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The Northern Adriatic Sea is a key area of the Mediterranean Sea, strongly affected by 
freshwater inputs, mainly from the Po River, which bring high amounts of nutrients as 
well as organic and inorganic particles. Free-living and particle-attached prokaryotes 
were characterized by 16S rRNA gene amplicon sequencing of size-fractionated samples 
collected during a diatom bloom in this area. The diversity of free-living and particle-
attached prokaryotic assemblages was investigated with the aim to understand how the 
microbial communities are structured in the two fractions and whether specific microbial 
groups are associated to one lifestyle or the other. The results highlight a diverse prokaryotic 
community dominated by Proteobacteria, Bacteroidetes, and, remarkably, Firmicutes. 
Taxa within Firmicutes and Alphaproteobacteria are identified as the main particle-attached 
indicators by LEfSe, while members of Bacteroidetes and Gammaproteobacteria were 
representative of the free-living lifestyle, although they were also usually found as particle-
attached. Collectively, the results suggest that both the free-living and the particle-attached 
lifestyles are a complex combination of specialization and adaptation to local conditions.
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INTRODUCTION

The aggregation of organic and inorganic matter is an important process in the functioning of 
aquatic ecosystems. Aggregate formation occurs through the collision and adhesion to particles 
of inorganic and organic particles, including bacteria, phytoplankton, feces, detritus, and bio-
minerals (Alldredge and Silver, 1988; Simon et al., 2002; Thornton, 2002), ranging in size from a 
few microns to many centimeters (Alldredge and Silver, 1988; Passow et al., 2012). These aggregates 
host a great diversity, and include different microorganisms, such as bacteria, protists, and viruses, 
as well as gels, colloids, and cell debris (Azam and Malfatti, 2007). It has been hypothesized that 
bacteria and microzooplankton growing on aggregates, may build an area of enriched organic and 
inorganic nutrients around the aggregates (Hoppe, 1981). Also, microorganisms maximize their 
position within such nutrient field, leading to the formation of microbial clusters in their vicinity 
(Azam and Ammerman, 1984). Biddanda and Pomeroy (1988) called this microenvironment 
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the “phytoplankton-derived detritosphere”, which is similar to 
the “phycosphere” concept used by Bell and Mitchell (1972) to 
define the microscopic region rich in organic molecules that 
surrounds phytoplankton cells. The phycosphere represents 
the key interface where tight interactions between algae and 
other organisms are controlled by exuded chemicals (Seymour 
et al., 2017) and act as hot spots of high microbial abundance 
and activity (Smith et al., 1992; Azam et al., 1994) as well as 
of biogeochemical processes. These hot spots are also the 
site of aggregation–disaggregation processes determining 
the fate of this detritus in the water column (Biddanda and 
Pomeroy,1988).

The interactions that occur between phytoplankton and 
bacteria are crucial in global carbon and nutrient cycles (Amin 
et al., 2015; Christie-Oleza et al., 2017; Seymour et al., 2017; 
Mühlenbruch et al., 2018; Fu et al., 2020). Phytoplankton are 
responsible for half of Earth’s photosynthesis, and heterotrophic 
marine bacteria process 40% to 50% of this ocean fixed carbon 
(Moran et  al., 2016; Fu et  al., 2020). Heterotrophic bacteria, 
in addition to using organic carbon, also recycle inorganic 
nutrients, such as nitrogen and phosphorus, directly affecting 
phytoplankton dynamics (Amin et  al., 2012; Buchan et  al., 
2014; Amin et  al., 2015; Eigemann et  al., 2022). It is well 
known that prokaryotes and phytoplankton are closely linked 
in coastal marine environments, with correlations frequently 
observed between their biomasses (Fuhrman et  al., 1980; 
Gasol and Duarte, 2000), and species-specific interactions, 
suggesting that prokaryotes, especially bacteria, can play a 
major role in controlling phytoplankton dynamics (Furuki 
and Kobayashi, 1991; Imai et al., 1993; Yoshinaga et al., 1995; 
Yoshinaga et al., 1997). Indeed, some prokaryotes are capable 
of stimulating or inhibiting phytoplankton growth (Ferrier 
et  al., 2002), killing or lysing phytoplankton (Mayali and 
Azam, 2004), or altering their physiology (Gallacher et  al., 
1997). During phytoplankton growth, organic carbon is made 
available to prokaryotes, and both healthy and dying algal cells 
can release large amounts of dissolved organic matter into their 
surroundings (Myklestad, 1995; Thornton, 2014; Christie-
Oleza et al., 2017). The metabolites released by phytoplankton 
include several chemical classes, such as carboxylic acids, 
amino acids, carbohydrates, C1 compounds, organic sulfur 
compounds (Thornton, 2014; Durham et  al., 2015; Landa 
et al., 2017), and secondary metabolites (Ribalet et al., 2007). 
The metabolites present in a given phycosphere depend on the 
phytoplankton taxonomy and physiology (Allen et  al., 2008; 
Barofsky et  al., 2009; Becker et  al., 2014; Landa et  al., 2017) 
as is well known that different types of phytoplankton might 
generate distinct types of organic matter (Sarmento et  al., 
2013; Moran et  al., 2022), and this could explain why some 
prokaryotes might prefer some specific phytoplankters.

Depending on their relation with the particulate organic 
and inorganic matter present in the environment, prokaryotes 
have often been classified into two types of communities: 
free-living (FL) or particle-attached (PA) (Crump et al., 1999; 
Simon et  al., 2002). Their respective niches are generally 
operationally defined according to the pore size of the filter 
used to collect them (Milici et  al., 2016). Filters with larger 

pore size (generally larger than 3 μm) collect particles, 
micro-eukaryotes, and prokaryotes (attached or aggregated) 
associated with the larger items, while the truly planktonic or 
free-living prokaryotes are typically captured on 0.1- or 0.2-
μm filters. Currently, the PA and FL communities have been 
reported to harbor different groups of microbial lineages in 
various marine environments including coastal or surface 
water (Mohit et  al., 2014; Zhang et  al., 2016; Mestre et  al., 
2017a; Mestre et  al., 2017b), bathypelagic water (Wilkins 
et al., 2013; Salazar et al., 2016; Milici et al., 2017), or extreme 
depths of hadalpelagic habitats (>6,000 m) (Eloe et al., 2011; 
Tarn et al., 2016).

Some coastal marine plankton sites are highly affected by 
freshwater inputs that bring high concentration of nutrients 
and many organic and inorganic particles. How the microbial 
communities in the FL and the PA fractions of coastal sites 
are structured and whether they differ from, e.g., those 
of oligotrophic plankton sites are a matter of relevance to 
understand the dynamics of microbial communities and their 
possible preference for one or the other lifestyle. A powerful 
and reproducible aid that helps us better understand microbial 
diversity comes from the development of high-throughput 
sequencing (HTS) technologies, along with a metabarcoding 
approach, e.g., the large-scale analyses of biodiversity 
through the amplification and sequencing of marker genes 
(in this case, 16S rDNA), providing an efficient way to 
conduct the biodiversity monitoring of the whole ecosystem 
(Creer et  al., 2010; Zhang et  al., 2020). Metabarcoding has 
revolutionized our capacity to gather biodiversity data from 
environmental samples (Malviya et al., 2016) and transformed 
our understanding of microbial diversity (Pedrós-Alió et al., 
2018).

In this study, the distribution and structure of the 
prokaryotic community in the Northern Adriatic Sea 
is investigated as this area is highly dynamic, under the 
alternating influence of eutrophic low-salinity waters 
originating from the Po River, and oligotrophic high-salinity 
water from the central Adriatic (Orlić et  al., 2013; Steiner 
et  al., 2019; Steiner et  al., 2020). The Northern Adriatic Sea 
is also exposed to various anthropogenic impacts such as 
different types of wastewater pollution and agricultural and 
urban runoff. These inputs can introduce allochthonous 
organic matter and microbes into the environment (Orel 
et al., 2021). It is reported that the abundance, composition, 
and activity of microbial communities in this area depend, 
to a large extent, on river discharges (Celussi et  al., 2010; 
Mozetič et al., 2012), and the Northern Adriatic Sea receives 
significant freshwater inputs from several rivers, such as 
Adige, Brenta, Piave, and Po, along the northwestern coast of 
Italy. Russo and Artegiani (1996) estimated that about 20% 
of Mediterranean freshwater inputs occur in the Northern 
Adriatic Sea. The Po River is the main river in Italy for length 
and water load and the second freshwater contributor to the 
Mediterranean Sea (1,500 m3/s; Raicich, 1994), discharging 
high amounts of particles (both inert and living) and fueling 
high primary productivity (Sournia, 1973). The haline 
stratification segregates phytoplankton at surface, triggering 
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and controlling phytoplankton blooms, especially in the 
frontal area of the river delta (Mangoni et al., 2008). In general, 
it has been observed that total phytoplankton abundances 
decreased over the past two decades with a significant shift in 
2003 (Cozzi and Giani, 2011; Djakovac et al., 2012; Bernardi 
Aubry et al., 2021), probably due to the reduction in the total 
load of freshwater discharge and related nutrient loads.

Given the great variability of oceanographic conditions in 
the Northern Adriatic Sea, including the large effects of river 
inputs with high particle load, and the recurrent presence of 
large diatom populations, free-living prokaryotes (FL) were 
characterized and compared to those attached to particles (PA), 
during a diatom bloom using HTS of the 16S RNA gene. The 
starting hypothesis is that specific prokaryotic communities 
would be associated with either debris from the river, or 
particles including phytoplankton, considering the diatom 
bloom present at the time. This hypothesis is supported by 
previous surveys in the same area and season (e.g., Catalano 
et al., 2014), reporting that the detrital fraction in the upper 
mixed layer and the deep mixed layer represents 25%–29% of 
the total POC. Comparing communities in these two fractions 
provides information on potential actors in the aggregation 
processes that often have provoked mucilage events in the 
area and also on the potential impact of harmful organisms 
that may thrive and aggregate on particles, considering that 
this is the most productive area of the Mediterranean Sea 
(Salgado-Hernanz et al., 2022).

MATERIALS AND METHODS

Sample Collection
From March 14 to 21, 2017, an oceanographic research cruise 
(Project INTERNOS 2017) was conducted in the Northern 
Adriatic Sea with R/V Minerva Uno. Fourteen stations were 
sampled (Figure 1), using a rosette sampler equipped with 10-L 
Niskin bottles and a CTD probe (SBE 911, Sea-Bird Electronics, 
USA) with fluorometer ECO FLNTU to measure conductivity, 

temperature, depth, and fluorescence. Samples for phytoplankton 
abundance, flow cytometry, and 16S rRNA gene sequencing 
were collected from the same Niskin bottles. Duplicate samples 
for flow cytometry (1 ml each) were placed in 2.0-ml cryovials, 
fixed with a mix of glutaraldehyde (0.05% final concentration) 
and paraformaldehyde (1% final concentrations) for 10 min in 
the dark, frozen in liquid nitrogen, and stored at −80°C until 
analysis (Marie et al., 1999). Microphytoplankton samples were 
collected at stations 1, 4, 7, and 10 and disposed in 500-ml dark 
glass bottles, fixed with buffered 37% formaldehyde (1.6% final 
concentration), and counted following the Utermöhl method 
(Edler and Elbrächter, 2010). For 16S sequencing, 1 L of seawater 
was filtered sequentially through 47-mm Millipore polycarbonate 
filters with pore sizes 3.0 μm and 0.22 μm (Whatman-Nucleopore 
and Millipore-GSWP, respectively) using a Swinnex filter holder 
system connected to a vacuum pressure pump, to collect free-
living microbes (FL, between 0.2 and 3.0 µm in size) and those 
attached to particles (PA, >3.0 µm), respectively. The filters 
were disposed in cryovials, frozen in liquid nitrogen and stored 
at −80°C until DNA extraction.

Flow Cytometry
Total prokaryotic abundances were determined using a BD 
FACSVerse flow cytometer (BD Biosciences, Franklin Lake, 
USA) equipped with a 488-nm laser excitation and the standard 
filter setup. Analysis of heterotrophic prokaryotes was performed 
after thawing and staining the samples with SYBRGreen I 
(Molecular Probes, Inc., USA as described in Balestra et  al., 
2011). Heterotrophic prokaryotes were discriminated from other 
particles or background based on side scatter and by their high 
green fluorescence from SYBRGreen I, also used to discriminate 
HNA (High Nucleic Acid content) from LNA (Low Nucleic 
Acid content) prokaryotic cells (Gasol and del Giorgio, 2000). 
Data acquisition was performed using software FACSuite (BD 
Biosciences, Franklin Lake, USA) while file analysis was carried 
out using the FCS Express 6 Flow v 6.06.0025 software (DeNovo 
Software, Glendale, USA).

FIGURE 1 |   Map of the study area in the Northern Adriatic Sea (Mediterranean Sea) showing the 14 stations sampled in 2017. Created by ODV version 5.1.7. The 
different shades on the map represent the delimitation of 20-m (pink) and 60-m (light blue) isobaths.

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Trano et al. Prokaryotic Communities in the Northern Adriatic Sea

4Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 912528

DNA Extraction and Sequencing
DNA was extracted from the filters as described in Boström 
et  al. (2004). DNA concentration purity was measured 
using an ND-1000UV-Vis Nano-Drop spectrophotometer 
(ThermoFisher, UK). The extracted DNA samples were sent to 
the Integrated Microbiome Resource of Dalhousie University 
(Canada) for PCR amplification and Illumina MiSeq 2x300 bp 
sequencing. Raw sequences were deposited in the Sequence 
Read Archive (SRA) of the National Center for Biotechnology 
Information (NCBI) under BioProject #PRJNA834028.

The V4–V5 hypervariable region of the 16S rRNA gene was 
amplified using the 515-Y (5′ GTGYCAGCMGCCGCGGTAA) 
and 926R (5′ CCGYCAATTYMTTTRAGTTT) primers 
(Parada et  al., 2016). After primer removal, raw sequencing 
reads were submitted to the QIIME2 pipeline (Bolyen et al., 
2019). Amplicon sequence variants (ASVs) were identified 
through the DADA2 strategy within QIIME2 (Callahan 
et  al., 2016), with standard parameters. For the taxonomic 
affiliation of the ASVs, a reference database was first created 
within QIIME2 by trimming the SILVA database v132 (Quast 
et  al., 2012) to the region amplified by the used sequencing 
primers and training a Naive-Bayes classifier on the subset. 
This classifier was then applied to the representative ASVs 
for taxonomic assignment. ASVs assigned to chloroplasts, 
mitochondria, or “unknown” (i.e., that could not be classified 
at the kingdom level) were removed and excluded from 
further analyses.

Data Treatment and Diversity Analyses
The generated ASV table was normalized with a random 
subsampling at the lowest number of reads present in the 
samples (1,000 reads) and used to calculate alpha- and beta-
diversity and the taxonomic description of the dataset. The 
analyses were performed with the phyloseq (McMurdie and 
Holmes, 2013), vegan (Oksanen et  al., 2013), and ggplot2 
(Wickham, 2010) R packages, within R-software (version 
3.6.3). For alpha-diversity, rarefaction curves were generated 
and estimators of alpha-diversity including observed ASVs 
(richness), Shannon, and Chao indexes were calculated. 
For beta-diversity, Hellinger transformation was applied to 
the normalized abundance table and then the dissimilarity 
matrix was computed using the Bray–Curtis index (function 
vegdist). The Bray–Curtis dissimilarity matrix was then used 
to perform ordination analyses [hierarchical clustering and 
non-metric multidimensional scaling (NMDS)]. Analysis of 
similarities (ANOSIM test) (Clarke, 1993) was used for testing 
differences between the FL and PA prokaryotic communities. 
PerMANOVA (adonis function in vegan) was applied to detect 
significant associations between environmental parameters and 
prokaryotic community structure. Venn diagrams were built 
in order to calculate the shared and exclusive ASVs in the FL 
and PA communities (Oliveros, 2007–2015) (available at http://
bioinfogp.cnb.csic.es/tools/venny/index.html). Finally, linear 
discriminant analysis (LDA) effect size (LEfSe) analysis (Segata 
et al., 2011) was used to identify the features (e.g., the taxa) that 
most likely would explain differences between classes (FL vs. 

PA), with a stringent threshold LDA score of 4.0. The taxa that 
violate a null hypothesis of no difference between classes were 
considered to be biomarkers for the taxon considered (Segata 
et  al., 2011). Using the microeco R package (Liu et  al., 2021), 
the metabolic or other ecologically relevant functions of the taxa 
were predicted using Functional Annotation of Prokaryotic Taxa 
(FAPROTAX) database, which extrapolates putative functional 
profiles based on the literature of cultured taxa (Louca et  al., 
2016).

R Codes used in this study are available in the Supplementary 
Material.

RESULTS

Sampled Area
Surface temperatures were higher in the area influenced 
by the Po River (stt. 5, 6, 8) associated with lower salinities 
and relatively higher prokaryotic abundances (Table 1). The 
highest fluorescence-derived chlorophyll a with an average 
of 3.95 ± 2.02 µg L−1 were reported in stations 3 and 4, just 
above the mouth of the Po River due to a diatom bloom 
(mainly Chaetoceros spp.) present in the area. In fact, diatoms 
accounted for 81% of total microphytoplankton abundance, 
on average, with a peak of 7.49 × 103 cells ml−1 (95% of total) 
at station 4 (Table  1), and within diatoms, Chaetoceros was 
always the dominant genus.

Prokaryotic Diversity and  
Community Composition
The total (PA+FL) clean dataset contained 44,425 total reads 
corresponding to 2,293 ASVs with PA including 20,619 reads 
(1,516 ASVs) and FL having 23,806 reads (1,410 ASVs). After 
normalization, a total of 2,124 ASVs were left, with 25.4% of 
them shared between FL and PA samples, 40.2% exclusive of 
the PA community, and 34.4% exclusive of FL communities 
(Figure 2).

Wilcoxon tests highlighted significantly higher values of 
alpha-diversity (Observed ASVs, Shannon, and Chao1) in 
the FL than in the PA communities (Figure  3). In addition, 
alpha-diversity values within FL were more homogeneous 
(interquartile range = 0.2) than in PA samples (interquartile 
range = 0.7).

A clear separation between FL and PA samples was observed 
by cluster analysis (Figure  4), with the FL samples grouped 
into one homogeneous cluster and the PA samples, instead, 
separated into two distinct subgroups, one closer to the FL 
communities (I) grouping five samples and the other including 
nine samples mainly located far from the Po River (II). Cluster 
I was characterized by lower salinity and higher fluorescence 
values than the other stations (Table  1), suggesting a less 
selective environment. The distinction between FL and PA was 
confirmed by the ANOSIM test (R = 0.711, p-value ≤ 0.001) 
and also by the PERMANOVA analysis, which identified a 
significant correlation only with salinity (p-value ≤ 0.05), among 
all environmental parameters. Unfortunately, alpha-diversity 
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was not significantly different between the two clusters (p > 0.5 
for all indexes).

At the phylum level, the global dataset (FL+PA) was 
dominated by Proteobacteria, Bacteroidetes, and Firmicutes, 
representing 52.0%, 28.6%, and 7.4% of the total, respectively. 
Firmicutes, Planctomycetes, and Acidobacteria showed higher 
relative abundances in the PA community, with 5.2% (out of 
7.4% total), 1.8% (out of 2.7% total), and 0.7% (out of 1.0% total), 
respectively. Within the PA fraction, Firmicutes were twice as 
abundant in cluster II compared to cluster I (10.3% vs. 5.3%).

Cyanobacteria were present in both fractions but with very 
low contributions (1.4% of FL plus PA) (Figure 5). The total of 
Archaea sequences was less than 1% and therefore they were 
grouped into “< 1% abund.”.

At the family level, Phyllobacteriaceae, Rhodobacteriaceae, 
and Flavobacteriaceae, as well as Bacteroidaceae, were the most 
abundant families, with 16.3%, 13.9%, 13.5%, and 6.4% of the total 
reads, respectively. Of these, 84.0% of Flavobacteriaceae were 

present in the FL fraction, while 72.3% of Phyllobacteriaceae 
and 70.0% of Bacteroidaceae were present in the PA fraction. 
The Rhodobacteriaceae were present in both fractions with 
53.9% in the FL and 46.1% in the PA community.

In order to identify taxa that could be considered as 
indicators of PA or FL lifestyle, LEfSe analysis showed 
Alphaproteobacteria (Phyllobacterium genus), Firmicutes 
(Clostridiales order), and the class Bacteroidia (Bacteroides 
genus of the Bacteroidaceae family) as PA indicators, with 
other Bacteroidetes (particularly Polaribacter, Sediminicola, 
and Flavobacterium of the Flavobacteriaceae family), 
Gammaproteobacteria (OM60 and Alteromonadaceae 
families), and Actinobacteria (Candidatus Aquiluna genus 
of the Microbacteriaceae family) as representatives of the FL 
lifestyle (Figure 6).

A total of 65 functional groups were identified using 
FAPROTAX,  accounting for 42% of all ASVs. Predominant 
functional groups included aerobic and anaerobic 

TABLE 1 | Surface values of temperature, salinity, fluorescence levels, total heterotrophic prokaryote abundance (cells ml−1), total phytoplankton abundance, and diatom 
percentage in 2017 in the Northern Adriatic Sea.

Station Temperature (°C) Salinity Fluorescence (µg L−1) Prokaryotes (ml−1) Total phytoplankton counts 
(cells ml−1)

Percentage of abundance  
as diatoms (%)

1 11.155 34.773 0.68 501,355 6,824 54
2 11.870 32.973 5.39 398,093    
3 11.907 29.914 6.40 552,891    
4 12.355 32.511 6.83 532,129 7,868 95
5 12.664 27.595 2.90 509,920    
6 12.900 24.703 5.59 1,635,830    
7 10.218 34.879 4.21 462,112 4,359 87
8 11.022 34.609 4.45 593,505    
9 11.797 33.676 4.78 319,670    
10 11.890 31.815 3.23 360,846 5,696 87
11 11.715 29.232 4.82 515,317    
12 10.883 30.708 4.24 349,263    
13 12.065 28.924 1.61 424,582    
14 10.686 37.317 0.19 277,262    

FIGURE 2 | Venn diagram showing the ASV distribution in each of the two fractions: FL (Free-Living, yellow) and PA (Particle-Attached, blue), and those shared by 
both fractions.
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chemoheterotrophy (55%), followed by C fermentation (8.6%) 
(Table S1 and Figure 7). However, functional signals showed some 
differences between the FL and PA communities (Figure 7), with the 
FL bacteria showing a dominance of aerobic chemoheterotrophy 
and the PA community showing a prevalence of anaerobic 
chemoheterotrophy and fermentation functions. Within the PA 
community, the samples were grouped into two main clusters (I 
and II) that are distinguished by small differences in fermentation 
and aerobic as well as anaerobic chemoheterotrophy functions.

DISCUSSION

In our study, prokaryotic abundances were highest near the Po 
River delta with a general decrease from the coast to offshore, 
confirming their elevated concentrations in meso to eutrophic 
areas (Shiah, 1999; Šilović et  al., 2012; Paterson et  al., 2013). 

All the bacterial diversity patterns observed indicated a clear 
distinction between FL and PA prokaryotic communities as 
reported in various marine environments including coastal or 
surface water (Mohit et al., 2014; Zhang et al., 2016), bathypelagic 
water (Wilkins et al., 2013; Salazar et al., 2016; Milici et al., 2017), 
or extreme depths of hadalpelagic habitats (>6,000 m) (Eloe et al., 
2011; Tarn et al., 2016). Higher diversity in FL than in PA was 
observed in this study. Although the question of which fraction 
contains more diversity has been extensively investigated both in 
the Mediterranean Sea and in other regions, no trend attributable 
to geographic location, trophic conditions or other factors could 
be found. In the Mediterranean Sea, some authors found more 
diversity in the FL fraction (Acinas et al., 1999; Ghiglione et al., 
2007), while others, in the PA fraction (Crespo et al., 2013; Mestre 
et al., 2017b). The same is true for other areas (e.g., Kellogg and 
Deming, 2009) reporting higher diversity in the FL prokaryotes, 

A B C

FIGURE 3 | Number of observed ASVs (A), Shannon diversity (B), and Chao I richness (C) in FL (green) and PA (red) prokaryotes. Upper and lower lines correspond 
to the first and third quartile of the distribution of values, while the horizontal lines indicate the median values.

FIGURE 4 | Hierarchical clustering based on a Bray–Curtis dissimilarity matrix. The yellow square delimitates FL communities. The red squares delimitate PA 
prokaryotic communities.
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with others finding the opposite (e.g., Zhang et  al., 2007; Eloe 
et al., 2011).

Within the FL and PA lifestyles, the FL communities 
sampled were more homogeneous in diversity and functional 
profiles than the PA communities, which were, instead, split 
into two subgroups (see Figure  4). Although a separation of 
stations based on distance from the Po River or salinity values 
was statistically supported, the stations of cluster II of PA were 
located farther away from the Po River. This suggests that factors 
such as freshwater influence, presence of different particles, and 
nutrients create different substrates to which PA communities 
can attach in different ways, likely generating variability of the 
prokaryotic communities associated to particles.

Although the rarefaction procedure may have affected the 
absolute value of alpha-diversity, in our study, the communities 

of the FL fraction show higher signal of diversity and richness 
than the PA communities. This is likely to be explained by the 
diatom bloom occurring during sampling, which attracted PA 
taxa associated or specialized to exploit diatom-derived organic 
carbon, such as Rhodobacteraceae (Roseobacter and Sulfitobacter) 
and Bacteroidetes (Flavobacterium), reducing diversity in the 
PA fraction.

The general taxonomic composition and the LEfSe analysis 
suggest the preference of specific taxa for either the FL or the PA 
lifestyle. However, while some previous studies reported a high 
degree of specialization in different bacterioplankton groups 
(DeLong et  al., 1993; Acinas et  al., 1999; Moeseneder et  al., 
2001; Allgaier et  al., 2007; Smith et  al., 2013), others observed 
significant overlap between the FL and PA communities 
(Hollibaugh et  al., 2000; Ghiglione et  al., 2007; Crespo et  al., 

FIGURE 5 | Taxonomic composition (at the phylum level) of FL and PA prokaryotic communities (left and right bars, respectively) at each station. The phyla with 
abundance < 1% are grouped and represented as “< 1% abund.”, in gray. Station names are on top.

FIGURE 6 |  LEfSe analyses (LDA >4; p = 0.05) showing the taxonomic groups that statistically differentiate FL (green) and PA (red) communities using the prokaryotic 
ASVs table. Taxa with non-significant differences are presented as yellow circles and the diameter of the circles is proportional to relative abundance. Circles represent 
taxonomic levels from phyla (innermost ring) to genus (outermost ring). On the right, the list of taxa represented in the taxonomic hierarchical cladogram.
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2013). Taxa found in both fractions could be able to switch 
their lifestyles from PA to FL and vice versa (Crespo et  al., 
2013; Li et  al., 2015; Mestre et  al., 2018). It is reasonable to 
expect that PA prokaryotes can also be capable of surviving 
freely, so they can colonize new particles (Pedrós-Alió and 
Brock, 1983; Ghiglione et  al., 2007). In marine sites similar 
to the area sampled in this study, Alphaproteobacteria, 
Gammaproteobacteria, and Bacteroidetes are present and 
even dominant in both PA and FL fractions (Yung et  al., 
2016), although only a finer taxonomical detail can elucidate 
real differences or similarities.

The Bacteroidaceae family (mostly genus Bacteroides), 
the Alphaproteobacteria class (particularly the genus 
Phyllobacterium), and phylum Firmicutes (order Clostridiales) 
were selected by LEfSe as PA indicators. These taxa were 
predicted by FAPROTAX analysis to provide anaerobic 
chemoheterotrophy and C fermentation as expected from 
anaerobic microenvironments, such as marine particles, 
guts of zooplankton, or others (Bickel and Tang, 2014). In 
particular, members belonging to the Bacteroidia class, within 
the Bacteroidaceae family, are frequently found in soils and 
freshwater, and are considered specialized in the degradation 
of high-molecular-weight organic matter, i.e., proteins 
and carbohydrates (Thomas et  al., 2011). These groups are 
also found to attach to plastic debris (Lee et  al., 2008; Jain 
and Krishnan, 2017). In addition, in Korean coastal waters, 
Chun et al. (2021) reported an increase of Bacteroidia during 
diatom (e.g., Chaetoceros, Pseudo-nitzschia, Leptocylindrus, 
Thalassiosira, and Skeletonema) blooms, probably related to 
their ability in degradation of phytoplankton-derived organic 
matter, which are further used by other bacteria as carbon 
sources (Williams et  al., 2013). Our results support these 
observations, confirming the ecological role of Bacteroidia 
as an important group in the PA fraction of coastal areas, 
especially in the presence of diatom blooms. The other taxa 

with a PA lifestyle preference were genus Phyllobacterium 
(Alphaproteobacteria) and the Firmicutes phylum (order 
Clostridiales). Members of the Phyllobacteriaceae family are 
reported to thrive in soil and water and/or to be associated 
with plants (Willems, 2014), and Firmicutes represent large 
components of microbial communities in soils (Roesch et al., 
2007; Youssef and Elshahed, 2009), the members of which 
have also been reported as feces-associated bacteria in coastal 
waters (Basili et  al., 2020). Within Firmicutes, members of 
the Lachnospiraceae family, and genera Streptococcus and 
Ruminococcus are typical sewage-associated prokaryotes 
(Oberbeckmann et  al., 2015). In our dataset, Firmicutes 
differentiate between clusters, with members of Clostridia 
class (Blautia and Dorea genera in the Lachnospiraceae 
family and Oscillospira, Ruminococcus, and Faecalibacterium 
genera of the Ruminococcaceae family) and members of 
Bacilli (Enterococcus, Lactobacillus, and Streptococcus genera) 
particularly abundant in cluster II, indicating anaerobic 
chemoheterotrophy and fermentation activity that may 
mark their terrestrial origin and/or untreated sewage water 
discharged into the Po River or directly into the sea.

Members of Flavobacteria (Bacteroidetes), instead, show 
a preference for the FL lifestyle, despite the fact that they 
are often reported as associated with phytoplankton and/or 
other particles (Kirchman, 2002; Karrasch et al., 2003; Teeling 
et  al., 2012). In our data, Flavobacterium and Polaribacter 
were associated to aerobic chemohetrotrophy function, 
likely related to the presence of high levels of nutrients and 
organic matter (Kirchman, 2002; Elifantz et  al., 2007), as 
expected for the Po river discharge area. Other groups, such 
as Gammaproteobacteria and Actinobacteria, were selected 
by LEfSe as FL indicators. Within Gammaproteobacteria, 
the Alteromonadales and OM60 families were predicted to 
have aerobic chemoheterotrophy function, and were found 
to be associated to FL fraction, contrary to what has been 

FIGURE 7 | Heatmap of the function distributions generated by FAPROTAX. The columns correspond to the samples and the rows correspond to the percentage 
of functional groups predicted within each sample. On the left, the Free-Living (FL) samples, and on the right, the Particle-Attached (PA) samples separated in the 
2 clusters.
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reported in other studies (Zhang et al., 2007; Fuchsman et al., 
2011; Gomez-Consarnau et al., 2019), where they are usually 
considered as typical PA prokaryotes. It is well known that 
most Gammaproteobacteria have high nutrient requirements 
(Schattenhofer et  al., 2009) and they live attached to particles 
as a strategy to prevent nutrient limitation (Crespo et al., 2013). 
However, this was hardly the case of this study, as the Po River is 
a large source of nutrients, possibly allowing for their presence 
in the FL fraction. The presence of genus Candidatus Aquiluna 
of the Microbacteriaceae family (Actinobacteria phylum) is a 
remarkable indicator of the FL fraction. This genus was initially 
proposed as an indigenous freshwater species (Hahn, 2009), but 
has also been reported in the coastal marine environment (Šilović 
et al., 2012; Elifantz et al., 2013). Its presence in the sampled area 
could therefore be considered a marker of river influence and 
terrestrial discharges in general.

Interestingly, FAPROTAX analysis revealed different 
functional patterns not only between FL and PA communities 
but also among the two PA clusters, with cluster I showing 
prevalence of aerobic chemoheterotrophy, similar to FL 
communities (e.g., Flavobacteriaceae members), as compared 
to the strong anaerobic signal found in cluster II. This has 
implications for the ecological adaptation abilities to different 
sources and kinds of organic matter, which reverberates on the 
functioning and efficiency of the microbial loop in the two areas. 
This outcome also suggests that the PA lifestyle is heterogeneous 
and can include specialized taxa, especially in cluster II, together 
with other, more generalist, able to shift between lifestyles and 
functions. This contrasting evidence observed for some taxa may 
suggest that for a better definition of taxa lifestyle or preferences 
for different types of particles or substrates, a finer taxonomic 
level is needed, which is not always possible with metabarcoding 
data, as it does not differentiate between ecotypes.

In conclusion, our study confirms different taxonomic profiles 
between PA and FL prokaryotes and, coupled with functional 
diversity, provides new insights into the potential drivers shaping 
the two types of communities including biotic and abiotic factors 
as well as anthropic pressures. Despite the relatively high number 
of studies published describing the prokaryotic components of 
PA and FL communities in coastal ocean areas, further studies 
including the full seasonal cycle and the effect of environmental 
fluctuations would allow researchers to elucidate the complexity 
of the factors governing the community structure of particle-
attached and free-living prokaryotic communities. Metagenomic 

and metatranscriptomic profiles would also be key to better 
assess taxonomical and associated functional diversity of these 
two prokaryotic community types.
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