
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Alberto Basset,
University of Salento,
Italy

REVIEWED BY

Kerrie M. Swadling,
University of Tasmania, Australia
Santiago Hernández-León,
University of Las Palmas de Gran
Canaria, Spain

*CORRESPONDENCE

Julek Chawarski
julian.chawarski@gmail.com

SPECIALTY SECTION

This article was submitted to
Marine Ecosystem Ecology,
a section of the journal
Frontiers in Marine Science

RECEIVED 11 April 2022

ACCEPTED 17 August 2022
PUBLISHED 06 September 2022

CITATION

Chawarski J, Klevjer TA, Coté D
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Across temperate and equatorial oceans, a diverse community of fish and

zooplankton occupies the mesopelagic zone, where they are detectable as

sound-scattering layers. At high latitudes, extreme day-night light cycles may

limit the range of some species, while at lower latitudes communities are

structured by dynamic ocean processes, such as temperature. Using acoustic

and oceanographic measurements, we demonstrate that latitudinal changes in

mesopelagic communities align with polar boundaries defined by deep ocean

temperature gradients. At the transition to cold polar water masses we observe

abrupt weakening and vertical dispersion of acoustic backscatter of

mesopelagic organisms, thereby altering the structure of the mesopelagic

zone. In the Canadian Arctic, we used biological sampling to show that this

boundary is associated with a significant change in the pelagic fish community

structure. Rapid ocean warming projected at mesopelagic depths could shift

these boundaries with far-reaching effects on ecosystem function and

biogeochemical cycles.

KEYWORDS

mesopelagic zone, deep scattering layer (DSLs), hydroacoustics, marine ecology and
ecosystem, polar, biogeography
Introduction

At mid-latitudes, the mesopelagic zone (i.e. depths ranging from 200 - 1000 m)

houses communities of macrozooplankton and micronekton (Irigoien et al., 2014; Sutton

et al., 2017) which occur in localized biomass peaks below the sunlit waters (Bianchi et al.,

2013). As mid-trophic level organisms, many species in these communities link primary
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and microbial production with higher trophic levels, including

megafauna (Lehodey et al., 2010; Choy et al., 2016; Bode et al.,

2021; Schaber et al., 2022). Due to their nocturnal feeding

migrations to surface waters, mesopelagic organisms also play

an active role in the biological carbon pump (Davison et al.,

2013; Irigoien et al., 2014). Global biomass estimates put

mesopelagic fish resources between 2-20 gigatonnes, or

roughly 100 times more than the annual catch of all other

fisheries combined (Hidalgo and Browman, 2019). For a large

portion of the global oceans, this mesopelagic biomass,

measured as deep sound-scattering layers (DSLs), is

dominated by lanternfishes and other low light adapted species

(Catul et al., 2011). However, at high latitudes extreme seasonal

variation and productivity sustains mostly polar-adapted

organisms with unique life-history strategies and migration

behaviors (Knutsen et al., 2017; Geoffroy et al., 2019; Vedenin

et al., 2020).

Toward the poles, marine ecosystems are heavily influenced

by seasonality, with extreme variation of light and sea surface

temperature over the year. While temperature has direct effects

on physiological rates (Gillooly et al., 2001), light influences the

ecology of vertically migrating plankton and fish, with critical

impacts on their predation and survival (Kaartvedt, 2008;

Ljungström et al., 2021). According to prevailing ecological

theory, diel variation in light explains the horizontal

distribution range of vertically migrating mesopelagic fish,

such as lanternfish (family Myctophidae) (Langbehn et al.,

2021). Under this theory, the extreme light regime presented

at high latitudes, with periods of constant illumination and

constant darkness, hinders the establishment of viable

populations of mesopelagic fish toward the poles (Langbehn

et al., 2021). Polar and equatorward mesopelagic communities

should thus vary considerably in their structure and functioning

along the gradient of seasonal light availability. Yet,

observational challenges to studying mesopelagic systems at

high latitudes leave it unclear if transitions in mesopelagic

structure occur gradually across photoperiod gradients or are

constrained by other ocean processes, such as temperature.

Temperature is a dynamic ocean variable that influences

marine community structure on global scales (Hoegh-Guldberg

and Bruno, 2010). In ectotherms, metabolism is universally

temperature-dependent (Gillooly et al., 2001; Bruno et al.,

2015), and because metabolism fuels all organism processes

and activities, temperature constraints scale from individual

processes, to species interactions (Rall et al., 2010) and

ecosystems (López-Urrutia et al., 2006). Temperature thus

shapes ecological communities and influences properties of the

environment, including, for example, carbon remineralization

depths (Boscolo-Galazzo et al., 2018; 2021). Temperature may

also modulate both food demand and availability, altering the

biological profile of the pelagic realm. As we currently lack

comprehensive knowledge of the life-history of mesopelagic

fishes (and their thermal tolerances), predictions of
Frontiers in Marine Science 02
community-wide response to environmental change remains

limited, particularly in poleward systems.

The relative importance of environmental gradients, such as

photoperiod (Kaartvedt, 2008) and temperature (Proud et al.,

2017) or mesoscale features (Godø et al., 2012) to changes in

mesopelagic community structure are uncertain. Acoustic

measurements of backscatter enable mapping of the ‘biological

profile’, revealing the distribution of pelagic macrozooplankton

and micronekton throughout the water column (Benoit-Bird and

Lawson, 2016). In this study, we use hull-mounted echosounders

and ADCPs lowered in the water column along transects crossing

polar fronts in both the Eastern Canadian Arctic and Southern

Ocean to assess the impact of temperature boundaries on the

distribution of mesopelagic organisms. We demonstrate that

poleward dispersal of the globally coherent DSL is aligned with

basin-scale mesopelagic temperature boundaries.
Material and methods

Acoustic data

Shipboard acoustics were collected by two vessels during

different sampling campaigns (Supplementary Figure 1). In the

Canadian Arctic, data were collected aboard the research

icebreaker CCGS Amundsen during the Integrated Studies and

Ecosystem Characterization of the Labrador Sea Deep Ocean

(ISECOLD) cruise in July and August 2018. In the Southern

Ocean, data were collected in February 2008 along the 30°E

section aboard the Norwegian research vessel G.O. Sars.

Shipboard measurements from both cruises were made using

an EK60 38 kHz scientific echosounder calibrated using the

standard-sphere method (Demer et al., 2015).

The lowered acoustic Doppler profilers (LADCP) were

mounted on CTD-rosettes and lowered to within 5 m of the

bottom. The 300 kHz LADCP data in the Canadian Arctic were

collected aboard the CCGS Amundsen during the ISECOLD

(2018 and 2019 cruise), the Department of Fisheries and Oceans

Canada Atlantic Zone Offshore Monitoring Program (AZOMP)

in 2019, and the Takuvik Green Edge expedition to Baffin Bay in

2016. Data for these expeditions were available from the Polar

Data Catalogue hosted by the Canadian Cryospheric

Information Network (CCIN) (Forest et al., 2020). LADCP

data for the Southern Ocean were downloaded from the

National Centers of Environmental Information (NCEI)

database (Firing et al., 2019) and were available from sections

in 2005, 2007, 2008, and 2014.
CTD profiles

Temperature and salinity profiles for the Canadian Arctic

were collected from the CCGS Amundsen during the 2016, 2018
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and 2019 campaigns using a Seabird © SBE 911+ deployed

concurrently with the LADCP. Additional profiles from 2014

were downloaded from the Clivar & Carbon Hydrographic Data

Office (CCHDO) database (Lee and Gobat, 2020). Temperature

and salinity for the Southern Ocean from 2008 were also

collected using a Seabird © SBE 911+ with concurrent LADCP

measurements and were downloaded from the CCHDO

database. (Speer, 2020)
Data processing

Backscatter from shipboard echosounders (Sv, dB re 1 m-1)

was calculated according to MacLennan et al. (2002). Sound-

speed and absorption were calculated from CTD data

(Mackenzie, 1981) and applied to backscatter values. For

display purposes, -60 to -87 dB range was applied to the data

to highlight the dominant mesopelagic signal.

Backscatter from LADCP units was calculated according to

Mullison (2017) (eq. 1) with factory supplied calibration

constants per beam. Vertical profiles of sound-speed and

absorption were calculated from the concurrent CTD profiles

and were used when converting the LADCP counts to (relative)

backscattering values.

SV(rel,dB) = C + 10log10((TX + 273:16)R2) − LDBM

− PDBW + 2aR + 10log10(10
kc(E−Er)=10 − 1) (eq: 1)

where C is an instrument specific constant, T is the temperature

at the transducer (in °K), R is the along-beam range to the

measurement, LDBM is 10log10 transmit pulse length in meters,

PDBW is 10log10 transmit power in watts, a is the acoustic

absorption (in dB m-1), E is the echo strength (in counts), Er
is received noise (in counts), and kc is the Returned Signal

Strength Indicator (RSSI) slope, a beam specific constant relating

amplitude counts to the decibel scale. For Canadian Arctic data,

we used factory supplied calibration constants and for the

Southern Ocean data we used a generic instrument value of

0.45 dB count-1The high levels of sound-absorption at 300 kHz

means that a hull-mounted transducer will have a very limited

observational range before the signal from organisms drop

below the noise-level. As backscatter is largely dependent on

organism size; organisms much smaller than the wavelength

(4.5 mm at 300 kHz and 1500 m s-1 sound speed) will give very

little echo. Thus, the deployment of high-frequency acoustic

equipment on a lowered platform, such as the CTD, enables

observation of relatively small, weakly scattering animals at

depths that surpass the range and vertical coverage of high

frequency hull-mounted sounders.

The Gini index is a metric used to quantify resource

inequalities (Gini Index, 2008), ranging from 0 for a perfectly

evenly distributed resource to a value of 1 for maximum

inequality. We here use the Gini index to quantify the level of
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uniformity of backscatter within the vertical domain i.e., a high

index will reflect that much of the backscatter strength originates

from a discrete scattering layer. To minimize influence of

changes stemming from diel vertical migration, nighttime data

were omitted whereby only casts when the sun was >6 degrees

above the horizon were used. Gini indices were calculated for

each vertical profile using the R package ‘ineq’ (Zeileis, 2014).
Biological sampling

Mesopelagic fish were captured at 26 stations aboard the

CCGS Amundsen using an Isaac-Kidd midwater trawl (IKMT)

in 2020-2021 (Supplementary Figure 2). The net had a 13.5 m2

(4.5 m x 3 m) aperture and was equipped with a 3/4 inch

stretched forward mesh and a ½ inch stretched codend mesh.

Tows were performed obliquely at a speed of 2-3 m/s to depths

ranging between 100 and 800 m to match the depth of the

acoustic scattering layers. Catch was sorted to species, where

possible. No net data were available across the polar front in the

Southern Ocean and hence, community analysis was restricted

to the Canadian Arctic in this study.
Community analysis

To compare the assemblage structures of adult fishes

captured at mesopelagic depths on either side of the polar

front, multivariate analysis was performed using the ‘vegan’ R

package (Okansen et al., 2020). To reduce weighting of the

dominant family Myctophidae, data was standardized using a

Wisconsin double standardization and square root transformed.

Similarity matrices of the abundance of mesopelagic fish across

sites were then constructed using a Bray-Curtis Index (Bray and

Curtis, 1957). In our final analysis, we used a family level

taxonomy and omitted records containing singular

occurrences of species, which were associated with coastal

assemblages. An analysis of similarity (ANOSIM; Clarke,

1993) was performed on the resulting dissimilarity matrix to

statistically evaluate community differences on either side of the

polar boundary. Non-metric multidimensional scaling (nMDS)

was used to provide a two-dimensional visual representation of

fish assemblage structure.
Results

Changes in fish communities across
temperature boundaries

In both the northern and southern hemispheres, backscatter

decreased by up to 97% when crossing the boundaries of distinct

polar and subpolar water masses in the upper mesopelagic zone
frontiersin.org
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(Figure 1). This pattern emerged from acoustic data,

continuously recorded on transects crossing these boundaries,

at 38 kHz, a frequency efficient at detecting swim-bladdered fish.

In the Canadian Arctic, the disruption of the deep-scattering

layer occurred in the Davis Strait (~ 66˚N) at the interface

between Arctic intermediate water and the West Greenland

Irminger Current (Curry et al., 2014), known as the West

Greenland Polar Front . Mesope lagic (200-1000m)

temperatures in the Labrador Sea ranged from 4-5˚C and

decrease to 1-2˚C in Baffin Bay In the southern hemisphere,

the disruption of the deep-scattering layer occurred along the

Antarctic Polar front, where Antarctic intermediate water and

upper circumpolar deep water converge (Orsi et al., 1995). Here,

mesopelagic temperatures decreased more gradually with

latitude and ranged from 2.5-3.5˚C north of the polar front,

and dropped to approximately 2˚C south of the front.

A total of 1620 mesopelagic fish were captured in the

Canadian Arctic in 2020-2021. The family-level community

analysis showed that sites across the West Greenland polar

front, distinguished by the deep water masses of the Labrador

Sea and Baffin Bay, had significantly different fish communities

(ANOSIM, R=0.67, p=0.001). P-value is based on 999

permutations. The resulting nMDS plot (Figure 2) revealed all

but one sites grouped according to their positions relative to the

polar front. South of the front, the fish community in the

Atlantic waters of the Labrador Sea was characterized by a
Frontiers in Marine Science 04
combination of four major fish families: Myctophidae

(lanternfishes), Stomiidae (dragonfishes), Gonostomatidae

(bristlemouths), and Bathylagidae (pencil-smelts). North of the

front, the fish community in the Arctic waters of Baffin Bay was

characterized by the families Gadidae (cods) and Liparidae

(snailfishes). While there was a significant difference in overall

community structure, a small number (n=40) of Benthosema

glaciale were captured in the cold waters of Baffin Bay.
Poleward changes in vertical structure
of mesozooplankton

High frequency LADCP profiles, at frequencies suitable to

detect mesozooplankton down to ~0.5-1 cm in size, revealed a

similar poleward reduction in backscatter in the mesopelagic

zone (Figures 3A, B). These profiles further highlighted a

concurrent shift in the dispersion of backscatter below the

photic zone, through the meso- and bathy- pelagic water

column (Figures 3C, D). Using the Gini inequality index (Gini

Index, 2008), which is independent of the coincident reduction

in relative backscatter levels (Sv [rel, dB re 1m-1]), we found

biological backscatter in subpolar waters to be concentrated

within a deep-scattering layer (high inequality). In contrast, in

polar waters we observed a consistently uniform distribution of

organisms in the water column. In both hemispheres, our
A B

FIGURE 1

38 kHz acoustic backscatter across polar transition zones. Backscatter volume strength (Sv, db re 1 m-1) collected during a latitudinal transect
crossing the Arctic Circle in the Davis Strait (A) and the Antarctic sub-polar current (B). Echograms display acoustic backscatter calculated for
1 km long x 2.5 m deep intervals. Upper and lower thresholds of -87 to -60 dB were applied to facilitate visualization of the deep-scattering
layers. Solid grey and red dashed lines represent Sv of upper water column (0-750 m) and a two-sided 25 km moving average, respectively.
Temperature panels show mean +/- standard deviation of temperature in the mesopelagic zone (200-1000 m). Dotted blue line in left map
panel indicates the position of the Arctic circle and solid blue line in right map panel indicates the Antarctic polar front.
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observations were strongly tied to water masses on either side of

the polar front (Figures 3E, F).
Discussion

The poleward dissolution of the deep-scattering layer (DSL)

and subsequent dispersion over the water column clearly aligns

with deep temperature boundaries (i.e., polar fronts) between

basin-scale oceanographic regimes. In both hemispheres, the

high-latitude change in mesopelagic structure coincides with

boundaries between previously defined biogeographical

provinces (Longhurst, 2007; Sutton et al., 2017). In the northern

hemisphere, changes in backscatter occurred near the Arctic circle

(66° N) where photoperiod should begin to limit the success of

low-light adapted lanternfishes (Kaartvedt, 2008; Ljungström

et al., 2021), yet the boundary also occureddirectly at the

transition between warm and cold basin waters (Figure 1). In

the southern hemisphere, similar changes occurred along the

Antarctic polar front, roughly 1700 km north of the Antarctic

circle where photoperiod is presumed to constrain certain species.

Together, these observations lend support to the idea that

temperature plays a key role in structuring mesopelagic

communities. We show that at high latitudes both the absolute

levels of backscatter in DSLs, as well as the relative proportion of

total mesopelagic backscatter found inside DSLs, are reduced. At

lower latitudes, studies (Irigoien et al., 2014; Peña et al., 2014;

Davison et al., 2015) implicitly suggest that a high proportion of

pelagic biomass of micronekton and zooplankton are found

within scattering layers, whereas our observations suggest that at
Frontiers in Marine Science 05
high latitudes, the biomass is more evenly distributed over the

water column (Figure 3). We call this effect the vertical dispersion

of biomass, and note that it is likely to result in very different

vertical patterns of intra- and interspecific interactions, i.e. vertical

patterns of ecology. It remains unclear if the observed correlation

between temperature and vertical dispersion is due to an altered

prey field or physiological limitations of certain species; however,

the outcome likely yields a major shift in resource partitioning,

active carbon export, and overall ecosystem function.

Among DSLs in mid to high-latitude oceanic systems, a large

proportion of 38 kHz acoustic backscatter is attributed to swim-

bladdered fish (Irigoien et al., 2014), but due to a potential shift

in swim-bladder morphology, interpretations of weakening of

mesopelagic backscatter as indicative of biomass decreases

across such boundaries can be misleading (Dornan et al.,

2019). However, the same pattern observed here was also

evident in higher frequency backscatter (300 and 150 kHz).

Higher acoustic frequencies detect smaller components without

air-inclusions, such as euphausiids and larger crustaceans, and

are less prone to be affected by resonance effects that can bias

density estimates (Stanton et al., 2010). The strong agreement

between low and high-frequency acoustics suggests that the

abrupt transition in total backscatter at the West Greenland

Polar Front reflects a change in communities and/or a reduction

in abundance of larger metazoans. This conclusion is supported

by our catch data, which revealed that in the Canadian Arctic,

the dispersion of the DSL is mirrored by a transition in the

mesopelagic fish community. In the warmer waters of the

Labrador Sea, the mesopelagic fish assemblage contains a

variety of families, each with different adaptation to deep
FIGURE 2

Family-level fish community response across the West Greenland Polar Front in the Canadian Arctic. Ordination plot using non-metric
multidimensional scaling (nMDS, stress=0.057) of IKMT adult fish captured in the Canadian Arctic. Each sample (yellow) represent an individual
site. Colored ellipses are computed to enclose all points along the boundary of groups representing fish families found in the Labrador Sea (red)
and Baffin Bay (blue). Families (and representative images) are plotted as centroids and are computed as the weighted average scores in the
ordination space.
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oceanic waters. Unlike single species dominated systems, the

diversity of fish families present in the mesopelagic zone is likely

to enhance community tolerance to environmental change

(Lindegren et al., 2016).

The glacier lanternfish Benthosema glaciale (Family

Myctophidae) was the most abundant fish species in the

Labrador Sea. Their populations are predicted to decrease

steadily along a latitudinal photoperiod gradient (Langbehn

et al., 2021). Since this species is a significant contributor to

acoustic sound scattering throughout the northern hemisphere

(Pepin, 2013; Klevjer et al., 2020b), we expected to see a similar

gradual dissipation of the DSL with latitude. This prediction is

somewhat in line with previous findings which document

Benthosemas’ occurrence above the Arctic circle, albeit in low

numbers (Jensen, 1948; Jørgensen et al., 2005). However, our

study rather demonstrates a drastic reduction in Myctophidae

abundance north of the polar front, at least in the Canadian

Arctic, which implicates other environmental drivers such as

temperature. Moreover, the absence of larval specimens in

previous surveys suggests that a component of its life-history

may be inhibited by polar conditions, at least in the eastern

Canadian Arctic (Sameoto, 1989). Nonetheless, there is evidence

that pelagic physical boundaries (i.e., fronts) are frequently

permeable to individual species. Due to their size and limited

swimming capabilities, many lanternfishes are considered
Frontiers in Marine Science 06
passive drifters, subject to advective dispersal in ocean currents

(Kaartvedt et al., 2009). Therefore, their presence in small

numbers in the Canadian Arctic is most likely due to the

minor inflow of Atlantic-origin water entering Baffin Bay

along Greenland’s coast. In the European Arctic, where the

volume of Atlantic water inflow is much higher, transient

Atlantic origin DSLs have been observed in the Arctic Ocean

(Geoffroy et al., 2019; Priou et al., 2021; Snoeijs-Leijonmalm

et al., 2022). Despite growing documentation of these DSLs

permeating the Artic water, there is little to suggest that boreal

fish populations forming these scattering layers can sustain

themselves long enough to considerably al ter the

mesopelagic ecosystem.

While many of the species of mesopelagic fish in the

southern hemisphere differ from those in the northern

hemisphere, a similar family-level assemblage forms the

subpolar DSL (Escobar-Flores et al., 2020). Therefore, we

suggest that the overall fish community function and its

resulting sensitivity to temperature is similar to that seen in

the north. A study highlighting latitudinal effects on body size of

mesopelagic fish (following Bergmann’s rule) found that the

thermal range limit of small lanternfishes with a maximum size

of ~50 mm is 2.5°C (Saunders and Tarling, 2018). Perhaps

without coincidence, our observed backscatter boundary occurs

at this same temperature in both hemispheres (Figure 1). As
A

B D

E

F

C

FIGURE 3

LADCP backscatter and Temperature-Salinity plots profiles across polar transition zones. 300 kHz LADCP profiles from the deep basins of the
Labrador Sea in 2018 and 2019 and Baffin Bay in 2016 (A) and 150 kHz LADCP profiles along the southern transect (30°E line in 2008) across
the Polar Frontal Zone (PFZ) (B). Vertical LADCP profiles in the Southern Ocean are presented as average backscatter per decimal degree.
Vertical LADCP profiles in the Labrador Sea and Baffin Bay are presented as averages (solid lines) and 95% confidence intervals (dashed lines and
grey shading). The corresponding Gini Index between 200 m depth and the seafloor for all stations deeper than 1500m along the northern
transects (C) and corresponding Gini Index between 200-3000m for all stations in the Southern Ocean (D). Temperature-salinity diagrams from
concurrent measurements in the Canadian Arctic (Baffin Bay/Labrador Sea) (E) and the Southern Ocean (F).
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body size is critical in both metabolic constraint and feeding

behavior, certain large bodied lanternfish have seemingly

overcome this temperature constraint by feeding on larger,

energy rich prey such as krill (Saunders et al., 2019) whilst

simultaneously relying on mass immigration from warmer

waters to sustain their populations (Saunders et al., 2017).

While the dissolution of the DSL in poleward waters has been

previously reported in the Southern Ocean (e.g. Escobar-Flores

et al., 2020; Dornan et al., 2022); the relationship of this

phenomenon to environmental variables and feeding guilds

has remained uninvestigated. Furthermore, the similar shift in

vertical structure of larger metazoans in both hemispheres lends

further support to a significant shift in the ‘biological profile’ of

the water column.
Enhanced connectivity in a warmer
ocean and stability of temperature
boundaries

Our estimates of the vertical distribution of zooplankton and

fish using an LADCP offer clues to the overall functioning of the

pelagic ecosystem (Ressler et al., 1997; Burd and Thomson,

2012). By using high frequency lowered acoustics, we captured

a snapshot of the daytime vertical distribution of larger

metazoans (down to ~0.5-1 cm in size). Differences in the

biological profile of across water mass boundaries, such as

reduced backscatter (lower Sv (rel, dB)) and increased dispersal

(low Gini index) suggest important changes in organic flux

pathways. For instance, high biomass within the mesopelagic

zone can lead to increased recycling of particulate (Henson et al.,

2012), and a greater depth and magnitude of carbon re-

mineralization (Marsay et al., 2015). In addition to a shift in

biomass distribution, different mesopelagic communities across

the fronts can also modify the carbon export rate and transfer

efficiency due to variation in size, ontogeny, and behavior

(Vedenin et al., 2020; Saba et al., 2021). This shift in

mesopelagic functioning is further supported by studies

showing distinct biogeochemical signatures with different

carbon export regimes across polar boundaries (Vichi et al.,

2011; Fan et al., 2020).

These temperature boundaries where the backscatter and

dispersion of mesopelagic organisms changed were located at

different latitudes (and light regimes) in each hemisphere and

the overall stability of these boundaries remains unclear. Our

high frequency LADCP measurements suggest that the pattern

of vertical distribution across the polar front was consistent over

several years in the Southern Ocean (Supplementary Figure S3).

Using 38 kHz measurements from 2010, Escobar-Flores et al.,

(2020) report a similar boundary seen at the Antarctic Polar

front (APF) (~ 63˚S) in the New Zealand sector of the Southern

Ocean. Together, these findings suggest that temperature control

in the mesopelagic zone may be a circumpolar phenomenon in
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the southern hemisphere. In the Indian Ocean sector, poleward

displacement of the APF is linked to inter-annual changes in

large-scale ocean circulation patterns (Kim and Orsi, 2014), such

as the Southern Annular Mode (Gille, 2014). While the Antarctic

circumpolar front is largely regulated by seafloor topography

(Freeman et al., 2016), new evidence of past frontal movement

may shift the existing paradigm of front stability (Civel-Mazens

et al., 2021).

There have been considerably fewer investigations into

variations in the West Greenland polar front; however, its

stability will likely depend on the rate and volume of Atlantic

water entering the Arctic through various gateways. In the

European Arctic gateway, observations of northward shifts in

boreal fish assemblage suggest that the movement of polar

temperature boundaries are already underway (Fossheim et al.,

2015) and a similar process is therefore possible in the northwest

Atlantic. Overall, rapidly changing deep ocean temperature

regimes (Brito-Morales et al., 2020) are likely to disrupt these

boundaries, with far-reaching implications for ecosystem

function and biogeochemical cycling.
Limitations

The study of deep-ocean pelagic communities at high

latitudes using net sampling and acoustic measurements

remains a major logistical challenge. In the absence of

systematic assessments at high-latitude systems, we compiled

opportunistic measurements across multiple years, survey

platforms, and instruments. Based on previously published

work, we are confident that distinct water masses exist across

these boundaries and that their biological communities broadly

show predictable changes in structure and functioning in the

transition to polar waters. Since our measurements are

constrained to months that are ice-free and have warmer sea

surface temperatures, we cannot ignore the possibilities that

these boundaries may shift geographically or may be permeable

under varying seasonal conditions. At lower-latitudes, mid-

trophic mesopelagic biomass tends to respond to climate-

atmospheric events (i.e. El Nino-Southern Oscillation) in 6

month lag intervals (Lehodey et al., 2010). Overall,

observations of temporal response in poleward mesopelagic

systems remain rare and our study provides a basis for

further investigation.

Characterizing fish and zooplankton biomass and abundance

remains a considerable challenge; net selectivity and avoidance

behavior can play a large role in biasing catch composition

(Kaartvedt et al., 2012). The unknown contribution of certain

taxonomic groups to overall backscatter further inhibits our ability

to make any conclusions regarding absolute abundance or

biomass across these boundaries. For instance, smaller members

of the family Gonostomatidae (e.g. Cyclothone sp.) may be

excluded by larger mesh sizes, but bear swim-bladders that may
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resonate at lower frequencies, making significant contributions to

backscatter (Peña et al., 2014). Unfortunately, we do not have

biological data to match our acoustic measurements in the

Southern Ocean and we therefore rely on the support of

previous studies to assess how the micronekton communities

may differ across these frontal boundaries.

Together, our acoustic and biological measurements offer a

picture of the mesopelagic community transition in polar

regions, which is abrupt and clearly aligns with a steep change

in temperature between water masses. The change in

mesopelagic communities across the West Greenland polar

front suggests that community structures (and subsequent

function) are altered by deep (>200 m) temperature gradients.

The detailed mechanisms of how temperature drives highly-

complex mesopelagic assemblages remains outside of the scope

of this paper. However, our study provides a basis for future

investigations into the functional biogeography of mesopelagic

communities and their response to environmental forcing.
Conclusions

The high degree of similarity in both the northern and

southern vertical profiles shows that the relationship between

community structure and temperature is independent of the

species present and suggests a major shift in the functioning of

the upper ocean. While the change in vertical distribution of

both micronekton and plankton is clearly associated with water

mass transition, we lack a mechanistic understanding of the

causes of the observed differences. Previous studies have

suggested that mesopelagic fish biomass in high latitude

systems are restricted by latitudinal light gradients (Kaartvedt,

2008; Ljungström et al., 2021), but empirical studies have found

that while backscatter typically drops off across these gradients

(Norheim et al., 2016, Escobar-Flores et al., 2020), biomass of

mesopelagic fish does not follow the same patterns (Escobar-

Flores et al., 2020; Klevjer et al., 2020a; Dornan et al., 2022). The

front between Austral and Antarctic mesopelagic structure,

however, starts much closer to the equator than the front in

the northern hemisphere, suggesting that photoperiod is

unlikely to be the only limitation to DSL forming fish

communities in polar waters. The tight coupling with

temperature documented in our data suggests that global

warming will affect vertical structure and functioning of high-

latitude marine ecosystems, including at mesopelagic depths.
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