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Organisms can regulate mitochondrial metabolic adaptation, further ameliorate the energy
homeostasis to control the ATP production for the energy expenditure during the growth
process under different physiological and nutritional conditions. Based on this
understanding, the objective of the present study was to investigate how different dietary
n-3 PUFA (polyunsaturated fatty acid) lipid sources modify the mitochondrial metabolic
adaptation, and further affect the energy homeostasis and the growth of swimming crab
(Portunus trituberculatus). A total of 120 swimming crab juveniles with an average initial
weight of 10.17 ± 0.12 g were fed one of three diets (4 replicates/treatment) containing
either fish oil (control), krill oil or linseed oil as dietary lipid sources for 8 weeks, and the effects
of dietary lipid sources on the growth and energy homeostasis via the regulation of
mitochondrial metabolic adaptation were evaluated. The study revealed that, compared
with linseed oil rich in 18:3n-3, fish oil and krill oil rich in 20:5n-3 and 22:6n-3 significantly
promoted the molting and growth of juvenile swimming crab, increased the ATP level,
mitochondrial membrane potential, NAD+ substrate level, NAD+/NADH ratio and the
mitochondrial DNA copy number. Furthermore, crabs fed the diet supplemented with krill
oil can up-regulate the expression levels of genes related to energy metabolism. In addition,
dietary krill oil also specifically improved the ability for scavenging free radicals produced in
the process of physiological metabolism, reduced the level of lipid peroxidation and the
degree of DNA oxidative damage, and improved the health status of swimming crab.
The present study revealed the adaptation of mitochondrial metabolism and the regulation
of the energy homeostasis of swimming crab to different dietary n-3 PUFA lipid sources, and
provided a new insight into the relationship between the growth as well as molting and the
energy homeostasis, which provided a novel insight into the lipid nutrition and energy
metabolism of crustacean species.
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INTRODUCTION

Molting, a critical biological process in crustaceans that requires
a large amount of energy to absorb water and swell the
exoskeleton, is highly related to growth, gonad development
and reproduction (Panganiban et al., 1995; Jung et al., 2013;
Huang et al., 2015). Hepatopancreas is the key organ responsible
for not only the metabolism of nutrients (particularly lipids and
fatty acids) in crustaceans, but also the production of energy for
the process of molting which maintain energy homeostasis and
survival after molting (Wang et al., 2014; Huang et al., 2015; Fang
et al., 2021). Hence, the hepatopancreas is not only the critical
organ in which to study the metabolic response to exogenous
nutrients in crustaceans, but also the bridge between the molting
process and energy homeostasis.

Endogenous factors such as physiological status, growth stage
and nutritional condition, as well as exogenous factors such as
temperature, toxins, exercise and food availability, can alter the
balance of energy expenditure and supply in organisms (Bremer
and Moyes, 2011; Dos Santos et al., 2012; Sokolova et al., 2012;
Conde-Sieira and Soengas, 2017). Organisms can regulate
mitochondrial metabolic adaptation and affect the processes of
energy metabolism to control ATP (adenosine triphosphate)
production under different physiological and environmental
conditions, which further alters the balance between energy
expenditure and energy supply (Bremer and Moyes, 2011). It
was reported that mitochondrial metabolic adaptation was
affected by many factors including the fatty acid profile of
membranes (Kraffe et al., 2007; Yuan et al., 2019) and
membrane potential (Zorova et al., 2018), volume density
(Urschel and O'Brien, 2008; Morris et al., 2021), ETC (electron
transport chain) complex activity (Duggan et al., 2011; Cogliati
et al., 2018) and NAD+ (nicotinamide adenine dinucleotide)
homeostasis (Cantó et al., 2015; Jokinen et al., 2017), mtDNA
(mitochondrial DNA) copy number (Hartmann et al., 2011; Liao
et al., 2015), mitochondrial transcription factors (Bremer et al.,
2012; Yuan et al., 2019) and sirtuins (Lombard et al., 2011;
Rahman et al., 2014). As the metabolic adaptability of
mitochondria changes (especially inefficient mitochondrial
metabolism), ROS (reactive oxygen species) are produced
accordingly, and overproduction of ROS can lead to a series of
metabolic diseases including diabetes mellitus, insulin resistance
and obesity (Alfadda and Sallam, 2012). In Arthropoda such as
crustacean species, molting can strongly influence the energy
homeostasis owing to the recovery process requiring additional
energy. Furthermore, mitochondria produce ROS in response to
the production of energy, which may cause a series of changes in
the nucleus at the transcriptional level (Yun and Finkel, 2014).
Many studies have focused on the relationship between
mitochondrial metabolic adaptation and exogenous factors
including temperature, toxins, photoperiod and exercise in
organisms (LeMoine et al., 2010; Bremer and Moyes, 2011;
Sokolova et al., 2012), but few studies have investigated the
effect and mechanism of dietary stimuli (especially dietary fatty
acids) on the mitochondrial metabolic adaptation and energy
homeostasis in marine crustaceans.
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Swimming crab (Portunus trituberculatus) is widely
distributed in the coastal waters of China, Japan, Korea and
Malaysia, and is a well-studied marine crustacean in China due
to its high nutritional quality and economic value (Yuan et al.,
2020). In the past decade, research on lipid and fatty acid
nutrition as well as the metabolism of swimming crab has
advanced greatly (Yuan et al., 2019; Yuan et al., 2019; Yuan
et al., 2020; Fang et al., 2021; Yuan et al., 2021; Xie et al., 2022).
However, until now, mitochondrial metabolic adaptability has
not been studied in crustaceans with few studies designed to
specifically investigate the mechanisms of how dietary lipid
sources and fatty acids impact energy homeostasis. In the
present study, we hypothesized that different dietary n-3
PUFA (polyunsaturated fatty acid) lipid sources would
differentially affect mitochondrial metabolic adaptation of
hepatopancreas of swimming crab, and further influence the
energy homeostasis after molting, and finally alter the growth
performance of swimming crab. The overarching aim of the
research was to provide reliable evidence and novel insights
into the mechanisms of mitochondrial metabolic responses and
energy homeostasis of crustaceans in response to different
dietary lipid sources.
MATERIALS AND METHODS

Experimental Design and Diet Preparation
Three isoproteic and isolipidic experimental diets varying in
lipid source (fish oil, krill oil and linseed oil) were formulated
and manufactured to contain approximately 45 g kg-1 crude
protein and 9 g kg-1 crude lipid (Table 1). The three diets
were: 1) Diet FO with fish oil as a source of n-3 LC-PUFA
(long-chain polyunsaturated fatty acids) (the control diet), 2)
Diet KO with krill oil as a source of n-3 LC-PUFA, and 3) Diet
LO with linseed oil as a source of 18:3n-3. The lipid sources
were added at 45 g kg-1 (FO), 44.3 g kg-1 (KO) and 26.4 g kg-1

(LO), respectively. And the addition of palmitic acid were 0 g
kg-1, 0.7 g kg-1 and 18.6 g kg-1, respectively, to equalize the
total n-3 PUFA and lipid contents in three diets. The fatty acid
compositions of lipid sources and diets are shown in Table S1
and Table S2, respectively. The contents of n-3 LC-PUFA
(EPA and DHA) in the FO and KO diets were 9.13 and 9.23
mg g-1 (dry matter), respectively, and the content of 18:3n-3 in
the LO diet was 9.22 mg g-1 (Table S2). The diets were
prepared following the procedure described in detail
previously (Yuan et al., 2019). Briefly, all ingredients were
firstly ground into fine powder by ultra-fine pulverizer, then
passed through a screen cloth (178 mm). The ingredients were
thoroughly mixed with lipid sources and water in a Hobart
type mixer (F-26, Machine factory of South China University
of Technology, Guangzhou, China), and the mixture was
processed into pellets in two specifications (3.0 mm in
diameter and 10.0 mm in length; 5.0 mm in diameter and
15.0 mm in length) using a twin screw extruder (G-250,
Machine factory of South China University of Technology,
June 2022 | Volume 9 | Article 914590
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Guangzhou, China), then pellets were steamed for 30 min at
90°C in a constant temperature oven. After air-drying to
approximately 10% moisture, the feeding stuff were sealed in
vacuum-packed bags and stored at −20°C until used.
Proximate compositions of experimental diets were
determined following the methods of the Association of
Official Analytical Chemists (AOAC, 2006). Briefly,
moisture was determined by drying the samples to a
constant weight at 105°C. Crude protein content was
measured by using the Dumas combustion method directly
with a protein analyzer (FP-528, Leco, USA). Crude lipid
content was determined via petroleum ether extraction using
the Soxtec method (Soxtec System HT6, Tecator, Sweden).
Ash content was determined using a muffle furnace at 550°C
for 8 h.

Crab Rearing and Experimental Conditions
Swimming crab juveniles were sourced from a commercial
crab farm in Xiangshan, Ningbo, China. Prior to the start of
Frontiers in Marine Science | www.frontiersin.org 3
the feeding trial, the crabs were maintained in an indoor
rectangular cement pool (8.5 m × 3.0 m × 1.5 m) for
acclimation over 2 weeks during which time they were fed a
commercial feed containing 45 g kg-1 crude protein and 8 g kg-
1 crude lipid (Ningbo Tech-Bank Feed Co. Ltd., Ningbo,
China). The feeding trial was conducted at the Ningbo
Marine and Fishery Science and Technology Innovation
Base (Ningbo, China), and the procedures for crab culture
and daily management were conducted according to the
methods described in detail previously (Yuan et al., 2020).
Briefly, 120 uniformly sized and healthy swimming crab
juveniles (mean weight ± SE: 10.17 ± 0.12 g) were weighed
and randomly allocated into 120 individual plastic baskets
(35 cm × 30 cm × 35 cm) in a new cement pool (6.8 m × 3.8 m
× 1.7 m). Each treatment had four replicates, each consisting
of 10 crabs (10 plastic baskets), which placing in a line next to
each other in the cement pool. All of crabs were hand-fed once
per day at 17:00 with a ration of 6–8% of wet body weight.
Each crab was weighed every 2 weeks and the daily ration of
the feed was adjusted accordingly. The uneaten feed and feces
were removed with a nylon screen, and 60% of seawater in the
cement pool was exchanged daily to maintain water quality.
During the feeding trial, the seawater temperature ranged
from 28.5 to 32.1°C; the salinity was 24.5–28.1 g L-1; the
dissolved oxygen concentration was not less than 6.0 mg L-1;
and NH4-N concentration was lower than 0.05 mg L-1.

Sample Collection
At the termination of the feeding trial, crab in each plastic
basket was weighed and counted to calculate the survival,
percent weight gain (PWG), molting ratio (MR), specific
growth rate (SGR) and feed efficiency (FE). Before sample
collection, all crabs were fasted for 12 h. The crabs were placed
on ice and anesthetized, and hepatopancreas samples were
rapidly dissected out. A small portion of the hepatopancreas
(approximately 20 mg each crab) from 3 crabs per biological
replicate of each treatment were pooled into 1.5-mL RNAase-
free tubes (Axygen, USA) as one sample, immediately frozen
in liquid nitrogen, and stored at −80°C prior to analysis of
gene expression (n = 4 per treatment). The remainder of the
hepatopancreas (approximately 1.5 g each crab) from another
three crabs (1 g per crab) per biological replicate of each
group were dissected, collected and mixed as one sample
(n = 4 per dietary treatment) in a 5-mL microfuge tube,
then stored immediately at −80°C for further analysis. All
the determination and tests were repeated twice, and the
average of the two measured values were taken as the
final result.

Quantification of Fatty Acids
The fatty acid profiles of lipid sources and diets were determined
according to our previous method (Yuan et al., 2020). Briefly, the
samples were first treated by methyl esterification, then the fatty
acid methyl esters (FAMEs) were resuspended in 500 mL
n-hexane, finally separated and measured on a gas
chromatograph mass spectrometer (GC-MS, Agilent 7890B-
TABLE 1 | Formulation and analyzed proximate composition of experimental
diets (g kg-1, DM basis).

Item Dietary n-3 PUFA lipid sources

Fish oil Krill oil Linseed oil

Ingredients
Peruvian fish meal1 160.0 160.0 160.0
Soybean protein concentrate1 220.0 220.0 220.0
Soybean meal1 140.0 140.0 140.0
Casein1 90.0 90.0 90.0
Krill meal1 15.0 15.0 15.0
Wheat flour1 235.0 235.0 235.0
Fish oil2 45.0 0.0 0.0
Krill oil3 0.0 44.3 0.0
Linseed oil4 0.0 0.0 26.4
Palmitic acid5 0.0 0.7 18.6
Soybean lecithin1 20.0 20.0 20.0
Vitamin premix6 10.0 10.0 10.0
Mineral premix7 15.0 15.0 15.0
Ca(H2PO4)2

1 15.0 15.0 15.0
Choline chloride1 3.0 3.0 3.0
Sodium alginate1 32.0 32.0 32.0
Proximate composition (g kg-1)
Crude protein 455.8 454.9 456.2
Crude lipid 89.5 89.9 90.5
Ash 83.4 84.6 85.1
Moisture 99.6 95.1 94.3
1 Provided by Ningbo Tech-Bank Feed Co., Ltd. (Ningbo, China).
2 Purchased from Ningbo Tech-Bank Feed Co., Ltd. (Ningbo, China).
3 Purchased from Kangjing Marine Biotechnology Co., Ltd. (Qingdao, China).
4 Purchased from Longshang farm agricultural development Co., Ltd. (Gansu, China).
5 Palmitic acid was purchased from Yiji Chemical Co., Ltd. (Shanghai, China).
6 Vitamin premix (IU or g per kg premix): retinyl acetate 2,500,000 IU; cholecalciferol
500,000 IU; all-rac-a-tocopherol 25,000 IU; menadione 5.63 g; thiamine 11.25 g;
riboflavin 9.5 g; ascorbic acid 95 g; pyridoxine hydrochloride 10 g; cyanocobalamin
0.02 g; folic acid 2 g; biotin 0.375 g; nicotinic acid 37.5 g; D-Calcium pantothenate 21.5 g;
inositol 80 g; ethoxyquin (antioxidant) 0.5 g. All ingredients were diluted with corn starch to
1 kg.
7 Mineral mixture (g per kg premix): FeC6H5O7 4.57 g; ZnSO4·7H2O 9.43 g; MnSO4·H2O
(99%) 4.14 g; CuSO4·5H2O (99%) 6.61 g; MgSO4·7H2O (99%) 238.97 g; KH2PO 233.2
g4; NaH2PO4 137.03 g; C6H10CaO6·5H2O (98%) 34.09 g; CoCl2·6H2O (99%) 1.36 g. All
ingredients were diluted with corn starch to 1 kg.
June 2022 | Volume 9 | Article 914590
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5977A, Agilent Technologies, CA, USA) fitted with a fused-silica
ultra-inert capillary column (DB-WAX, 30 m × 250 mm internal
diameter, film thickness 0.25 mm, Agilent J & W Scientific, CA,
USA), with the following temperature program and column
conditions: the oven temperature 100°C, increasing at a rate of
10°C/min up to 200°C, held at 200°C for 5 min, then increasing
at 2°C/min up to 230°C and held at 230°C for 10 min, with a final
ramp from 230 to 240 at 10°C/min. The injection, interface and
ion source temperatures were adjusted to 250, 240 and 230°C,
respectively. High purity helium (99.999%) was used as the
carrier gas with a constant flow rate of 1.0 mL/min. 0.5 mL of
sample was injected in a 1: 20 split ratio by autosampler. The
acquisition of mass spectra data was carried out in fullscan mode
(mass rangem/z 40–500). The absolute quantification (mg g-1) of
each fatty acid was quantified by calculating the peak area ratio of
each fatty acid with that of the internal standard (methyl
tricosanoate) (ANPEL, Shanghai, China). The values were
represented as absolute concentration (mg g-1, dry matter).

Oxidation and Antioxidant
Parameters Assays
Hepatopancreas samples were homogenized in 9 volumes of ice-
cold physiological saline, then centrifuged at 4000 × g for 10 min
at 4°C (Eppendorf centrifuge 5418R, Germany) and protein
concentrations of homogenates were determined according to
the method of Bradford (1976) with a diagnostic reagent kit
(Coomassie protein assay dye; Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). The activity of total superoxide
dismutase (T-SOD) and the concentration of malondialdehyde
(MDA) were measured with reagent kits (Nanjing Jiancheng
Bioengineering Institute) based on the previous methods (Placer
et al., 1966; Zuo et al., 2013). Catalase (CAT) activity was
measured by the diagnostic reagent kit (Nanjing Jiancheng
Bioengineering Institute) following the method described by
Goth (1991). Superoxide radical scavenging activity was
detected by the nitrite method following the instruction of
reagent kit (Nanjing Jiancheng Bioengineering Institute)
(Oyanagui, 1984). Hydroxyl radical scavenging activity was
assayed by the Fenton reaction by monitoring the decrease in
H2O2 level using a reagent kit (Nanjing Jiancheng
Bioengineering Institute) (Moore et al . , 2006). The
concentration of 8-hydroxydeoxyguanosine (8-OHdG) was
assessed by the enzyme-linked immunosorbent assay following
the manufacturer’s instructions of kit (Nanjing Jiancheng
Bioengineering Institute) (Wu et al., 2017).

Hepatopancreas Mitochondria Isolation
and Purification
Mitochondria were isolated from hepatopancreas samples by the
differential centrifugation method with some modification
according to the manufacturer ’s instructions for the
mitochondria isolation kit (G006-1-1; Nanjing Jiancheng
Bioengineering Institute), and used for the determination of
mitochondrial complex activity, ATP levels and mitochondrial
membrane potential (Bustamante et al., 1977; Yuan et al., 2019).
Briefly, hepatopancreas samples (approximately 200 mg) were
Frontiers in Marine Science | www.frontiersin.org 4
rinsed with saline, minced in 1.5-mL pre-cooled lysis buffer,
homogenized in a glass homogenizer, and centrifuged at 800 × g
for 5 min at 4°C. The supernatant (0.5 mL) was transferred into a
new pre-cooled microfuge tube and centrifuged at 15,000 × g for
10 min at 4°C. The sedimented mitochondria were resuspended
in 0.2 mL rinse solution and centrifuged at 15,000 × g for 10 min
at 4°C. Finally, the resultant mitochondrial pellet was
resuspended in the appropriate buffer and stored at −80°C. All
operations were carried out on ice. The concentration of
mitochondrial protein was determined using a BCA protein
assay kit according to the manufacturer’s protocol (P0012;
Beyotime, Shanghai, China), and the data expressed as mg mL-1.

Mitochondrial Electron Transport Chain
Complex Activity Assays
The mitochondrial supernatants were used to determine the
activities of mitochondrial complexes I-V using mitochondrial
enzyme activity assay kits (Solarbio, Beijing, China) based on the
previous method (Kirby et al., 2007). In brief, the activity of
mitochondrial complex I was analysed using a Complex I
Activity Assay Kit (BC0515, Solarbio, Beijing, China) through
determining the NADH oxidation rate at 340 nm. The activity of
mitochondrial complex II was determined by detecting the 2,6-
dichloroindophenol reduction rate using a Complex II Activity
Assay Kit (BC3230, Solarbio, Beijing, China). The activities of
mitochondrial complex III and complex IV were measured by
detecting light absorption at 550 nm using Complex III Activity
Assay Kit (BC3240, Solarbio, Beijing, China) and Complex IV
Activity Assay Kit (BC0945, Solarbio, Beijing, China),
respectively. We use the Complex V Activity Assay Kit
(BC1445, Solarbio, Beijing, China) to measure the increasing
rate of phosphate radical, which reflected mitochondrial complex
V activity. The activities of mitochondrial complexes I-V were
presented as U mg-1 protein.

ATP Levels Determination
The ATP levels in hepatopancreas of swimming crab were
determined using ATP assay kit (A095-1-1; Nanjing Jiancheng
Bioengineering Institute) according to the protocol used
previously with some modification (Xu et al., 2017). Briefly,
hepatopancreas samples were homogenized in boiling double
distilled water (10%, w/v), boiled in a water bath for 10 min, and
then centrifuged at 4000 × g for 10 min at room temperature, and
the supernatant collected for later measurement. The
concentration of ATP was determined based on the
phosphomolybdic acid colorimetry method which quantified
phosphocreatine production at 636 nm (Spectramax M2,
Molecular Devices, USA) with data expressed as mmol mg-1 protein.

Mitochondrial Membrane Potential
Measurement
Mitochondrial membrane potential of purified mitochondria of
hepatopancreas was assessed using JC-1 mitochondrial
membrane potential assay kit (C2006; Beyotime, Shanghai,
China) based on the method described in detail previously
(Reers et al., 1995; Lauer et al., 2012). Briefly, the mitochondria
June 2022 | Volume 9 | Article 914590
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suspension solution (10 mL) and JC-1 working solution (90 mL)
were mixed in the 96-well microplate. After incubation for 1 hr at
20°C in the dark, fluorescence generated in the reaction mixture
was read (excitation/emission wavelength = 485/590 nm) using a
fluorescence microplate reader (Spectramax M2, Molecular
Devices, USA) and mitochondrial membrane potential (DYm)
expressed as × 103 U mg-1 mitochondrial protein.

NAD+ and NADH Quantification Assays
The NAD+ and NADH (reduced nicotinamide adenine
dinucleotide) concentrations in hepatopancreas of crabs were
determined using NAD+/NADH assay kit (S0175; Beyotime)
following the manufacturer’s protocol by measuring absorbance
at 450 nm and calculating according to the NADH standard
curve (Sun et al., 2019). Briefly, hepatopancreas samples
(approximately 40 mg) were homogenized in NAD+/NADH
extracting solution (400 mL), and then centrifuged at 12,000 ×
g for 10 min at 4°C, and the supernatant collected. The
supernatant samples were divided to measure NAD+

total (the
total of NAD+ and NADH) and NADH separately. A portion of
the supernatant was incubated for 30 min at 60°C to decompose
NAD+ and translate to NADH. Data were normalized to total
protein content as determined by the Bradford protein assay kit
(W042-1-1; Nanjing Jiancheng Bioengineering Institute).

MtDNA Copy Number Analysis
Hepatopancreas mitochondrial DNA (mtDNA) copy number
was determined as described previously (Hartmann et al., 2011;
Liao et al., 2016). The relative mtDNA copy number was
measured by quantitative real time PCR with primers for the
mitochondrial 16S rRNA gene and the nuclear b-actin gene. The
primer sequences of 16S rRNAwere CGCCTGTTTATCAAAAACAT
(forward primer) and CCGGTCTGAACTCAGATCACG (reverse
primer) (Dai et al., 2010). The primer sequences of b-actin were
TCACACACTGTCCCCATCTACG (forward primer) and
ACCACGCTCGGTCAGGATTTTC (reverse primer) (Cui et al.,
2010). Total DNA of hepatopancreas was extracted using the
FastPure Cell/Tissue DNA Isolation Mini Kit (DC102; Vazyme,
Nanjing, China) according to the manufacturer’s instruction.
Quantitative real time PCR was performed as described below.

Assay of Total RNA Extraction, and
Reverse Transcription and Quantitative
Real-Time PCR
Total RNA isolation, cDNA synthesis and quantitative real-time
PCR (qRT-PCR) were conducted based on the procedures as
described previously (Yuan et al., 2021). Total RNA of
hepatopancreas was extracted using RNA Isolater Total RNA
Extraction Reagent (R401-01; Vazyme), and cDNA was
synthesized by HiScript II Q RT SuperMix (R223-01; Vazyme).
Quantitative real-time PCR was conducted using ChamQ
Universal SYBR qPCR Master Mix (Q711-02; Vazyme) and
run on a Lightcycler 96 Real Time PCR system (Roche,
Switzerland). The specific primers were designed using the
online Primer3Plus program (http://www.bioinformatics.nl/
primer3plus), and synthesized by TSINGKE Biological
Frontiers in Marine Science | www.frontiersin.org 5
Technology (Beijing, China) (Table S3). The expression levels
of genes were calculated using the 2−DDt method (Livak and
Schmittgen, 2001). Gene expression was normalized to b-actin
(housekeeping gene) expression with the FO sample as
calibration control.

Statistical Analysis
Results are presented as means ± SE (n = 4). Before statistical
analysis, the data were first checked for normality of
distribution and homogeneity of variance by using the
Kolmogorov-Smirnoff and Levene’s tests, respectively. One-
factor analysis of variance (ANOVA) with Tukey’s multiple
range post-hoc test were used to analyze the data. The
statistical analysis was conducted by using SPSS software
version 22 for Windows (IBM, Chicago, USA), with P < 0.05
considered as being significant.
RESULTS

Growth Performance
The results of growth performance have shown that crabs fed the
diet supplemented with fish oil and krill oil had a significantly
higher PWG, survival, MR, SGR and FE than those fed the diet
contained with linseed oil (P < 0.05). Furthermore, it was
interesting to note that krill oil was significantly better than
fish oil in promoting the growth of swimming crab, which was
reflected in each growth performance index (P < 0.05)
(Figure 1).

Oxidative Stress in the Hepatopancreas
Tota l supe rox ide d i smuta s e (T-SOD) ac t i v i t y in
hepatopancreas was significantly higher in crabs fed the
KO and LO diets than that in crabs fed the FO diet (P <
0.05) (Figure 2A). The concentration of malondialdehyde
(MDA) was significantly lower in crabs fed KO diet than
crabs fed the other diets (P < 0.05), with the FO group highest
(Figure 2B). Crabs fed the diet supplemented with krill oil
had significantly higher activities of catalase (CAT),
superoxide radical scavenging and hydroxyl radical
scavenging than those fed the diets containing fish oil and
linseed oil (P < 0.05) (Figures 2C–E). The levels of
8-hydroxydeoxyguanosine (8-OhdG) in hepatopancreas
were significantly lower in crabs fed the KO diet than in
crabs fed the FO diet (P < 0.05) (Figure 2F).

Mitochondrial Electron Transport Chain
Complex Activity
The activities of mitochondrial complex I and complex III were
significantly higher in crabs fed the FO and KO diets than in
crabs fed the LO diet (P < 0.05) (Figures 3A, C), and crabs fed
diet containing krill oil had a significantly higher activity of
mitochondrial complex II than crabs fed the other diets
(P < 0.05) (Figure 3B). Although the activity of mitochondrial
complex IV was not affected by dietary lipid sources (P > 0.05), it
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showed a trend with FO > KO > LO (Figure 3D). A similar
pattern was observed with mitochondrial complex V activity,
which was significantly higher in crabs fed the FO diet than in
Frontiers in Marine Science | www.frontiersin.org 6
crabs fed LO (P < 0.05) with crabs fed KO showing an
intermediate level not significantly different to either FO or LO
(P > 0.05) (Figure 3E).
B C

D E F

A

FIGURE 2 | Effects of different dietary lipid sources on indicators of oxidative stress in the hepatopancreas of swimming crab. Values are mean ± SE (n = 4). Bars with different
superscripts represent significant difference by one-factor ANOVA followed by a Tukey’s multiple range post-hoc test (P < 0.05). (A) T-SOD, total superoxide dismutase; (B)MDA,
malondialdehyde; (C) CAT, catalase; (D) Superoxide radical scavenging activity; (E) Hydroxyl radical scavenging activity; (F) 8-OhdG, 8-hydroxydeoxyguanosine.
B C

D E F

A

FIGURE 1 | Growth performance and feed utilization of swimming crab fed with different dietary lipid sources. Data are presented as the mean ± SE of four
replicates (n = 4). Values in the same row with different superscripts are significantly different (P < 0.05). (A) IBW, initial body weight; (B) PWG (percent weight gain,
%) = 100 × [final body weight (g) − initial body weight (g)]/initial body weight (g); (C) Survival (%) = 100 × (final number of crab) / (initial number of crab); (D) MR
(molting ratio) = 2 × the number of molting/(final number of crab + initial number of crab); (E) SGR (specific growth rate, % d-1) = 100 × [Ln (final body weight) − Ln
(initial body weight)]/days; (F) FE (feed efficiency) = weight gain (g, wet weight)/feed consumed (g, dry weight).
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ATP Level
The ATP level of the hepatopancreas in the FO group was
significantly higher than other groups (P < 0.05), with the ATP
level in crabs fed the KO diet being intermediate, and lowest in
the LO group (Figure 4A).
Mitochondrial Membrane Potential
Crabs fed the diets formulated with fish and krill oils had
significantly higher mitochondrial membrane potentials in the
hepatopancreas than crabs fed the diet containing linseed oil
(P < 0.05), while no statistic differences between the FO and KO
groups (Figure 4B).
NAD+ and NAD+/NADH Ratio
The NAD+ level of the hepatopancreas in crabs fed the FO
diet were significantly higher than that in crabs fed other
diets (P < 0.05) (Figure 4C), followed by KO group, and
lowest in the LO group. The NAD+/NADH ratio of the
hepatopancreas in FO and KO treatments were significantly
higher than those in LO group (P < 0.05) (Figure 4D),
while no statistic differences between the FO and KO
groups (P > 0.05).
MtDNA Copy Number
The relative mtDNA copy number was significantly higher in the
FO and KO groups compared to the LO group (P < 0.05),
whereas no significant difference was found between the FO and
KO treatments (P > 0.05) (Figure 4E).
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Relative mRNA Expression of Genes
Related to Lipolysis, Electron Transport
Chain and Energy Metabolism
Dietary lipid sources significantly influenced the expression
levels of genes related to lipolysis, electron transport chain and
energy metabolism of hepatopancreas (P < 0.05). It was found
that the expression levels of lipoprotein lipase (lpl), carnitine
palmitoyltransferase 1 (cpt1) and carnitine palmitoyltransferase
2 (cpt2) mRNA were significantly higher in crabs fed KO than in
crabs fed FO (P < 0.05) (Figure 5A). Furthermore, the mRNA
abundances of genes related to the electron transport chain
complexes [NADH dehydrogenase subunit 1 (nd1), succinate
dehydrogenase subunit c (sdhc)] were higher in crabs fed KO
than in crabs fed the other diets (P < 0.05). The expression levels
of cytb, cox I and cox III were significantly higher in crabs fed KO
compared to crabs fed LO (P < 0.05), while no significant
differences were found between crabs fed KO and FO
(P > 0.05) (Figure 5B). Furthermore, the mRNA abundances
of ATP synthase 6 (Atpase6), silent information regulator 1(sirt1)
and silent information regulator 3 (sirt3) were significantly
higher in crabs fed KO than in crabs fed the other diets (P <
0.05). The expression levels of nuclear respiratory factor 1 (nrf1)
in crabs fed the FO and KO diets were significantly higher than
in crabs fed the LO diet (P < 0.05) (Figure 5C).
DISCUSSION

In brief, crabs fed the diets containing with krill oil had a
significantly higher growth performance and molting ratio
B CA

D E

FIGURE 3 | Effects of dietary n-3 PUFA lipid sources on activities of mitochondrial electron transport chain complexes in the hepatopancreas of swimming crab.
Values are mean ± SE (n = 4). Bars with different superscripts represent significant difference by one-factor ANOVA followed by a Tukey’s multiple range post-hoc
test (P < 0.05). (A) Complex I; (B) Complex II; (C) Complex III; (D) Complex IV; (E) Complex V.
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than those of crabs fed diets supplemented with linseed oil and
even the fish oil. Actually, a recent lipidomic study of
hepatopancreas of swimming crab from our research team has
evaluated and tested the hypothesis that different n-3 PUFA lipid
sources cause different growth performance of swimming crab
from the perspective of the lipid molecular species and the
stereospecific position of individual fatty acid on the glycerol
backbone (Yuan et al., 2021). The previous study has
demonstrated that dietary lipid and fatty acid sources could
significantly affect the stereospecific position of individual fatty
acids on the glycerol backbone of triglyceride (TG),
phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
and further alter the fluidity of cell membranes and impact
metabolic reactions (Yuan et al., 2021). Furthermore, the
transcriptomics based on high-throughput sequencing was
used to investigate the molecular mechanism by which krill oil
promotes the growth and molting of the swimming crab (Fang
et al., 2021). That research has showed that swimming crab fed
the diet supplemented with krill oil can promote the growth
performance and molting through enhancing the transport of
glucose, lipids and fatty acids, and meanwhile up-regulating the
expression levels of genes related to molting, immunity and
energy metabolism (Fang et al., 2021). Here, the present study
attempted to explain why dietary krill oil promoted the growth
and molting of swimming crab from the perspective of
mitochondrial metabolic adaptation and energy metabolism.
The possible mechanism may be through improving the
mitochondrial metabolic responses and maintaining the energy
homeostasis after molting of swimming crab, and further
increasing the molting ratio.
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Hepatopancreas, as the main metabolic organ of crustaceans,
carries out complex and varied metabolic activities, with one of
the most crucial being lipid catabolism and mitochondrial fatty
acid b-oxidation, which are key for producing the energy
required to drive growth, molting, reproduction and other
energy-consuming activities (Wang et al., 2014). In this way,
hepatopancreas is arguably the tissue most sensitive to dietary
lipid sources or fatty acids, just as the liver is in fish and
mammals (Xu et al., 2020). Therefore, in the present study,
hepatopancreas was considered to be the ideal organ to explore
the effects of dietary lipid sources and fatty acids on
mitochondrial metabolic adaptation in swimming crab.

The continuous energy supply for metabolic activities is based
on the ability of cells to sense, metabolize and convert nutrients
into chemical energy viamitochondria, the primary organelle for
energy generation (Seungyoon and Pekkurnaz, 2018).
Furthermore, mitochondria, as the metabolic center of cellular
pathways including the citric acid cycle (Martıńez-Reyes et al.,
2016), ROS generation (Sena and Chandel, 2012) and calcium
signaling (Raffaello et al., 2016), play a vital role in energy
homeostasis in the organism (Cogliati et al., 2018). Much of
the mitochondrial energy conversion is dependent upon the
activity of electron transport chain (ETC), which is composed
of 5 protein complexes including NADH dehydrogenase
(complex I), succinate-ubiquinone oxidoreductase (complex
II), ubiquinol-cytochrome c oxidoreductase (complex III),
cytochrome c oxidase (complex IV) and ATP synthase
(complex V), the basis of ATP production during oxidative
phosphorylation (OXPHOS) (Duchen, 2004). Complex I, as
the initiation complex and the major rate-limiting enzyme of
B C

D E

A

FIGURE 4 | Effects of different dietary lipid sources on the mitochondrial metabolic adaptation of swimming crab. Values are mean ± SE (n = 4). Bars with different
superscripts represent significant difference by one-factor ANOVA followed by a Tukey’s multiple range post-hoc test (P < 0.05). (A) ATP, adenosine triphosphate;
(B) DYm, mitochondrial membrane potential; (C) NAD+, nicotinamide adenine dinucleotide; (D) NAD+/NADH, the ratio of NAD+ (nicotinamide adenine dinucleotide)
and NADH (reduced nicotinamide adenine dinucleotide); (E) Relative mtDNA content, relative mtDNA copy number (mtDNA/nDNA).
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the respiratory chain electron transport, is primarily responsible
for transfer electrons from matrix NADH to ubiquinone (Zhao
et al., 2019). Complex II, as a component of the ETC and Krebs
cycle, plays an important role in serving as a bridge between the
physiological metabolism and OXPHOS (Cecchini, 2003).
Complex III is considered to be required for the hypoxic
stabilization of hypoxia-inducible factors (HIF) (Guzy et al.,
2005). Complex IV, as the terminal enzyme of the ETC, can
transfer electrons from cytochrome c to O2 and reduce the
oxygen to H2O (Soro-Arnaiz et al., 2016). Complex V can
phosphorylate ADP to ATP through the energy generated by
the gradient of the proton electrochemical (Jonckheere et al.,
2012). According to the data of present study, crabs fed the KO
diet showed a high activity of ETC complexes and a coordinated
upregulation of nuclear-encoded genes regulating mitochondrial
ETC. It was similar to the results of a previous study in mice
which the genes involved in the synthesis of mitochondrial
OXPHOS proteins were up-regulated in mice fed the diet
supplemented with krill oil compared to dietary fish oil (Burri
et al., 2011). Furthermore, a research has also reported that
Frontiers in Marine Science | www.frontiersin.org 9
dietary krill oil supplementation could improve the complex
activities of rat when it treated with high-fat diet (Ferramosca
et al., 2015). The possible mechanism may be the high levels of
EPA and DHA structured phospholipids in krill oil, on the one
hand, phospholipids, the important components of the
mitochondria system, can directly impacts the mitochondrial
function (Mejia and Hatch, 2016); on the other hand, high
contents of EPA and DHA structured phospholipids
supplementation can increase the levels of EPA and DHA in
the sn-2 positions of phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) molecules and may further
promote the fluidity of mitochondrial membranes and its
function (Yuan et al., 2021).

ATP, as the energy currency, is mainly generated by
mitochondrial ATP synthase, with the energy produced by the
hydrolysis of ATP to ADP and phosphate used to fulfill
the requirement of cells (Hardie et al., 2012). In addition, the
mitochondrial membrane potential (DYm) is generated by
proton pumps (i.e. complexes I, III and IV) and can also serve
as an intermediate form of energy storage (Zorova et al., 2018).
Indeed, the mitochondrial membrane potential is a prerequisite
to drive mitochondrial oxidative phosphorylation and ATP
synthesis, and stability of the mitochondrial membrane
potential is conducive to maintaining normal physiological
functions of cells (Izyumov et al., 2004). In the present study,
the mitochondrial membrane potential was significantly higher
in crabs fed FO and KO compared to crabs fed LO, which may
indicate a higher ability of ATP synthesis and viability of
mitochondria in swimming crab of FO and KO groups. In
addition to the above, nicotinamide adenine dinucleotide
(NAD+), a central and universal metabolic cofactor, not only
participates in the production of ATP and the maintenance of
mitochondrial membrane potential, but also activate sirtuins,
and maintains mitochondrial fitness (Stein and Imai, 2012;
Cantó et al., 2015). Furthermore, an optimal NAD+/NADH
ratio is also crucial for mitochondrial function (Ying, 2008;
Houtkooper et al., 2010). The present study showed that crabs
fed the FO and KO diets displayed a significantly higher level of
NAD+ and NAD+/NADH ratio in comparison with crabs fed
diet LO, which indicated greater mitochondrial function.

The oxidative phosphorylation capacity of mitochondria is
regulated by the concordant expression of mtDNA and nDNA
genes and, therefore, mitochondrial DNA copy number and
expression are essential to maintain mitochondrial function
(Jeng et al., 2008). While the copy number reflects the state of
energy metabolism of mitochondria, mitochondria are also the
main intracellular source and immediate target of ROS (Lee and
Wei, 2005). Due to the lack of histone protection and the limited
capacity for repair of DNA damage, mtDNA is vulnerable to
ROS and this can affect ETC function (Lee and Wei, 2005).
However, attenuated mitochondrial ETC function can be
compensate and normal energy homeostasis maintained by
increased mitochondria copy number, which mitigates the
mitochondrial dysfunction resulting from decreased
mitochondrial content and lower mRNA expression of
mtDNA (Bohr, 2002; Lee and Wei, 2005). Consistent with the
B
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FIGURE 5 | Effects of dietary n-3 PUFA lipid sources on the expression
levels of genes related to lipolysis (A), electron transport chain complexes
(B) and energy metabolism (C) in the hepatopancreas of swimming crab
(Portunus trituberculatus). Values are mean ± SE (n = 4). Bars with different
superscripts represent significant difference by one-factor ANOVA followed by
a Tukey’s multiple range post-hoc test (P < 0.05). Atpase6, ATP synthase 6;
cox I, cytochrome c oxidase subunit I; cox II, cytochrome c oxidase subunit II;
cox III, cytochrome c oxidase subunit III; cpt, carnitine palmitoyltransferase;
cytb, cytochrome b; hsl, hormone-sensitive lipase; lpl, lipoprotein lipase; nd1,
NADH dehydrogenase subunit 1; nrf1, nuclear respiratory factor 1; sdhc,
succinate dehydrogenase subunit c; sirt, silent information regulator.
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above statement, crabs fed diets FO and KO displayed a
significant increase in the relative content of mtDNA
compared to crabs fed LO. Meanwhile, organisms have
developed antioxidant defence mechanisms (such as T-SOD,
CAT and GSH) to cope with the ROS produced by aerobic
metabolism and thus reduce oxidative stress (Meng et al., 2014;
Ren et al., 2017). High dietary n-3 LC-PUFA may induce
increased lipid peroxidation and MDA (an important indicator
for oxidative damage induced by ROS) owing to the high degree
of unsaturation in the aliphatic tail (Liao et al., 2015). In the
present study, crabs fed the FO diet had a significantly lower
activity of T-SOD and a significantly higher content of MDA
than those fed the other diets, which indicated that high levels of
dietary n-3 LC-PUFA (especially EPA and DHA) could impose a
peroxidation burden on swimming crab. However, crabs fed KO
had the highest T-SOD activity, superoxide radical scavenging
activity and hydroxyl radical scavenging activity as well as the
lowest levels of MDA and 8-OHdG in hepatopancreas. This may
be related to the high level of astaxanthin in krill oil, which is
regarded as an effective antioxidant against lipid peroxidation
and oxidative stress (Ambati et al., 2014). Many studies have
shown that astaxanthin can protect mitochondrial redox state
and functional integrity from oxidative stress (Wolf et al., 2010;
Lee et al., 2011; Kim and Kim, 2018). Thus, dietary krill oil could
Frontiers in Marine Science | www.frontiersin.org 10
reduce the negative effects of high level of n-3 LC-PUFA,
promote the capacity against the lipid peroxidation and
prevent a condition of oxidative damage, and further
ameliorate the mitochondrial function.

Mitochondria fatty acid b-oxidation is the major pathway of
fatty acid catabolism in the cells (Tocher, 2003). The carnitine
palmitoyltransferase system, as the most important system in the
process of fatty acid b-oxidation, plays an irreplaceable role in the
b-oxidation of long chain fatty acids (LCFA) (Tocher, 2003;
Lopes-Marques et al., 2015). CPT1, a rate-limiting regulatory
enzyme in mitochondrial fatty acid b-oxidation, can participate
in catalyzing the synthesis of long-chain fatty acylcarnitine
(Kerner and Hoppel, 2000). Then CPT2 can break down the
long-chain fatty acylcarnitine into the long-chain fatty acids with
the liberation of carnitine (Glatz et al., 2010). In our previous
comparative transcriptomic study of hepatopancreas of
swimming crab, the expression level of cpt1 of hepatopancreas
was significantly up-regulated by dietary krill oil compared to
fish and linseed oils, which was consistent with the result of
present study (Fang et al., 2021). One study on tiger puffer
(Takifugu rubripes) has reported that dietary astaxanthin
supplementation could significantly up-regulate the expression
level of cpt1, and further enhance the fatty acid b-oxidation in
fish (Liao et al., 2018). Furthermore, it has been shown that
dietary astaxanthin can enhance the function of CPT1 through
the accumulation of astaxanthin on the mitochondrial
membrane (Takahashi et al., 2004). However, more researches
are needed to elucidate the specific mechanism.

Sirtuins, as the conserved protein NAD+-dependent
deacylases, plays an important role in the regulation of cellular
processes including cell proliferation, gene expression and
apoptosis (Poulose and Raju, 2015). In addition, sirtuins have
been proved to be not only the protector of cells against
metabolic stresses but also the important energy status sensors
which were sensitive to the diet and themselves regulated by diet
and environmental stress (Chang and Guarente, 2014). Over past
decades, accumulating evidence has indicated that SIRT1 is an
essential regulator of systemic energy homeostasis (Li, 2013).
The result of the gene expression has showed that crabs fed the
diet supplemented with krill oil can significantly up-regulate the
expression level of sirt1, and may further improve the level of
energy homeostasis. Furthermore, it was also found that
significantly up-regulation of sirt3 in KO group compared to
other groups. SIRT3, as a regulator of mitochondrial energy
metabolism, can deacetylate and activate various target
substrates in the oxidation of fatty acids and further maintain
the ATP levels (Ahn et al., 2008). Nuclear respiratory factor 1,
also known as nrf1, encodes a protein that homodimerizes and
directly regulates the expression of nuclear genes encoding
subunits of the respiratory complexes, indirectly regulating the
three mitochondrial-encoded COX subunit genes for respiration,
mitochondrial DNA transcription and replication (Gleyzer et al.,
2005; Wang et al., 2006). High expression of nrf1 in crabs fed the
KO diet demonstrated a positive effect of krill oil on the up-
regulation of genes and pathways involved in hepatopancreas
mitochondrial ETC and energy metabolism.
FIGURE 6 | Schematic of dietary krill oil greatly enhances the growth of
swimming crab via promoting the mitochondrial metabolic adaptation and
energy homeostasis.
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CONCLUSION

In conclusion, the results showed that compared with linseed and
fish oils, krill oil significantly promoted the growth and molting
of juvenile swimming crab, increased activities of ETC
complexes, the membrane potential, NAD+ level, NAD+/
NADH ratio and the copy number of mitochondrial DNA, as
well as up-regulated the expression levels of genes related to
lipolysis, ETC and energy metabolism. Furthermore, dietary krill
oil also specifically improved the ability for scavenging free
radicals produced in the process of physiological metabolism,
reduced the level of lipid peroxides and the degree of DNA
oxidative damage, mitigated the damage to mitochondrial ETC
function caused by lipid peroxidation, and improved the health
status of swimming crab. Overall, results of the present study
clearly suggested that dietary krill oil promoted the molting and
growth via enhancing the mitochondrial metabolic adaptation
and ameliorating the energy homeostasis (Figure 6).
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GLOSSARY

ADP adenosine diphosphate
ALA a-linolenic acid
ATP adenosine triphosphate
Atpase6 ATP synthase 6
CAT catalase
cox I cytochrome c oxidase subunit I
cox II cytochrome c oxidase subunit II
cox III cytochrome c oxidase subunit III
cpt carnitine palmitoyltransferase
cytb; cytochrome b
DHA docosahexaenoic acid
EPA eicosapentaenoic acid
ETC electron transport chain
FAMEs fatty acid methyl esters
FE feed efficiency
GC-MS gas chromatograph mass spectrometer
HIF hypoxia-inducible factors
hsl hormone-sensitive lipase

(Continued)
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LC-PUFA long-chain polyunsaturated fatty acids
lpl lipoprotein lipase
MDA malondialdehyde
MR molting ratio
mtDNA mitochondrial DNA
MUFA mono-unsaturated fatty acid
NAD+ nicotinamide adenine dinucleotide
NADH reduced nicotinamide adenine dinucleotide
nd1 NADH dehydrogenase subunit 1
nrf1 nuclear respiratory factor 1
OXPHOS oxidative phosphorylation
PUFA polyunsaturated fatty acid
PWG percent weight gain
ROS reactive oxygen species
sdhc succinate dehydrogenase subunit c
SFA saturated fatty acid
SGR specific growth rate
sirt silent information regulator
T-SOD total superoxide dismutase
8-OhdG 8-hydroxydeoxyguanosine
DYm mitochondrial membrane potential
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