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Win some, lose some: The
ecophysiology of Porites
astreoides as a key coral species
to Caribbean reefs

Lais F.O. Lima1*, Hayden Bursch1 and Elizabeth A. Dinsdale1,2

1Department of Biology, San Diego State University, San Diego, California, United States,
2College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
Caribbean reefs have undergone large-scale losses in coral cover in past

decades, sparking a search for species that are resilient under stress. Porites

astreoides has been considered a “winner” and a key player in sustaining coral

cover in the Caribbean as more sensitive species struggle. However, P.

astreoides has recently declined in abundance, raising concern about its

status as a winner. Here, we reviewed the ecophysiology of P. astreoides in

response to environmental stress to elucidate whether this species could thrive

in the future of Caribbean reefs. We examined ecophysiological variables of P.

astreoides related to photosynthesis, growth, recruitment, tissue condition,

and microbiome in response to temperature, pH, macroalgal competition,

depth, and sedimentation. Overall, P. astreoideswas sensitive to environmental

stress and each physiological feature showed varying levels of sensitivity.

Coral-algal photosynthesis and coral tissue condition could withstand single

events of thermal stress but reflected a metabolic imbalance that hinders

recovery from repeated bleaching events, compromising long-term success.

Colony growth was particularly vulnerable to low pH and macroalgal

competition. Recruitment was unaffected, or even favored, by depth and

could tolerate high temperatures, but it was sensitive to exposure to

macroalgae, especially in combination with abiotic stressors. The response of

the microbiome of P. astreoides to stressors is still poorly understood. In

relation to other corals, P. astreoides was frequently reported as the most

sensitive species in the reviewed literature. The success of P. astreoides is

tightly integrated into the future of Caribbean reefs, which could be losing an

old winner.
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Introduction

Coral reef community composition has rapidly shifted in the

past three decades as coral cover declined worldwide due to local

and global stressors (Jones et al., 1998; Randall et al., 2014;

Maynard et al., 2015; Hughes et al., 2018; Safaie et al., 2018).

These losses are pronounced on shallow water reefs of the

Caribbean, where an overall decline in total coral cover of up

to 59% has occurred from 1984 to 2014 (Jackson et al., 2014).

Thermal stress is one of the greatest threats to coral health

causing mass bleaching and disease outbreaks and is especially

concerning in conjunction with ocean acidification (OA) in

future climate change scenarios (Pandolfi et al., 2011; Hoegh-

Guldberg et al., 2017). Macroalgae outcompete corals, either

directly (e.g., shading, substrate occupation, abrasion) or

indirectly (e.g., allelopathy, microbial-mediated activities) and

have caused phase shifts in coral reefs worldwide and especially

in the Caribbean, where overfishing and eutrophication are

pronounced (Hughes, 1994; Hughes et al., 2007; Dinsdale and

Rohwer, 2011; Haas et al., 2016). Factors that affect light

availability (e.g., depth, sedimentation), influence the coral-

algal photosynthesis and physiology, and therefore, limit coral

distribution and success (Kleypas et al., 1999; Anthony and

Connolly, 2004; Ziegler et al., 2015). Physiological responses of

corals to disturbances vary across different species and

populations (Mydlarz et al., 2010; Hoadley et al., 2015)

causing the relative abundances of each coral species to

fluctuate in a complex dynamic. Across reefs in the Caribbean

there was a shift from dominance of superior competitors, (e.g.,

Acropora), that were dominant since the Pleistocene, to that of

stress-tolerant and weedy species, such as Porites and Agaricia in

the late 1990’s (Cramer et al., 2020). Coral cover on reefs in

Jamaica was ~ 75% in the 1980 at 10 m and declined to less than

5% in 1994. The cover of these weedy coral species started to

make up ~ 20% of 4% total coral cover in the 1990 on reefs in St.

John, U.S. Virgin Islands, and remained consistent for many

years (Edmunds et al., 2021). Loss of the large corals to more

encrusting species reduced the rugosity of the reefs creating a

loss in structure and habitat for other species, including fish

(Dustan et al., 2013). In 2011, the cover of these weedy species

started to decline (Edmunds et al., 2021). Ecosystem resistance is

modeled to co-vary with increasing degradation, but a threshold

may be reached, where changes in species composition and

interactions may become irreversible, impairing both resistance

and recovery of the ecosystem (Côté and Darling, 2010).

Therefore, predicting the “winners” and “losers” (Loya et al.,

2001) in the uncertain future of Caribbean reefs is a crucial

challenge to be addressed.

Porites astreoides is a strong candidate to persist over time in

the Caribbean. This reef-building species colonizes a wide range

of habitats across reef zones, from tidal pools and back reef sites

(Porter et al., 1982; de Putron and Smith, 2011; Baumann et al.,
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2016) to mesophotic reefs (Holstein et al., 2016a; Goodbody-

Gringley et al., 2018). Pioneer ecophysiological studies showed

that this species is resistant to suboptimal conditions, such as

high sedimentation rates and elevated temperature (Tomascik

and Sander, 1987; Gates, 1990; Gleason, 1998). The high

resilience of P. astreoides is supported by “weedy” life-history

traits such as short life cycles, high fecundity, and high

settlement rates of brooded larvae (Chornesky and Peters,

1987; Soong, 1991; McGuire, 1998). Porites astreoides was

considered a winner as the percentage cover relative to total

coral cover at six locations spanning a 4100-kilometer arc of the

Caribbean increased at a rate of 1.5% per year, ranging from less

than 20% in the 1970s to 50% in 2004 (Green et al., 2008). The

mortality of Porites spp. juveniles was generally lower than

Agaricia spp., and Favia fragum, but higher than S. siderea,

and S. radians in late 1990 over 5 sites in the U.S. Virgin Islands,

(Edmunds, 2000). Projections suggested that P. astreoides would

increase in abundance, even under frequent disturbances

(Edmunds, 2010; Soto-Santiago et al., 2017a). However, on the

south coast of St. John, the relative contribution of P. astreoides

to coral cover peaked around 2008 and has been in decline ever

since, raising concern about their winner status in the Caribbean

(Edmunds et al., 2021). The inability of P. astreoides to recover

from sequential bleaching events (Grottoli et al., 2014) indicates

that the species may not be as physiologically resilient as

previously thought. Understanding how the species will

respond physiologically to increasing frequency and intensity

of disturbance may shed light on the future success of

P. astreoides.

Will Porites astreoides be a key species in the future of the

Caribbean coral community? Here, we reviewed 37 primary

literature publications (Table S1), focusing on studies published

since P. astreoides was considered a winner in the Caribbean by

Green et al. (2008) up to 2021 describing the ecophysiology traits

of P. astreoides under stress. We compiled a list of research

articles using the Scopus (Elsevier) database, where we applied

the following filters of keywords, title, or abstract: “Porites

astreoides” ”stress” OR ”physiology” OR ”experiment” OR

“tolerance” OR “resistance” OR “resilience” OR “sensitivity”.

We selected studies from the list that assessed natural

disturbances and/or climate change stressors in experimental

settings (laboratory or in situ) or monitoring after extreme

events (e.g., thermal anomalies, mass bleaching) in the

Caribbean region (including Bermuda). We referred to each

research article published as a “study”. “Report” was used to

refer to the result of a response variable (e.g., growth rate,

respiration, larval recruitment) of P. astreoides to a factor (e.g.,

temperature, pH, sedimentation). Therefore, a study may

include many reports showing different results. For example,

sensitivity of growth rates to pH and resistance of growth rates to

temperature can be reported in the same research article,

therefore, they would be accounted as two reports in one study.
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We examined the ecophysiological response variables of P.

astreoides across five major categories: 1- Photosynthesis of the

coral endosymbionts (Symbiodiniaceae); 2 – Growth; 3 –

Recruitment; 4 – Tissue Condition; 5- Microbiome. The

environmental factors comprised temperature, pH, macroalgal

competition, depth, and sedimentation, including synergistic

effects of these variables on the physiology of P. astreoides.
Results

The ecophysiological responses of Porites astreoides were

more often reported to be sensitive than resistant and/or resilient

to stress. From the total of 84 reports across 37 published studies,

54% concluded that P. astreoides was negatively affected by

stressors and 45% reported non-significant responses.

However, the tolerance of P. astreoides to stress varied across

physiological parameters and types of stressors (Figure 1).
Photosynthesis: Endosymbiont density,
chlorophyll concentration, productivity,
maximum photochemical efficiency of
photosystem II (Fv/Fm), and bleaching

Porites astreoides was considered one of the least susceptible

coral species to bleaching after exposure to heat waves recorded

in the U.S. Virgin Islands in 2005 (Smith et al., 2013) and in the

Cayman Islands, in 2009 (van Hooidonk et al., 2012). However,

the ability of P. astreoides and their endosymbionts to recover
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from stress depended on the frequency of the exposure. When

exposed to a single bleaching event, P. astreoides recovered

endosymbiont abundance after 1.5 months (Grottoli et al.,

2014; Levas et al., 2018) or within a year (Schoepf et al., 2015)

at reef ambient temperatures. In contrast, colonies that were

exposed to a recurrent bleaching treatment lost half of their

endosymbionts and were not able to recover after six weeks in

ambient temperatures (Grottoli et al., 2014). Porites divaricata

was resilient to repeated bleaching via heterotrophic

compensation, whereas the mounding corals P. lobata and O.

faveolata used a combination of heterotrophy and thermally

tolerant Symbiodiniaceae in their response to mild bleaching

events (Levas et al., 2018).

Symbiodiniaceae associated with P. astreoides were sensitive

to heat (Grottoli et al., 2014; Schoepf et al., 2015; Soto-Santiago

et al., 2017b; Levas et al., 2018) and cold (Kemp et al., 2011)

stress. Colonies exposed to 32°C lost ~ half of endosymbionts

(Grottoli et al., 2014; Soto-Santiago et al., 2017b; Levas et al.,

2018) and 40% to 75% of chlorophyll concentrations (Schoepf

et al., 2015; Soto-Santiago et al., 2017b). Seawater temperatures

lower than 16°C caused a significant reduction in gross

photosynthesis and in the maximum photochemical efficiency

of photosystem II (Fv/Fm) (Kemp et al., 2011). Also, P.

astreoides showed low resilience to sedimentation, as Fv/Fm

rates kept decreasing after 5 days of being removed from the

treatments (Rushmore et al., 2021).

Synergistic effects of warmer temperatures and other

environmental factors were threatening to the P. astreoides

coral-algal physiology (Camp et al., 2016; Smith et al., 2019).

Elevated temperature combined with OA decreased productivity
FIGURE 1

Porites astreoides was more often reported as sensitive than resistant/resilient to environmental stress. Since 2009, 54% of the total of 84
reports (across 37 studies total) showed that P. astreoides ecophysiological parameters related to endosymbiont photosynthesis, coral growth,
recruitment, tissue condition, and microbiome, are sensitive (red arrows) to stressors, while 45% showed stress tolerance and/or ability to
recover (blue arrows). The weight of the arrow lines corresponds to the frequency that the respective effect was reported in the literature
(thinnest lines indicate 1 report; thickest lines represent 10 reports).
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of colonies collected from both high and low-variance habitats

off the Cayman Islands, indicating that acclimatization to

natural pH–temperature disturbances did not increase

physiological performance of P. astreoides under future climate

scenarios (Camp et al., 2016). During a 4-year field experiment

in the Florida Keys, the presence of fleshy macroalgae

(Dictyota spp. within 10 cm) was the environmental factor

that best explained the increase in bleaching of P.

asteroides corals in thermal stress (Smith et al., 2019).

Bleaching was predominant in P. astreoides, observed in 69.0%

of transplants, while only 7.1% of Siderastrea siderea bleached

(Smith et al., 2019).

When tested individually, exposure to macroalgae and low

pH alone did not negatively affect the algal endosymbionts in P.

astreoides. Adult colonies were resistant to allelopathy from

macroalgae as Fv/Fm rates were unaffected by crude extracts

from Dictyota (Paul et al. , 2011). After a two-year

transplantation to a low aragonite saturation submarine

spring, chlorophyll-a and endosymbiont densities increased,

indicating a higher capacity for the photosynthetic activity that

could provide additional energy to corals under suboptimum

conditions (Martinez et al., 2019).
Growth: Skeleton linear extension,
density, and calcification rates

Growth of P. astreoides was reported in the literature to be

equally sensitive and resistant/resilient to thermal stress. While

P. astreoides showed negative calcification in response to

elevated temperature (30.3°C) for two months (Okazaki et al.,

2017); projected end-of-century annual mean temperature

(31°C) for Caribbean reefs had no significant effect on

calcification rates after ~ 3 months at this temperature (Bove

et al., 2019). Heat-stress lowered calcification by 69% in

experiments where P. astreoides colonies were exposed to 31°C

for 7 days in a tank (Schoepf et al., 2015), but P. astreoides was

able to recover pre-treatment growth after the heat-treated

colonies were transplanted back on the reef for a year (Grottoli

et al., 2014; Schoepf et al., 2015; Levas et al., 2018). However,

repeated annual bleaching impaired the ability of P. astreoides to

recover calcification rates (Grottoli et al., 2014). Calcification of

P. astreoides colonies transplanted in situ were negatively

correlated with heat stress (Manzello et al., 2015).

The effects of OA on the growth of P. astreoides depended on

the pCO2 levels and exposure to heat stress. Calcification was

stable at end-of-century pCO2 (701/673 µatm) (Bove et al.,

2 0 1 9 ) , b u t e x p e r i e n c e d ma j o r d e c l i n e s u nd e r

higher pCO2 (900, 1300, 3309/3285 µatm) (Okazaki et al.,

2017; Bove et al., 2019). Reduced pH had a greater impact on

calcification compared to temperature, although these factors

had an additive decrease in calcification when combined (Camp

et al., 2016). In contrast, the interaction between OA and heat
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did not significantly lower calcification of P. astreoides after a 30-

day acclimation period (Bove et al., 2019).

Acclimatization to low pH did not seem to increase

resilience in P. astreoides (Crook et al., 2013; Camp et al.,

2016; Wall et al., 2019). The deleterious effects of OA were not

significantly different between colonies acclimatized to high and

low variance in pH (Camp et al., 2016). Corals collected in

proximity to a low-pH groundwater plume showed significant

decrease in calcification under OA in experimental conditions;

comparable to the lower calcification rates in colonies that had

not been previously acclimatized (Crook et al., 2013; Wall et al.,

2019). After a two-year transplantation to a low-pH spring,

linear extension and calcification were maintained but skeletal

density of the coral decreased (Martinez et al., 2019). Similarly,

sedimentation did not decrease linear extension rates but

affected skeleton density and calcification (Elizalde-Rendón

et al., 2010).

In contrast, the linear extension, density, or calcification of

the skeleton of P. astreoides were not affected by a wide depth

variability from 6 – 47 m, indicating the species growth was

unaffected by depth (Groves et al., 2018). In mesophotic reefs (30

– 40 m depth), growth rates were also not significantly impacted

by increased temperatures (Groves et al., 2018).

Macroalgal competition was a less understood factor that

was very deleterious to P. astreoides. Growth was reduced by

40% on average when colonies were exposed to five different

species of benthic macroalgae (Vega Thurber et al., 2012).
Recruitment: Fecundity, larval survival,
larval production, larval photosynthesis,
larval oxidative damage, settlement rates,
juvenile survival, juvenile growth

Recruitment of P. astreoides was unaffected, or even

increased, by depth (Holstein et al., 2016b; Goodbody-

Gringley et al., 2018). Planulae production increased with

depth and was correlated to peak P. astreoides cover at 10 m

and at 35 m off the U.S. Virgin Islands (Holstein et al., 2016b).

Fecundity was maintained across 2 m to 33 m in Bermuda, and

recruits collected from the upper-mesophotic zone showed

higher settlement, growth, and survival rates (Goodbody-

Gr ing ley e t a l . , 2018) . In add i t ion , a rec iproca l

transplantation experiment between shallow and mesophotic

reefs showed that P. astreoides larvae survived and settled

independently from the parental origin and that mesophotic

light conditions increased survivorship (Goodbody-Gringley

et al., 2021). Thus, mesophotic reefs may provide a refuge for

P. astreoides enabling recruitment to shallower reefs (Holstein

et al., 2016a).

OA decreased P. astreoides larval survivorship (Olsen et al.,

2015), metabolism, settlement, post-settlement growth (Albright

and Langdon, 2011), and recruit calcification (de Putron et al.,
frontiersin.org
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2011), but mild pH reductions (from 8.05 to 7.85) had no effects

on settlement and survival of recruits (Campbell et al., 2017).

Larval physiology, survival, settlement, and metamorphosis

were resistant to heat stress (Olsen et al., 2013; Ross et al., 2013;

Ritson-Williams et al., 2016), although it caused inhibition of

larval photochemical efficiency (Olsen et al., 2015), oxidative

damage in the larval tissues (Olsen et al., 2013; Ritson-Williams

et al., 2016), and post-settlement mortality (Ross et al., 2013). P.

astreoides recruitment was reduced by half at sites that were

highly exposed to an anomalous cold-water plume in the Florida

Keys in 2010, and the effect was apparent three years after the

event (Kemp et al., 2016).

Survival of P. astreoides recruits was lower under heat (30°C)

when compared to ambient temperatures (26°C) and sedimentation

was a key factor in either ameliorating or aggravating the effects of

thermal stress (Fourney and Figueiredo, 2017). When the levels of

sedimentation were low (30mg.cm−2, 6.55 NTU), coral recruits

survived at rates closer to those under ambient temperatures. In

contrast, high amounts of fine, anthropogenic sediment (≥

60mg.cm−2, ≥ 14.2 NTU) significantly increased mortality of coral

recruits under high temperatures (Fourney and Figueiredo, 2017). In

a different study system, the relationship between sediment grain size

and P. astreoides recruitment was reversed; fine sediment did not

affect recruit survivorship or health, but coarse sediment did

(Rushmore et al., 2021).

Exposure to fleshy macroalgae was harmful to P. astreoides

recruitment (Paul et al., 2011), particularly when abiotic

stressors were added (Olsen et al., 2015; Campbell et al., 2017).

Dictyota significantly reduced larval survival and recruitment

(Paul et al., 2011; Olsen et al., 2015). In synergy with OA and

heat,Dictyota caused a four-fold increase in lipid peroxidation in

P. astreoides larvae, which indicated cellular oxidative damage

compared to control treatments (Olsen et al., 2015). When in

contact with Stypopodium zonale, the survival of larvae was

lower after 96 hours, but settlement was not affected (Campbell

et al., 2017). In contrast, OA in combination with S. zonale

significantly reduced settlement (Campbell et al., 2017).
Tissue Condition: Protein, lipid, and
carbohydrate concentration/
composition, tissue Carbon and Nitrogen
isotopes, oxidative stress biomarkers,
innate immune system gene expression

The coral tissue properties of P. astreoides were sensitive to

sedimentation (Rushmore et al., 2021), strongly shaped by

temperature fluctuations (Kenkel et al., 2015a; Schoepf et al., 2015;

Solomon et al., 2019), but sometimes resilient to thermal stress

(Haslun et al., 2018; Levas et al., 2018), and OA (Martinez et al.,

2019).Porites astreoides colonies showed increased levels of oxidative

stress biomarkers in the tissue (carbonyl content, hydroperoxide)

after exposure to moderate to high levels of sedimentation and did
Frontiers in Marine Science 05
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(Rushmore et al., 2021). However, innate immune system-related

genes maintained low levels of expression under a 32°C treatment,

indicating resistance to thermal stress (Haslun et al., 2018). Porites

astreoides was able to maintain lipids, proteins, and carbohydrates

reserves during and after one year of exposure to a mild bleaching

event (Levas et al., 2018), however, the species did not seem to rely on

a long-term recovery capacity of their tissue condition following

recurrent bleaching events (Schoepf et al., 2015). The most negative

effects of thermal stress on P. astreoides tissue condition were a

decrease of protein and carbohydrate concentrations and a higher

amount of heterotrophic C versus photoautotrophic C (d13Ch−e) in

the coral tissue, suggesting that colonies invested more in

heterotrophy to compensate for the lack of energy reserves

(Schoepf et al., 2015). Lipid class composition changed

dramatically after recurrent bleaching events, with a 50% decline in

wax esters (i.e., storage lipids) (Solomon et al., 2019).

Reciprocally transplanted colonies between inner and outer

reefs in the Florida Keys experienced a decrease in mass gain and

total lipid, protein, and carbohydrate content after one year.

Reef-scale specialization to temperature, especially the frequency

of thermal fluctuations, was considered the primary driver

(Kenkel et al., 2015a). In contrast, high protein concentration

was maintained after a two-year transplantation to a low

aragonite saturat ion submarine spring, indicat ing

acclimatization of the tissue properties to the suboptimum

conditions (Martinez et al., 2019).
Microbiome: Coral-associated
microbial community

The literature search identified only three papers that described

the microbiomes associated with P. astreoides in response to stress

and the stress in each case was associated with macroalgae. The

microbiome associated with P. astreoideswas altered in the presence

of macroalgae (Vega Thurber et al., 2012; Morrow et al., 2013), but

the response depended on the macroalgae species (Morrow et al.,

2012). Lobophora variegate aqueous extracts caused dysbiosis, while

Dictyota (organic) extracts had a significant effect on bacterial

assemblages (Morrow et al., 2012). Microbial taxa composition in

the surfacemucous layerofP.astreoideswasdisruptedbyexposure to

macroalgae, where each macroalgal species induced a different

response compared with control treatments (Vega Thurber et al.,

2012). The presence of macroalgae increased variability in the coral

microbiome among colonieswithin the same treatment,which could

be a sign of the loss of beneficial microbes andmicrobiome dysbiosis

(Vega Thurber et al., 2012). In situ interactions between P. astreoides

colonies andmacroalgaeDictyotamenstrualisandHalimedaopuntia

in the U.S. Virgin Islands, the Florida Keys, and Belize, shifted the

coral-associatedmicrobial communities (Morrow et al., 2013). In the

coral-algal competition zone, the coral P. astreoides maintained a

relativelymore stablemicrobiome compared to the coralMontastrea
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cavernosa and provided a competitive edge for P. astreoides against

macroalgae (Morrow et al., 2013).
Discussion

Caribbean reefs have undergone a large-scale degradation in the

last four decades (Pandolfi and Jackson, 2006; Eakin et al., 2010;

Jackson et al., 2014; Cramer et al., 2021), which has led coral reef

ecologists to search for coral species that will bring life and hope to

future reefs. Porites astreoides has been considered a winner (Green

et al., 2008; Edmunds, 2010; Soto-Santiago et al., 2017a) and

expected to play a key role in sustaining coral cover in the

Caribbean as more sensitive species (e.g., Acropora spp.) become

consummate losers (Baums et al., 2005; Williams et al., 2008;

Garcıá-Urueña and Garzón-Machado, 2020). However, P.

astreoides may not be as resilient as previously assumed (Grottoli

et al., 2014; Edmunds et al., 2021). Here we show that Porites

astreoides has been more often reported to be sensitive than

resistant and/or resilient to stress. However, each physiological

feature showed varying levels of sensitivity depending on the

stressor, which brings more ambiguity about the ability of the

species to thrive under future climate scenarios (Figure 1).

The greatest source of resilience of P. astreoides lie in their ability

to sustain growth rates and recruitment at higher depths in

mesophotic reefs (Holstein et al., 2016b; Goodbody-Gringley

et al., 2018; Groves et al., 2018), which may function as a refuge

from stressors faced in shallow reefs (Holstein et al., 2016a). In

contrast, macroalgal competition and synergistic effects of multiple

stressors combined, were highly deleterious to P. astreoides (Olsen

et al., 2015; Campbell et al., 2017).

Finally, the least understood relationship was between the

microbiome of P. astreoides and environmental stress and was only

evaluated in the context of competition with macroalgae (Vega

Thurber et al., 2012; Morrow et al., 2013). The microbiome of P.

astreoides canbevertically transmitted tobrooded larvae (Sharpet al.,

2012) and is key to their health and survival (Rodriguez‐Lanetty et al.,

2013;Meyer et al., 2014;Welsh et al., 2015; Glasl et al., 2016). Disease

susceptibility of P. astreoides ranges from low to intermediate

(Williams et al., 2020; Meiling et al., 2021) and could be explained

by their microbiome (MacKnight et al., 2021). Future studies should

investigate how environmental factors, especially temperature (Lima

et al., 2020), affect the microbiome of P. astreoides and which

microbial partners and microbial gene functions (Dinsdale and

Rohwer, 2011; Haas et al., 2016; Walsh et al., 2017; Santoro et al.,

2021) can increase resilience of the species.

In relation to other corals, P. astreoides was the most

thermally sensitive species when compared to Porites

divaricata (Grottoli et al., 2014; Schoepf et al., 2015),

Siderastrea siderea (Kemp et al., 2011; Smith et al., 2019), and

Orbicella faveolata (Kemp et al., 2011; Grottoli et al., 2014;

Schoepf et al., 2015), and more sensitive than Montastrea

cavernosa to sedimentation (Rushmore et al., 2021). Under
Frontiers in Marine Science 06
present-day temperature and pH conditions, P. astreoides was

a stronger competitor than M. cavernosa and O. faveolata, but

under thermal stress and low pH it lost competitive ability

(Johnston et al., 2020). P. astreoides populations already show

signs of decline (Edmunds et al., 2021), which could be explained

by their relatively low resistance and/or resilience to stress

compared to other coral species. In the Pacific Ocean, while

some Porites species were short-term winners, none were

considered long-term winners in response to bleaching events

(van Woesik et al., 2011).

Increasing local and global anthropogenic stressors (Suchley

and Alvarez-Filip, 2018; Muñiz-Castillo et al., 2019) may

consummate P. astreoides as a loser in Caribbean reefs.

However, resilient aspects of P. astreoides such as growth and

recruitment at depth, provides competitive advantage to the

species. In addition, physiological tolerance of P. astreoides could

be manipulated and increased by transgenerational

acclimatization mechanisms (Kenkel et al., 2015b) in the coral

host (Dimond and Roberts, 2020; Wong et al., 2021), and in the

coral microbiome (Webster and Reusch, 2017). The future of P.

astreoides and of the Caribbean reefs are tightly integrated and

rely on effective management practices supported by more

scientific data reporting on their ecophysiology.
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