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Pulsed signal trains comprising clicks, buzzes, and burst-pulses play important

roles in the life activities of odontocetes, but they have not been distinguished

in Indo-Pacific humpback dolphins. Underwater vocalizations of this species

were recorded from 27 September to 2 October 2019 in the Beibu Gulf, South

China Sea. Pulsed signal trains were detected with variations in the pulsed

signal number (range of 6–76), mean inter-pulse interval (IPIs_m: 0.1–315 ms),

and mean duration (D ranged from tens to thousands of milliseconds). Principal

component analysis and hierarchical cluster analysis based on six acoustic

parameters in the pulsed signal trains identified three categories of trains

designated as clicks, burst-pulses, and buzzes. Buzzes and burst-pulses

(different from those described in previous research) were detected for the

first time in Indo-Pacific humpback dolphins in China. The results indicated that

the IPIs_mwas longest for clicks but shortest for buzzes, and the D values were

longer for both clicks and burst-pulses than buzzes. The three train types could

be identified based on the IPIs_m, with threshold values of 4.9 and 15.5 ms. The

significant variations in the three vocalization types were related to surface

behaviors, and buzzes could have a special function in foraging by this species,

thereby requiring further research. These findings may facilitate future

quantitative evaluations of the echolocation performance in wild Indo-Pacific

humpback dolphins and provide important guidance regarding acoustic

observations and the identification of this species.
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burst-pulse, buzz, classification, click, foraging, Indo-Pacific humpback dolphin,
pulsed signal train, social function
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Introduction
During their long-term adaptation to marine environments

with limited visibility, odontocetes can acquire information about

the underwater environment through sound (Allen et al., 2018;

Jiang et al., 2020; Cusano et al., 2022). They generally produce

pulsed signals that form trains to allow the fine-grained

discrimination of targets (Au, 1993). Studies have demonstrated

that many odontocetes use three main types of pulsed signal

trains, which are commonly referred to as clicks, buzzes, and

burst-pulses, and all are high frequency with short repetition

intervals and high pulse repetition rates (Lammers et al., 2004;

Madsen and Wahlberg, 2007).. Clicks comprise a series of higher-

frequency pulses, which have functions in echolocation, and they

are mainly used for navigation and localization. Buzzes involve a

rapid increase in the pulse repetition rate, and their characteristics

generally vary with the distance from prey and prey size

(Sarnocińska et al., 2020). In recent years, the function of buzzes

has extended into the social realm, not just during foragings, such

as courtship activity and mother/calf discipline (Herzing and dos

Santos, 2004; Herzing, 2004; Martin et al., 2019). Burst-pulses are

generally regarded as functional signals in intraspecific

communication (Lammers et al., 2004; Yoshida et al., 2014;

Martin et al., 2018; Sørensen et al., 2018).

Martin et al. (2018) showed that three pulsed signal trains

produced by Hector’s dolphin could be distinguished according to

their inter-pulse intervals (IPIs). The IPIs of clicks were more than

10 ms, and they could be further divided into narrowband and

broadband pulses (Morisaka et al., 2011). The IPIs of buzzes were

less than 10 ms, where they started below 10 ms and ended above

10ms (Griffin et al., 1960). The IPIs of burst-pulses usually started,

followed, and ended at less than 10 ms (Lammers et al., 2004;

Martin et al., 2018). Au (1993) concluded that the clicks and

burst-pulses of odontocetes mainly differ in terms of their IPIs.

Indo-Pacific humpback dolphins (Sousa chinensis) are

medium-sized delphinids (adult body length of 2.0–2.5 m), which

are mainly distributed in the Western Pacific and Indian Oceans

(Folkens and Reeves, 2002; Jefferson, 2000; Shirihai et al., 2006;

Parra et al., 2004; John and Yang, 2009; Zhang et al., 2011). In

China, there are several distinct currently recognized geographic

populations, including Xiamen Bay, the Shantou waters, the eastern

Taiwan Strait, the Pearl River Delta region, Sanniang Bay, Leizhou

Bay, the Beibu Gulf, and the western Hainan coastal waters (Wang

et al., 2014; Li et al., 2015). Indo-Pacific humpback dolphins were

recently assessed for The IUCN Red List of Threatened Species in

2015 and listed as Vulnerable (Jefferson et al., 2017).

Pulsed signals play the same important roles for Indo-Pacific

humpback dolphins, but few studies have investigated the pulsed

signals produced by this species (Li et al., 2013; Soto et al., 2014;

Li et al., 2015; Jayathilaka and Arulananthan, 2019) and none
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have classified their signal trains using a quantitative approach.

The pulsed signal trains that are collectively referred to as clicks

last 0.21–15.3 s (Soto et al., 2014), and the duration of each pulse

is tens of microseconds (Niu et al., 2012). The IPIs of clicks are

3.3–349.2 ms (Wang et al., 2014). The Indo-Pacific humpback

dolphins continue to increase the pulse repetition rate as the

distance to the target decreases (Goold and Jefferson, 2004; Sims

et al., 2012). Burst-pulses by Indo-Pacific humpback dolphins

were recorded in Morton Bay, Southeast Queensland, Australia

(Van Parijs and Corkeron, 2001; Soto et al., 2014), and they were

divided into two types comprising barks and quacks (Van Parijs

and Corkeron, 2001). However, according to phylogenetic

analyses of mitochondrial and nuclear DNA, the population of

Australian humpback dolphins (named Sousa sahulensis) is

genetically distinct and possibly a different species compared

with those found in China and Indonesia (Frere et al., 2011;

Mendez et al., 2013).

In the present study, pulsed signals by Indo-Pacific

humpback dolphins were recorded in Beibu Gulf of the South

China Sea. The parameters were determined for the pulsed

signal trains, and the different types were identified. We then

selected a criterion for classifying the pulsed signal trains and

assessed the function of each type.
Materials and methods

Sound collection

Underwater acoustic recordings of Indo-Pacific humpback

dolphins were made during the daytime from 27 September to 2

October 2019, in Beibu Gulf, South China Sea. The observation

point is indicated by a red five-pointed star (21°14′N, 109°29′E)
in Figure 1. The acoustic recordings were acquired at water

depths of 7–17 m. During the observation period, the water

temperature was 23°CC–30°CC and the sea state was 0–1.

Underwater sounds were recorded using a high-frequency

intelligent hydrophone icListen (Integrated System Ltd.) (flat

frequency response: 10 Hz to 200 kHz; sensitivity: (170 ± 6) dB

(0 dB ≅ 1 V/mPa); sampling rate: 512 kHz; and resolution: 24 bit).

The survey vessel is a 12-m fishing boat. During the observations,

two experienced observers searched for targets at the bow of the

boat. When targets were found, the boat approached in order to

identify the species, estimate the school size, conduct behavioral

observations, and make acoustic recordings. The boat stopped

within 100 m of the dolphins, before turning off the engine and

placing the hydrophone down the bow. The hydrophone was

placed in the water at a depth of 1–4 m to make the recordings.

Visual observations of behaviors (Henderson et al., 2012) and

group size information were collected at the same time as the

sound recordings. A group was defined as either (1) a single
frontiersin.org
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animal or (2) any collection of dolphins where a member was

within 15 m of others, andmore than half of the animals exhibited

the same behavior (Van Parijs et al., 2002; Hartman et al., 2008).

Surface behaviors were recorded within each group focal followed

by a single observer at as consistent an interval period as possible

(e.g., 1 min, or upon the next surfacing if the group was

underwater), and classified as milling, foraging, traveling,

socializing, or trawlers. During the entire observation period,

more than 10 Indo-Pacific humpback dolphins presented at the

surface within 20 m of the recording site, and no other species

were observed in the study area. Distances were estimated

manually and recorded when the dolphins were observed.

However, the sexes and exact locations of the calling dolphins

were unknown.
Sound analysis

In total, 665 audio files (50 GB) were acquired from the

observations. Only files with a recording distance less than 50 m

were selected for analysis. Data processing was conducted in the

following four steps.
(1) Detection of pulsed signals
Pulsed signals were visually detected using Adobe Audition

CC 2020 (Adobe Systems Inc., San Jose, CA, USA). The pulsed

signal trains were intercepted and saved as separate files

according to the following criteria: signals with clear contours

in the spectrogram, i.e., a high signal-to-noise ratio (> 10 dB),

and non-overlapping signal trains.
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(2) Extraction of acoustic parameters
The parameters of each pulsed signal train were extracted

with a custom-designed program in MATLAB version 2020b

(The MathWorks Inc., Natick, MA, USA), specifically the mean

peak frequency (Fp_m), mean of −3-dB bandwidth (BW−3

dB_m), mean −10-dB bandwidth (BW−10 dB_m), mean IPI

(IPIs_m), pulsed signal number (NumP), and duration (D)

(Table 1 summarizes the acoustic parameters of the pulsed

signals and trains). It should be noted that all of the acoustic

parameters were derived from the received signals.
(3) Classification of pulsed signal trains
Principal component analysis (PCA) and hierarchical

cluster analysis (HCA) were conducted to identify the train

types using MINITAB 17.0 (The Minitab LLC Inc., PA, USA).

PCA was used to reduce the number of train parameters, and

HCA was performed based on the PCA results with eigenvalues

greater than 1. The two main inspection criteria for HCA

comprised belonging to a category with more than 80%

similarity and the number in each category exceeding 10. All

train types were then checked again by visual inspection of the

spectrograms to assess the validity of the train type

classifications generated by HCA.
(4) Collection of statistics for each train type
and corresponding behavioral information

A specific classification standard was proposed to distinguish

the train types.
FIGURE 1

Map of the study area. The red five-pointed star represents the location where sound recordings were made of Indo-Pacific humpback dolphins
in the Beibu Gulf, South China Sea (outlined in the red box on the left-hand side of the map).
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Results

In total, 850 pulsed signal trains produced by Indo-Pacific

humpback dolphins were obtained, which contained 27,000

pulsed signals. All of the trains were high frequency

(maximum of Fp_m > 180 kHz). The D values of the trains

had a wide dynamic range from tens to thousands of

milliseconds. The variations in the NumP and IPIs_m were

significant within the trains (NumP ranged from 6 to 76 and

IPIs_m from 0.1 to 315 ms).

PCA was performed based on the six acoustic parameters

obtained for the trains, and three principal components (PCs)

were determined, which together explained 99.5% of the

variance in the results (see Table 2). PC1 explained 40.06% of

the variance, and it was mainly related to two parameters

(IPIs_m and D). PC2 explained 35.91% of the variance, and it

was strongly correlated with three frequency parameters (Fp_m,

BW−3 dB_m, and BW−10 dB_m). PC3 explained 23.62% of the
Frontiers in Marine Science 04
variance, and it was most strongly correlated with the NumP.

Remarkably, there were no correlations between the three PCs.

HCA was used to cluster the three extracted PCs and a

dendrogram (Figure 2) was obtained from the HCA results.

Three main clusters were determined all with similarity

exceeding 95%.

Based on the HCA results and further visual examination,

the pulsed signal trains of Indo-Pacific humpback dolphins in

Beibu Gulf were identified as belonging to three train types:

clicks, burst-pulses, and buzzes. The designations of these train

types are consistent with those used in previous studies of

vocalizations by odontocetes (Yoshida et al., 2014; Martin

et al., 2018; Sorensen et al., 2018). Examples of each type of

pulsed signal train are shown in Figure 3.

Descriptive statistics for the acoustic parameters for each

train type are presented in Table 3. Clicks had the widest ranges

in terms of several parameters (Fp_m, BW−3 dB_m, BW−10 dB_m,

and NumP), which covered those of the other types. The D
TABLE 2 Loadings by factor according to principal component analysis for the six acoustic parameters (pulsed signal trains) determined in
underwater vocalizations by wild Sousa chinensis in Beibu Gulf, South China Sea.

Factor PC1 PC2 PC3

IPIs_m 0.76 −0.22 0.27

D 0.68 −0.20 0.16

Fp_m −0.31 0.74 0.18

BW−3 dB_m −0.25 0.72 0.13

BW−10 dB_m −0.11 0.69 0.07

NumP 0.34 0.12 0.79

Variance (%) 40.06 35.91 23.62

Cumulative (%) 40.06 75.97 99.59
frontiers
Significant loading values (≤−0.60 or ≥0.60) are shown in bold.
TABLE 1 Descriptions of acoustic parameters of pulsed signals and pulsed signal trains produced by Sousa chinensis in Beibu Gulf, South China
Sea.

Type Acoustic parameters Description

Pulse signals Peak frequency (Fp) The frequency with the maximum energy in the spectrum (Au, 2012)

−3-dB bandwidth (BW−3 dB) This describes the frequency width in (Hz) between 1/
ffiffiffi

2
p

of amplitude points of the spectrum on the linear
scale (Au, 2012)

−10-dB bandwidth (BW−10 dB) This describes the frequency width in (Hz) between 1/10 of amplitude points of the spectrum on the linear
scale (Au, 2012)

Inter-pulse intervals (IPIs) Intervals between the starting of pulsed signal and the adjacent one in a train

Pulsed signal
trains

Mean of peak frequency (Fp_m) The mean of Fp within a train

Mean of −3-dB bandwidth (BW−3

dB_m)
The mean of BW−3 dB within a train

Mean of −10-dB bandwidth (BW−10

dB_m)
The mean of BW−10 dB within a train

Duration (D) The duration from starting to ending in a train

Numbers of pulsed signals (NumP) The number of pulsed signals in a train

Mean of inter-pulse intervals
(IPIs_m)

The mean of IPIs in a train.
Six parameters were determined for the trains.
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values of clicks had the widest range and highest mean, which

exceeded the upper limits of those for the other train types, and

the minimum D value was higher than those for the other types.

The IPIs_m for clicks had the highest range of 16 to 315.4 ms.

The Fp_m values of burst-pulses had the lowest mean value and

narrowest range. The minimum value of D exceeded the

maximum D for buzzes. The NumP and IPIs_m values for

burst-pulses were both larger than those for buzzes. Buzzes had

the smallest D and IPIs_m values, and the lowest NumP among

the three train types. Buzzes usually occurred (60 of 160, 37.5%)

after clicks in our recordings (Figure 4).

The ranges of NumP and D were non-overlapping between

burst-pulses and buzzes, and both were covered by those of

clicks (bold and italic in Table 3). Burst-pulses had a higher

NumP and longer D. The ranges of the IPIs_m did not overlap

among the three train types (bold in Table 3). The IPIs_m values

were longest for clicks, followed by burst-pulses, and shortest

for buzzes.

In conclusion, the train types could be classified according to

the IPIs_m, where IPIs were greater than 15.5 ms for clicks, in

the range of 4.9–15.5 ms for burst-pulses, and less than 4.9 ms

for buzzes. These classification criteria could be of great

significance for future research by allowing the rapid and

effective identification of the three train types.

All of the recorded trains were identified (consisting of

overlapping and non-overlapping ones) and matched with the

behavioral information. In total, 1,080 trains were associated

with behavioral observations, as shown in Table 4. According to

Table 4 and Figure 5, this species emitted many clicks during

almost every behavior and the highest percentage of clicks

occurred during traveling. Buzzes were rarely used except
Frontiers in Marine Science 05
during foraging. Burst-pulses accounted for a large proportion

of the train types associated with socializing.
Discussion

In this study, for the first time, we showed in an objective

method that Indo-Pacific humpback dolphins emitted three

distinct pulsed signal train forms comprising clicks, burst-

pulses, and buzzes, based on the recordings in Beibu Gulf. All

three types comprised a series of pulsed signals, but they differed

in terms of their frequency, IPIs, and D. Clicks had higher

frequencies and longer IPIs_m. Burst-pulses were relatively

lower in frequency and had narrower bandwidths. Buzzes were

characterized by a rapid reduction in the IPIs_m with the

shortest D, and they usually occurred after clicks (Figure 4),

which might be related to the final stage of prey capture. These

features are similar to the three train types produced by other

odontocetes (Griffin et al., 1960; Martin et al., 2018; Yang et al.,

2021). Therefore, it was reasonable to divide the pulsed signal

trains produced by Indo-Pacific humpback dolphins into three

categories and designate them accordingly.

The IPI characteristics of clicks produced by Indo-Pacific

humpback dolphins were mentioned in previous studies in the

same manner as the buzzes and burst-pulses found in our

results, but no further classification of clicks was performed

(Van Parijs and Corkeron, 2001; Soto et al., 2014). The burst-

pulses produced by this species in previous studies were all

emitted by Indo-Pacific humpback dolphins in Australia, which

differ in terms of their DNA compared with the Chinese species

(Frere et al., 2011; Mendez et al., 2013).
FIGURE 2

Dendrogram obtained for the pulsed signal trains recorded from Indo-Pacific humpback dolphins based on hierarchical cluster analysis.
Different main clusters (similarity over 95%) are shown in different colors.
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A

B

C

FIGURE 3

(Color online) Examples of waveforms (upper panels), spectrograms (middle panels), and IPIs throughout the pulsed signal train (bottom panels)
showing a (A) click, (B) burst-pulse, and (C) buzz, representatively, produced by Indo-Pacific humpback dolphins. Spectrogram settings: high
pass filter, filter-out noise under 4 kHz, Hamming window, FFT size = 512 points, frequency overlap = 50%. (Please note the difference in time
scales (x-axis) on the three panels.).
Frontiers in Marine Science frontiersin.org06
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The buzzes and burst-pulses identified in this species

were just vaguely described or collectively referred to as one

type in previous studies. Buzzes were called one of the two

categories of the pulsed signals of Indo-Pacific humpback

dolphins, referring to sounds with minimum inter-pulse

intervals shorter than 10 ms reported in Wang et al. (2015).

Caruso et al. (2020) noted a quick overview of the other type

(called rapid click-series of pulsed sounds including buzzes and

burst pulses) in other species. The general characteristics of

buzzes and burst-pulses in our recordings are similar to those

of the feeding buzzes (Thomas and Turl, 1990; Morozov et al.,

1972; Au et al., 1974; Au and Snyder, 1980; Au, 1993) and

burst-pulses (Martin et al., 2018; Yang et al., 2021) emitted by

other odontocetes. Bottlenose dolphins emit feeding buzzes

with a quickening pulse as they feed and terminal buzzes in

courtship and play with objects (Pirotta et al., 2015; Herzing,

1996; Herzing, 2015; Herzing and dos Santos, 2004; Herzing,
Frontiers in Marine Science 07
2004) and they produce burst-pulses during social behaviors

(Overstrom et al., 1983; Branstetter et al., 2012; Marian et al.,

2021; Ridgway and Sam, 2011). Given that they are close

relatives (John and Yang, 2009), it is reasonable to speculate

that Indo-Pacific humpback dolphins could produce feeding

buzzes and burst-pulses that sound similar to those of

bottlenose dolphins in addition to clicks.

The pulsed signals of odontocetes are characterized by their

directivity. A shallow water environment and the employment of

a single hydrophone will lead to differences in the acoustic

parameters of the received and transmitted signals. The

differences in the frequency and energy are most significant

for high-frequency signals (Martin et al., 2018), but the

difference is very small in D and almost none in IPIs. It is

feasible to classify the train types according to the parameters of

the received signals (Martin et al., 2018; Yang et al., 2021;

Arranz, 2016; Martin et al., 2018; Fregosi et al., 2020). In the
TABLE 3 Descriptive statistics for acoustic characteristics of train types produced by wild Indo-Pacific humpback dolphins in Beibu Gulf, South
China Sea.

Signal type Statistics Fp_m (kHz) BW−3 dB_m(kHz) BW−10 dB_m (kHz) D (ms) NumP IPIs_m (ms)

Clicks (n=550) Min–max 16–187 6–133 13–236 113.5–5298.8 6.0–76.0 16.0–315.4

�x ± s 100.2 ± 43.4 28.1 ± 13.9 93.7 ± 42.5 1850.3 ± 681.7 37.2 ± 28.0 50.1 ± 35.3

Median 81.0 24.0 92.0 1587.1 30.2 37.3

Burst-pulses (n=140) Min–max 16–67 15–57 45–138 88.9–804.7 36.0–67.0 6.1–15.0

�x ± s 41.4 ± 12.1 35.0 ± 10.5 75.4 ± 23.9 530.7 ± 157.2 45.0 ± 18.0 14.0 ± 2.1

Median 40.0 37.0 71.0 238.3 42.0 14.6

Buzzes (n=160) Min–max 16–177 8–105 13–191 21.5–87.9 9.0–35.0 0.1–3.7

�x ± s 79.9 ± 16.2 30.8 ± 17.1 86.2 ± 44.7 55.8 ± 14.0 13.0 ± 4.0 2.0 ± 1.0

Median 75.0 26.0 79.0 79.0 11 2.2
Minimum (min), maximum (max), mean ( �x ), standard deviation (s), and median values are shown for the six acoustic parameters for each train type. Italics and bold values indicate that D
and Nump do not overlap between burst-pulses and buzzes, while bold values indicate that IPIs_m do not overlap between the three types.
FIGURE 4

Example of sequential appearance in spectrograms showing representative click and buzz signal produced by Indo-Pacific humpback dolphins.
Spectrogram settings: high pass filter, filter-out noise under 4 kHz, Hamming window, FFT size = 512 points, frequency overlap = 50%.
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present study, IPIs_m and D were identified as very important

for classification according to PC1 (Table 2). The statistical

results showed that the classifications of the three categories

depended on IPIs (Table 3). Therefore, classification is possible

based on a single hydrophone.

We conducted HCA and artificially stipulated that the

similarity must be greater than 80% and the category number

must be greater than 10. According to the results, the similarity

was greater than 95% in every cluster and the number in each

category was greater than 40 (Figure 2 and Table 3). Finally, a

manual check of the clustering results showed that the specified

thresholds were reasonable, and the classification results

were reliable.
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The three pulsed signal train types produced by Indo-Pacific

humpback dolphins in Beibu Gulf could be distinguished by

IPIs_m, with thresholds of 4.9 and 15.5 (Table 3). The threshold

values could be different for this dolphin in other locations.

Clicks had the longest IPIs_m, and the IPIs_m values for burst-

pulses were between those for clicks and buzzes. The IPIs of

buzzes could be used as a two-way travel time for targets to

roughly estimate the distance to prey (Au et al., 1974; Au and

Snyder, 1980; Turl and Penner, 1989; Thomas and Turl, 1990;

Au, 1993). Shorter IPIs are associated with a shorter distance

(Kalko, 1995). The IPIs of buzzes could be used to estimate the

distance of the prey from Indo-Pacific humpback dolphins in a

prey chase.
TABLE 4 Summary information and train types collected for Indo-Pacific humpback dolphins in Beibu Gulf, South China Sea.

Sighting T.S. T.D. (min) Latitude/longitude Num.I Behaviors Num.C. Num.Bp. Num.Bz.

20190930 12:30 10 21°21.9′N109°41.8′E 8 Milling 80 42 3

13:03 10 21°22.0′N109°41.8′E 2 Foraging 54 17 60

13:24 5 21°22.0′N109°41.3′E 3 Traveling 75 20 4

14:00 10 21°22.1′N109°41.2′E 6 Socializing 46 40 5

14:32 5 21°22.6′N 109°41.3′E 2 Trawlers 20 20 10

20191001 10:30 10 21°23.3′N109°42.9′E 6 Milling 70 30 5

12:00 5 21°23.5′N109°43.1′E 3 Foraging 15 3 40

13:13 5 21°23.6′N109°43.1′E 4 Traveling 60 5 2

14:02 8 21°23.5′N109°43.4′E 5 Socializing 35 30 5

20191002 11:31 13 21°21.0′N109°43.0′E 7 Milling 76 40 3

12:08 2 21°20.3′N109°42.8′E 4 Foraging 10 2 25

12:33 2 21°20.1′N109°42.8′E 4 Traveling 20 10 3

13:11 8 21°20.3′N109°42.3′E 5 Socializing 30 28 2

13:34 3 21°21.3′N109°42.8′E 1 Trawlers 20 10 5

Total − 96 − − − 611 297 172
fron
T.S., starting time of sighting; T.D., total duration of recordings; T.D., total duration of recordings; Num.I, number of individuals; Num.C., number of clicks; Num. Bp., number of burst-
pulses; Num.Bz., number of buzzes.
FIGURE 5

The total call number of different types by behavioral states.
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The variations in the three pulsed signal train types produced

by Indo-Pacific humpback dolphins may allow more information

to be encoded (Martin et al., 2018; Madsen et al., 2004a; Moore

and Pawloski, 1990; Au, 1993; Li et al., 2013). Variations in sounds

play key roles in social behavior, and studies have shown that

changes in the acoustic parameters of clicks and burst-pulses

emitted by striped dolphins are associated with the active

environment and objective (Jarvis et al., 2013; Papale et al.,

2020). Pulsed signal trains with longer IPIs and large D values

can help dolphins to search, detect, and select targets (Madsen et

al., 2004b). Shorter IPIs can allow the identification and capture of

smaller targets. Ultrasonic pulsed signals have high directionality,

and they decay rapidly as the distance increases (Niu et al., 2012).

Therefore, reducing the frequency to an appropriate level is

conducive to the further propagation of the signal and

increasing the detection range (Martin et al., 2018). In this

study, among the three types recorded, D and the IPIs_m were

large for clicks, which are mainly used for navigation and

positioning. The IPIs_m values were shortest for buzzes, which

are conducive to the foraging activities of dolphins. The Fp_m

values were lower for burst-pulses, which are mainly used for

intraspecific communication (Table 3 and Table 4). Therefore, the

changes in the three types of pulsed signal trains recorded in our

observations were consistent with their functions, and it is

reasonable to speculate that the changes in pulsed signal trains

emitted by Indo-Pacific humpback dolphins were related to

different behaviors.

Sound signals are very important for regulating the

individual and group activities of dolphins (Fichtel and

Manser, 2010). The complexity of individual and group

behavior is considered to be the driving force responsible for

the development of the dolphin communication system

(Blumstein and Armitage, 1997; Freeberg et al., 2012a; Van

Cise et al., 2018; Gustison et al., 2019). The three train types were

produced by Indo-Pacific humpback dolphins in variable

proportions during different behaviors (Table 4 and Figure 5)

due to their different social functions.

Clicks are usually related to navigation, detection, and

foraging (Au, 1993). In our recordings, the clicks were used in

all behaviors and present at the highest proportion of three types

in almost all states except foraging, most prevalent during

traveling and milling (Table 4 and Figure 5), which is

consistent with previous research (Au, 1993).

Studies have shown that burst-pulses are related to

communication in the background environment, and they are

considered intraspecific communicative signals (Lammers et al.,

2004). Burst-pulses usually occur during courtship, aggression,

and other states of relative excitement (collectively referred to as

social activities) (Dawson, 1991; Jones and Sayigh, 2002;

Blomqvist and Amundin, 2004; Simard et al., 2008; Gridley

et al., 2016). Burst-pulses were mostly recorded in the present

study during milling and socializing activities and occupied the

highest proportion in socializing than other behavioral states
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(Figure 5). The number of burst-pulses increased when the

group was large (≥3) or when trawlers passed by (Table 4).

Dolphins emitted burst-pulses besides buzzes when they

approached kayak in an investigatory manner (Martin et al.,

2019). Captured Commerson’s dolphins emit burst-pulses when

a new object enters their tank (Yoshida et al., 2014). Thus, burst-

pulses might have an intraspecific communicative function in

the Indo-Pacific humpback dolphin.

Buzzes are generally a sign of food capture during foraging to

make other members of the population aware (Kellogg, 1959;

Janik, 2000; Miller et al., 2004; Johnson et al., 2004; Madsen et al.,

2005; Zimmer et al., 2005; Stimpert et al., 2007; Barlow et al.,

2013), and they were used more frequently during foraging in

the present study (Figure 5). Indo-Pacific humpback dolphins

usually gather in small groups of three to five, or alone, and they

may preferentially travel with trawlers to acquire food (Jefferson,

2000; Parra et al., 2006; Parra et al., 2011). Buzzes were observed

when a dolphin was either play-chasing a prey or even a floating

object like sargassum (Herzing and Santos, 2014; Herzing, 2014).

In our recordings, buzzes occurred frequently in foraging

activities, which was a general state but not in detail. Buzzes

were also recorded when a trawler was observed passing (Table 4

and Figure 5). Dolphins may be present near trawlers because

they are attracted to trawlers out of curiosity or for hunting

purposes (Clay et al., 2018). When dolphins interact with kayaks,

buzzes usually occur simultaneously (Martin et al., 2019).

Furthermore, buzzes can be seen in other behaviors (for

example, a mating activity and female calf discipline), with

more social functions (Martin et al., 2019). It was similar to

our recordings that buzzes were also detected in other behaviors

(Table 4 and Figure 5). Thus, more social functions of buzzes in

the Indo-Pacific humpback dolphin need to be explored with

detailed behavior studies.

In conclusion, this study is the first to report the recording of

buzzes and burst-pulses emitted by Indo-Pacific humpback

dolphins in Beibu Gulf, South China Sea. Three typical types

of pulsed train signals were identified using multivariate

statistical analyses, and the detailed acoustic characteristics of

each train type were described. Criteria were defined based on

IPIs_m to identify the train types produced by these dolphins.

Age, sex, individual variation, behavior, and other parameters

may influence the threshold values. The functions of the three

signals were further validated based on behavioral observations

and identification. Conducting detailed behavioral studies and

using an acoustic recording array would allow more information

to be obtained in order to help interpret the functions of the

different train types.
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