model data, showing that the model can be used for

short-term predictions of regional SSTs.
2 Materials and methods

2.1 Data

2.1.1 OSTIA data
We used data produced by the Operational SST and Sea Ice

Analysis (OSTIA) system developed by Met Office for model

training and testing. The system is to meet the increasing

demand for accurate high-resolution SST products by the

ocean forecasting community, new coupled ocean-atmosphere

system, and higher resolution numerical weather prediction

systems (Donlon et al., 2012). We used two products

generated under the OSTIA system. Their temporal coverage

is 01/01/1985-12/31/2007 and 01/01/2007- present, respectively.

Both products provide daily, 0.05° grid resolution, global

coverage foundation SST data. Validation of the products
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demonstrates that they have a -0.1 K bias, with a standard

deviation of 0.56 K and a -0.04 K bias, with a standard deviation

of 0.34 K, respectively, compared to independent Argo in situ

data in the global ocean (McLaren et al., 2014; McLaren et al.,

2021). The OSTIA data can be downloaded at the Copernicus

Marine Environment Monitoring Service (https://resources.

marine.copernicus.eu/products).

2.1.2 Argo data
The Argo data is available at https://www.star.nesdis.noaa.

gov/socd/sst/iquam/data.html. We selected the top value from

each Argo temperature profile with a quality level of 5 falling

within 3–5 m depth for consistency with the OSTIA product

validation method (Roberts-Jones et al, 2012). Merchant and

Corlett found that these Argo data provide a good estimate of

foundation SST values after performing a three-way comparison

between Argo, surface drifter, and AATSR data (Roberts-Jones

et al., 2012).
2.1.3 S2S data
We used the numerical model data from the S2S database to

compare the prediction results. The S2S database became

available to researchers in May 2015. As S2S is a research-

based project, it only provides near real-time forecasts with a

delay of three weeks. At present, the database is updated

regularly by 11 operational meteorological centers around the

world. We selected the data provided by the European Centre for

Medium-Range Weather Forecasts (ECMWF). The integrated

forecasting system of the ECMWF consists of 51 ensemble

members, with a bi-weekly forecast frequency. Due to the

design of the forecast scheme, the final forecast is the bulk

SST. This data can be obtained from China Meteorological

Administration, which is one of the S2S database archiving

center (http://s2s.cma.cn/), with a resolution is 1.5°×1.5°

(Vitart et al., 2017).
2.2 Methods

In order to improve the accuracy of short-term prediction,

we designed the 3DConv-LSTM model and used SSTA and

SSTM sequences in the training and prediction process. The

SSTM, as long-time seasonal period data, was eventually added

to the predicted SSTA, which can improve the stability of the

predictions. Furthermore, the SSTA data can enhance the

model's representation of helpful information in training by

removing significant seasonal signals. Considering the strong

interaction between the target SST and the adjacent SST in daily

prediction, this study used 3D convolution and pooling

processes to extract the spatial and temporal characteristics

around the target SSTA and established its temporal
frontiersin.org
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relationship using the LSTM. The following section introduces

the prediction factors, the multi-step prediction strategy, and the

model training and prediction processes in detail.
2.2.1 The predictor and strategies for
multi-step prediction

For predicting the next stage of SST, we chose SSTA as the

predictor variable. Using a subset from the OSTIA dataset, with

a spatial range of 0–45°N, 105–135°E (601×901 grid), the data

from January 1985 to December 2014 were used as the training

set and the data from January 2015 to December 2019 as the test

set. We first calculated the SSTM of three decades and then

subtracted the SSTM from the SST to obtain the SSTA. Previous

studies confirmed that using SSTA as a predictor can

significantly improve prediction accuracy (Wei et al., 2019).

Compared with the SST sequence, the SSTA sequence does not

contain significant seasonal signals, which can improve the

expression of meaningful information in the model.

This study used the MIMO strategy for multi-step SST

prediction. Compared with the single output of direct and

iterative strategies, this strategy is multi-output and considers

the random dependence between output targets (Taieb et al.,

2012). We also investigated the effects of iterative multi-step

(IMS) and MIMO on 7-day prediction accuracy. As shown in

Table 1, We performed 150 tests with different model

parameters and calculated the average RMSE (R1 , R2 ,... R7 )

for each step of the prediction. It can be found that the error

accumulation occurs in the IMS strategy, while the MIMO

strategy can maintain the stability of the prediction results. In

training progress, the MIMO strategy learns the relationship f

established between the predictors and the multiple-output

data:

Xt+L,…,Xt+1½ � = f Xt : t−d+1  ð Þ +W       t ∈ d,…,  T − Lð Þ (1)

where T represents the length of the total space-time

sequence for training, L is the length of the model output and

is called a lead-time, d is the length of the model input, and W is

the error term. In predicting progress, the trained model f̂

can be expressed as follows:

X̂ t+L,…, X̂ t+1

� �
= f̂ Xt :   t−d+1  ð Þ (2)

In this study, the SST is fixed and distributed on a regular

grid. The total space-time sequence T for training is 10967, and

the lead-time L is 7. The model input temporal length d is 21,

which was set after the optimal hyperparameters search.
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2.2.2 3DConv-LSTM model
When applied to multi-step SST field prediction, it is

desirable to capture the spatiotemporal information encoded

in sequence fields. To this end, we proposed to use 3D

convolutions to extract the spatiotemporal characteristics of

the SSTA sequence and adopt LSTM to learn the relationship

of spatiotemporal feature sequences with time. The short-term

SST variability can be driven by ocean current systems. The

Kuroshio in the region is a crucial component of the North

Pacific subtropical circulation system. It includes the source of

the Kuroshio, the Kuroshio in the East China Sea, the Kuroshio

in the south of Japan and the Kuroshio Extension, which is the

main current linking the western Pacific Ocean with the East

China Sea, the South China Sea and the Japan Sea (Zhang C.

et al., 2017). Considering the extensive impact of the Kuroshio

on SSTs across the study area and the expensive computational

cost of 3D convolutional-based models, we intended to construct

a generic prediction model applicable to the entire region. Based

on our previous work, we found that using the LSTM, rather

than the fully connected layer, to learn the relationship can

reduce the bias of the prediction results (Wei et al., 2019; Wei

et al., 2020). The detailed descriptions on 3D convolutions and

LSTM can reference the research of Ji et al. (Ji et al., 2012)and

Ho ch r e i t e r a n d S c hm i dhub e r (Ho ch r e i t e r a n d

Schmidhuber, 1997).

The model’s hyperparameters were configured using a

random search approach, and we first determined the

maximum range for the spatial and temporal scale of the

SSTA sequence, the maximum values of h, w and d in

Figure 1. According to the study by Hosoda, which concluded

that the meridional and temporal decorrelation scales of SST

ranged from 1.5–3.0° and 1.2–2.0° (Hosoda and Kawamura,

2004), we set the maximum value of h and w to 55 grid points

based on a spatial resolution of 0.05° for SST data. The setting

maximum value of d is based on the suggestions of Zhang Q.

et al. (2017) that the temporal input length is four times the

model output length. Table 2 details the range of each

hyperparameter in the random search. The search for

hyperparameters focuses on selecting the optimal values of h,

w and d from the setting range. To improve the random search

efficiency, instead of using data from all spatial points (601*901),

we selected data corresponding to 10,000 spatial points,

uniformly distributed within the study area, to complete the

search process. The search process was repeated 300 times. Each

time, the model was trained under different parameter

configurations and predicted SST values for 2014. Finally, we
TABLE 1 The prediction performance of MIMO and IMS strategy for each step.

Strategy R1 R2 R3 R4 R5 R6 R7

MIMO 0.99 1.03 1.04 1.04 1.03 1.03 1.04

IMS 1 1.09 1.13 1.14 1.16 1.18 1.2
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selected the parameter configuration with the best prediction

accuracy based on the calculated RMSE, as shown in Table 3.

In the training process, the SSTA sequence with h, w and d of

9×9×21 undergoes 3D convolutional layers first, as shown in

Figure 1. In this process, four convolution kernels with size of

3 × 3 × 3, multiply by the corresponding spatio-temporal data

along the trajectory in a specific step, and then the product are

summed to obtain the output value, and the final output feature

map is also four 3D matrixes with size of 7×7×19. Then the

feature maps undergo the average pooling layer. We set

the number of convolution kernels in the third layer to 8.

After the third layer of 3D convolution and the average

pooling operation, we obtain eight 1×1×13 spatiotemporal

features. Then, a mapping relationship is established through

the fully connected LSTM with the SSTA sequence of 1–7 days at

the target point o. The model uses the Adaptive moment

estimation (Adam) optimization algorithm in the training

process and selects RMSE as the loss function.
Frontiers in Marine Science 05
After the training is completed, in the prediction stage, the

SSTA sequence output by the model is added to the

corresponding SSTM to obtain the final SST prediction results.

The deep learning model 3DConv-LSTM was developed using

the MATLAB deep learning toolbox.
3 Results and discussions

The 3DConv-LSTM model made daily SST predictions in

the China Sea and their adjacent waters from 2015 to 2019, with

a lead time of 1 to 7 days. The prediction results were validated

by comparison with the OSTIA SST, Argo in situ SST, and

S2S data.
3.1 Comparison to OSTIA SST

Figure 2 shows the comparison of the predicted SSTs with

the retained OSTIA SST timeseries from 2015 to 2019. The

RMSE between the predicted SST and OSTIA is calculated

within each 0.05° grid, which was used to assess the accuracy

of the model. With a 1-day lead time, 99% of the daily RMSE are

less than 0.4°C. The monthly RMSE is approximately 0.2–0.4°C,

and the value in summer is slightly higher. A peak was observed

in the daily RMSE on August 26th, 2015, which corresponds to a

significant prediction difference in the Sea of Japan. The SST

shows a mainly positive anomaly in the in the region from

August 5th to 25th, which is the temporal input length of the

model. However, the SST drops rapidly in one day on August

26th, with most areas exceeding -2°C. Because the large SST

variations during a day, the prediction has a sever difference. In

addition, SSTs in the region are also influenced by the strength of

cold and warm currents in the north. Since the training dataset
TABLE 2 The random research range of the hyperparameters.

Input Temporal Length 7/14/21/28

Input Space Distance 3/5/7/…/55

MIMO Output Length 7

3D Convolution Layer 1/2/3

3D Average Pooling Layer 1/2/3

LSTM Layer 1/2

Filter Size 3×3×3

Neurons 64/128/256/320

Dropout Ratio 0.1–0.9

Initial Learning rate 1e-5–1e-2

Learning Rate Drop Factor 0.1–0.9

Learning Rate Drop Period 1–30
FIGURE 1

The 3DConv-LSTM structure.
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does not encompass that area, this may in part result in the

differences observed in this area. A reduction in prediction

accuracy can be seen as the lead time increases. The RMSE of

the 5-year difference decreases from 0.27°C to 0.41°C with a 1- to

3-day lead time. A further slowly reduction from 0.41°C to 0.53°C

occurs with a 3- to 7-day lead time. The impact of the lead time on

prediction accuracy is evident with a 1- to 3-day lead time, but the

predicted SST values still remain highly accurate. According to

Hosoda et al.’s research, the temporal correlation of global SST is

1.5–3 days before and after (Hosoda and Kawamura, 2004). When

the lead time is within the period of temporal correlation, the

overall prediction accuracy is high and easily affected by the length

of lead time. After exceeding the correlation period, the prediction

accuracy decreases, and the impact of the lead time is not obvious.

The spatial pattern of the 5-year RMSE between the predicted

SST and OSTIA was investigated. Figure 3 shows the RMSE

distribution at different lead times. With a 1-day lead time, the

RMSE near the Philippines are 0–0.2°C, and in the other areas

they are mainly 0.2–0.4°C. The prediction accuracy in areas with

high SST variability, such as the Yangtze River, the Yellow River

Estuary, and coastal regions along the Korean Peninsula, are

slightly lower, with RMSE between 0.4°C and 0.6°C. Using one

model for the entire region may reduce prediction accuracy in sea

areas with specific SST spatio-temporal characteristics. Overall,

the predictability of SSTs gradually decreases from southeast to

northwest with an increasing lead time.

In the prediction stage, the model starts at a given date and

steps forward by seven days in each step. Taking the model start

date at December 31, 2018, and January 1, 2019, as an example,

Figure 4 shows the spatial pattern of the SST difference between

the prediction and the OSTIA SSTs. Panels (A) and (B) represent

the model’s seven-day output at these two start times,

respectively, from which the distribution of the SST difference

changes with the prediction date. The difference does not

continuously accumulate in the same area, and its spatial

distribution patterns are similar in the first two prediction

dates. Generally, the shorter the lead time is, the higher the

prediction accuracy. The SST difference in most areas is within ±

1°C, and areas with significant differences usually appear in

northeast of the study area. Overall, the spatial patterns of SST

difference are related to the SST anomaly and lead time. At the

same lead time, the SST differences are relatively large in the

regions with high SST anomalies. The SST difference gradually

increases with lead time, but the predicted SST is still consistent

with the reserved OSTIA SST in 1- to 3-day lead time.
3.2 Comparison to other deep
learning-based models

For the prediction accuracy of the 3DConv-LSTM model in

the China Seas (the Bohai Sea, the Yellow Sea, the East China

Sea, the South China Sea) and adjacent waters, we compared it
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with other deep learning models. Table 4 shows the SST

prediction models proposed by researchers in recent years for

different sea areas (the East China Sea, the Yellow Sea and the

South China Sea). In the same study area we also calculated the

RMSE between the prediction results obtained by our model and

the retained dataset for 1-day, 3-day and 7-day lead time. The

Combined Fully Connected-Long Short-Term Memory and

Convolution Neural Network (CFCC-LSTM) includes one

fully connected LSTM layer and one convolution layer. It uses

seven days’ historical SST for 1-day prediction and 20 days’

historical SST for 7-day prediction (Yang et al., 2017). The

Convolutional Long Short-Term Memory (ConvLSTM) consists

an input layer, two ConvLSTM layers, and a fully-connected
Frontiers in Marine Science 07
layer as the output layer. It is a one-day-ahead model which

adopts the IMS strategy. The previous 50 days’ spatiotemporal

SST sequence is used as input for the next day’s SST field

prediction. By repeating this process to complete the next ten

days’ SST prediction (Xiao et al., 2019). The results show that the

prediction accuracy of our model is improved compared with

the CFCC-LSTM, the ConvLSTM model in the East China Sea.

The Multi-Long Short-Term Memory Convolution Neural

Network (M-LCNN) includes an input layer, an LSTM and a

fully connected layer. As input to the model, the SST time series

are decomposed into a multiscale sequence after wavelet

transformation. Similar to the CFCC-LSTM model, it also uses

a direct multi-step strategy, using the seven days’ SST to predict
FIGURE 2

The daily RMSE (blue dots and line) and monthly RMSE (red dots and line) between predicted SSTs of the 3DConv-LSTM and OSTIA during
2015-2019 at a 1- to 7-day lead time.
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the 1-day SST and 30 days’ SST to predict 7-day SST. Compared

with the M-LCNN, our model’s accuracy in the 7-day

forecasting period is improved in the Yellow Sea (Xu et al.,

2020). The Conv1D-LSTM model takes the SST and sea surface

height anomaly after multivariate empirical orthogonal function

decomposition as input (Shao et al., 2021). Since the model only

predicts SSTs in areas with water depths greater than 200 m, we

also excluded nearshore areas in our statistics, but included the

Sulu Sea. Compared with Conv1D-LSTM, our model has the

same prediction accuracy but a higher resolution in the South

China Sea. The 3D Convolutional and LSTM with Attention

Mechanism model (3DCNN-LSTM-AT) model uses SST as

input. It includes two 3D convolutional layers with two max-

pooling layers, an LSTM layer and an attention layer. For 1- and

3-day lead time, the RMSEs are 0.58°C and 0.84°C for the Bohai

Sea and 0.35°C and 0.44°C for the South China Sea, respectively.

Compared with the 3DCNN-LSTM-AT, our model has higher

prediction accuracy.
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3.3 Comparison to S2S data

The S2S is the forecast dataset derived from numerical models

provided by 11 operational meteorological centers. In order to

compare the differences between the model and the operational

numerical model, we further matched the predicted SSTs, the S2S,

to the Argo in-situ data separately and calculated the SST

differences for the match-ups. Figure 5 presents the mean of S2S

minus Argo differences and predicted SSTsminus Argo differences

at 1- to 7-lead time. The results show that S2S SSTs have warm

biases in contrast to the cold biases of the predicted SSTs. It is

mainly related to the model training and testing data. As Figure 5

shows, the standard deviation (SD) of the OSTIA is 0.38°C, with a

cold bias of 0.04°C. Thus, to fit the training data better, the model

output also has the cold bias. In addition, the biases of S2S show an

upward trend.Wealso calculated the autocorrelation coefficients of

the biases of S2S, which indicate persistence across lead time. In

comparison, the biases of predicted SSTs fluctuate between -0.05°C
FIGURE 3

The spatial distribution of the RMSE between predicted SSTs of the 3DConv-LSTM and OSTIA during 2015-2019 at a 1- to 7-day lead time.
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and -0.1°C, which is more stationarity. The main reason is the

model adopted the MIMO strategy to ensure that the biases does

not accumulate over time. At a 1- to 3-day lead time, the standard

deviations of thepredicted SSTsare 0.35°C, 0.44°Cand0.48°C,with
Frontiers in Marine Science 09
biases of -0.08°C, -0.06°C and -0.06°C, respectively. Compared to

the S2S data, the accuracy of the predicted SSTs is slightly higher

during a 1- to 3-day lead time. However, the standard deviations of

S2S are more stable than the predicted SSTs during a 1- to 7-day
A

B

FIGURE 4

The spatial distribution of SST difference between predicted SSTs of the 3DConv-LSTM and OSTIA: (A) the 3DConv-LSTM start date at
December 31, 2018; (B) the 3DConv-LSTM start date at January 1, 2019.
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lead time. InareaswithstrongSSTperturbations, suchas the coastal

of the Korean Peninsula and the Sea of Japan, the temporal and

spatial variabilities of SSTs are much greater due to vigorous tidal

mixing and upwelling (Woo and Park, 2020). Since themodel used

SSTA as the predictor, the difference between the predicted SSTs

and Argo changes significantly with increasing lead time. The

spatial patterns of the differences in one prediction period

between the predicted SSTs and the S2S and OSTIA SSTs were

also investigated, as shown in Figure 6. The predicted SSTs shows

good agreement with the OSTIA SSTs with a 1- to 3-day lead time.

The S2S has some significant differences near theKoreanPeninsula

and theSeaof Japan.TheS2S integrated forecasting system includes
Frontiers in Marine Science 10
51 ensemblemembers and thus hasmore stable standard deviation

errors than the 3DConv-LSTMmodel. Since the forecasting system

is designed to forecast global SSTs, its regional prediction accuracy

might be slightly lower compared with the model proposed in

this paper.
4 Conclusions

The 3DConv-LSTM model is proposed to predict daily SSTs

with a 1- to 7-day lead time and a 0.05° spatial resolution in the

China Seas and their adjacent waters. The model’s prediction
TABLE 4 The comparison with other deep learning-based models in different sea areas.

Root Mean Square Error (°C)

Model&Spatial Resolution Prediction Area 1-day 7-day Ours 1-day Ours 7-day

CFCC-LSTM
0.05°x0.05°

20°-30°N, 120°-131.25°E 0.41 0.63 0.26 0.58

ConvLSTM
0.25°x0.25°

27.5°-33°N,123.5°-127.5°E 0.35 0.85 0.33 0.65

M-LCNN
0.25°x0.25°

35°-45° N, 120°-123°E 0.43 0.89 0.43 0.74

Conv1D-LSTM
0.25°x0.25°

5°-23°N, 105-122°E 0.21 0.43 0.22 0.43

1-day 3-day
Ours
1-day

Ours
3-day

3DCNN-LSTM-AT
0.25°x0.25°

37.87-39.62°N, 110.12-120.87°E 0.58 0.84 0.51 0.69

4-6.25°N, 105-107.25°E 0.35 0.44 0.21 0.30
f

FIGURE 5

The mean and standard deviation of SST difference (red asterisks and line for the S2S-minus-Argo; blue square and line for the predicted SSTs-
minus-Argo; dark dotted line for the OSTIA-minus-Argo) from 2015 to 2019.
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ability was assessed via comparing to the OSTIA test dataset, the

S2S data, and the near-surface Argo data from 2015 to 2019.

There is good agreement between predicted SSTs and the

OSTIA test dataset within a 1-to 3-day lead time, with 5-year

RMSE between prediction and OSTIA are 0.27°C, 0.35°C and

0.41 °C, respectively. With a 3- to 7-day lead time, the RMSE

drops from 0.41 °C to 0.53 °C. Since only the SSTA sequences are

used for training data, the model prediction ability is related to

the temporal correlation of global SST. During the testing

period, the model shows a stable prediction ability. An

increase of standard deviation errors occurs in areas of high

SST variability. If computational resources are sufficient,

separate models can be constructed for sub-regions with high

SST variability to improve prediction accuracy. A comparison

between the prediction-minus-Argo and the S2S-minus-Argo

shows that the model has a slightly higher prediction accuracy

with a 1- to 3-day lead time. In 4- to 7-day lead time, their
Frontiers in Marine Science 11
prediction ability is similar. However, the S2S has more stable

standard deviation errors and may in part include more

ensemble members. The results presented here indicate that

the DL-based model is accurate and reliable and can be applied

in regional daily SST prediction.
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