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Conservation of marine ecosystems has been highlighted as a priority to ensure

a sustainable future. Effective management requires data collection over large

spatio-temporal scales, readily accessible and integrated information from

monitoring, and tools to support decision-making. However, there are many

roadblocks to achieving adequate and timely information on both the

effectiveness, and long-term success of conservation efforts, including

limited funding, inadequate sampling, and data processing bottlenecks.

These factors can result in ineffective, or even detrimental, management

decisions in already impacted ecosystems. An automated approach

facilitated by artificial intelligence (AI) provides conservation managers with a

toolkit that can help alleviate a number of these issues by reducing the

monitoring bottlenecks and long-term costs of monitoring. Automating the

collection, transfer, and processing of data provides managers access to

greater information, thereby facilitating timely and effective management.

Incorporating automation and big data availability into a decision support

system with a user-friendly interface also enables effective adaptive

management. We summarise the current state of artificial intelligence and

automation techniques used in marine science and use examples in other

disciplines to identify existing and potentially transferable methods that can

enable automated monitoring and improve predictive modelling capabilities to

support decision making. We also discuss emerging technologies that are likely

to be useful as research in computer science and associated technologies

continues to develop and become more accessible. Our perspective highlights

the potential of AI and big data analytics for supporting decision-making, but

also points to important knowledge gaps in multiple areas of the automation

processes. These current challenges should be prioritised in conservation

research to move toward implementing AI and automation in conservation

management for a more informed understanding of impacted ecosystems to
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result in successful outcomes for conservation managers. We conclude that

the current research and emphasis on automated and AI assisted tools in

several scientific disciplines may mean the future of monitoring and

management in marine science is facilitated and improved by the

implementation of automation.
KEYWORDS
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Introduction

Successful conservation of marine ecosystem function and

biodiversity is critical for sustaining the services they provide

(Ward et al., 2022). Understanding complex ecosystem

processes that are imperative for decision-making and effective

conservation management requires ecological insight over

varying temporal and spatial scales (Lindenmayer and Likens,

2009). These insights include quantifying ecological responses to

environmental change and providing ecological data to develop

informed ecological syntheses and prognostic ecological models.

Such syntheses and models act as platforms for collaborative

studies, promoting multidisciplinary research and providing

information to support evidence‐based policy, decision

making, and management of ecosystems, by implementing

both passive and active conservation to achieve optimal

conservation outcomes (Lindenmayer et al., 2012; Possingham

et al., 2015).

Both passive and active conservation approaches are

important and complementary strategies to ensure the

recovery of impacted ecosystems. Passive conservation

approaches aim to lessen or remove the impact of

environmental stressors to promote the natural recovery of

habitats, and often address issues that may inform policy in

areas such as poor water quality or pollution (Perrow and Davy,

2002; Morrison and Lindell, 2011). Ongoing monitoring to

determine the success of passive conservation approaches does

not often require understanding complex ecological processes

and is often the cheaper alternative. Reduction or cessation of a

stressor is often the primary goal, such as removal of agricultural

grazing or reduction in pollutants, and does not often test the

systems’ response to the management action, but the level of

certainty in achieving the goal is high, for example, agricultural

grazing was either reduced or it was not (Perrow and Davy, 2002;

Morrison and Lindell, 2011; Williams, 2011) Active

conservation, such as restoration efforts, is often attempted at

relatively smaller scales than passive restoration, however, this is

where current efforts in management are often comparatively
02
less economical and successful (Dıáz-Garcıá et al., 2020).

Currently, the costs for active conservation efforts are high.

For example, the global median cost to restore 1 hectare of

marine habitat is 80,000 USD, however, due to a number of

uncertainties within the restoration process, the real costs are

more likely to be 2-4 times higher (Bayraktarov et al., 2016).

Conservation management through ecosystem restoration of

degraded habitats is of particular interest, with the United

Nations hailing 2020-2030 as the Decade on Ecosystem

Restoration. While the implementation of ML algorithms in

statistical analysis in marine ecology is widespread, automated

solutions for monitoring and management are rarely attempted

(Perring et al., 2018), particularly for more localised or smaller-

scale conservation projects. Many marine active conservation

efforts are expensive and achieve average results or fail (Saunders

et al., 2020). This may be due to insufficient resources to

effectively monitor the ecosystem response long-term or to

manage and adapt effectively after implementation. However,

managers often face challenges in obtaining data for active

conservation over appropriate spatio-temporal scales and high

resolutions due to several difficulties such as the long-term

financial support required, and creating and maintaining an

appropriate monitoring design to accurately detect changes in

the environment.

Despite the need for long-term monitoring projects to

determine the success of active conservation efforts, they

remain uncommon, as ongoing funding, support, or

partnerships are challenging to sustain. Funding agencies and

investors are more likely to invest in new and innovative

projects, which pressures researchers to pitch their projects as

novel, rather than necessary monitoring (Keeling, 1998; Nisbet,

2007). Funding for active conservation projects is often scarce,

and budgets may be revised due to external economic factors,

such as the global economic changes resulting from COVID-19

(Pearson et al., 2020). In a time of financial uncertainty and

projected economic recessions for many countries, long-term

ecological studies may be considered non-essential spending in

the short term. Funding may also be split over shorter projects to
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match the length of active government administration and

funding cycles (Lindenmayer et al., 2012). For example,

funding from the National Science Foundation (USA) for

long-term ecological projects has decreased significantly in

recent years, while funding for short-term projects (4 years or

fewer) has increased (Hughes et al., 2017). Additionally, small

sample sizes and inefficient monitoring at inappropriate spatio-

temporal scales can impede the detection of ecologically relevant

changes. Consequently, inadequate monitoring may result in

poor management decisions that are detrimental to an

ecosystem, for example introducing ecological traps that

negatively affect species’ fitness, despite being under the guise

of an environmentally conscious contribution to the public or

funders (Legg and Nagy, 2006; Hale and Swearer, 2016).

Ultimately, enough data must be collected at appropriate

spatial and temporal scales using robust, long-term, and

reproducible monitoring approaches. Additionally, the ability

of monitoring practices to assess the accuracy or precision of

collected data is often not evaluated (Jones et al., 2015), and there

can be a disparity between monitoring and management scales.

Often there is a need for managers to discuss Thus, there is a

need for accurate, scalable, cost-effective, and accessible

solutions to assist in informing management at the

appropriate scales at which management occurs (Dietze

et al., 2018).

Automated monitoring facilitated by artificial intelligence

(AI) can provide a cost-effective solution to provide tools for

monitoring impacted and restored ecosystems over more

relevant spatial and temporal scales. Automation is defined

here as the use of technology to replace or reduce human

intervention. Automation has been adopted in many

industries, from automotive to finance, by replacing manual

efforts with computer programs or robotics (Lee, 1998; Gorlach

and Wessel, 2008). Machine learning (ML), a subset of AI, has

been fundamental to automation. ML algorithms use experience

through exposure to data to improve model performance and, as

a result, can make accurate predictions from large volumes of

data obtained in an automated framework (Mohri et al., 2018).

After implementation, automated systems should require

minimal input to report on the state of an ecosystem and are

potentially more cost-effective. Novel monitoring approaches

using automation and AI have consequently shown a marked

decrease in running costs after implementing automated systems

(e.g. Chen et al., 2015). González-Rivero et al. (2020) reported,

for example, that the automated processing of image-based data

from coral reefs using ML technologies resulted in a 99% cost

reduction over traditional methods, at 200 times the speed.

Therefore, the implementation of automated monitoring is

likely to have high short-term costs but low ongoing costs,

amenable to most funding cycles, and potential to overcome

the funding barrier for long-term monitoring as well as expand

data collection across greater spatial and temporal scales. These

cost reductions demonstrate that harnessing the power of AI for
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automated long-term monitoring can be one of the solutions to

conservation management funding constraints. In addition to

cost and time reduction, incorporating automation and AI into

management pipelines can expand our ability to manage impacts

on ecosystems effectively by providing data at the appropriate

resolution to address management needs and inform policy. The

additional data collected across greater temporal and spatial

scales, and processed via automated monitoring methods,

provides more information on the state of an ecosystem,

which in turn allows for a better understanding of the

environmental processes operating within the system

(Figure 1). This increased access to data, and subsequent flow-

on effects, follow the theory of the data-information-knowledge-

wisdom pyramid that can lead to more effective management

decisions by incorporating more, and useful inputs into the

decision-making process for managers to consider (Intezari

et al., 2016).

Here, we provide a perspective on the potential of AI

technology to transform conservation monitoring and

management through automation. We first summarise the

challenges and needs in ecological monitoring around the

collection, transfer, and processing of big data, with a focus on

overcoming the unique challenges of marine environments and

the benefits that provide, which lend themselves more to the

needs of active conservation management, as these approaches

usually require more iterative approaches to evaluate

management impact. We note some of the current

implementations of AI and automation technologies and

complementary techniques, not only in ecological sciences but

also in other disciplines that may have implications for our

capacity to effectively monitor marine ecosystems and inform

management, addressing the areas of research that require

further investigation in proving the scalability and feasibility of

these tools. Additionally, it is important to note that these tools

still need to be relevant and useful, and the appropriate approach

should be discussed by managers and stakeholders when setting

objectives and considering the monitoring design within their

management framework (McDonald-Madden et al., 2010).

Secondly, we identify current and emerging methods that

provide evidence for the potential of end-to-end, fully

automated methods to assist decision-making to suit the needs

of both passive and active conservation managers for marine and

coastal habitats by way of appropriate big data analysis, decision

support, and management action, that more fully utilise the

benefits an automated monitoring approach provides. The

implementation of these automated practices provides

managers with the capacity to rapidly assess management

impact to determine changes and iteratively adjust

management actions accordingly (supporting adaptive

management approaches), at all stages of the management

process from objective setting to implementation and

monitoring. Following the conceptual logic of the Driver-

Pressure-State-Impact-Response (DPSIR) framework as an
frontiersin.org
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example, as management actions are adopted the automated

pipeline provides information on the speed and strength of the

environmental response, and the management cycle continues

(Figure 2). Importantly, many of the approaches and

technologies presented in this perspective are at different

stages of research and development, therefore may be

implemented faster in a “semi-automated” approach, where

parts of the management cycle still rely on manual

intervention, such as data transfer from device to computer.

Such approaches may allow the adoption of these automation

techniques at a more comfortable pace for users or allow users to

target areas where the need for automation is greatest. This may

allow for more realistic implementation of automation tools for

projects where prohibitive costs do not outweigh the benefits.

We demonstrate how automation can support managers in

obtaining useful information for monitoring the outcomes of a

conservation decision, and adapting where necessary’
Automated monitoring

Non-invasive data collection

The reliance on manual efforts for monitoring means that

a high proportion of monitoring project budgets are spent on

data collection, limiting the breadth and scope of a project

(Caughlan and Oakley, 2001; Weinstein, 2018). In addition to
Frontiers in Marine Science 04
the high cost and effort which limits sample sizes, the

requirement for manual data collection may also bias

sampling towards sites that are easily accessible to humans,

which is particularly relevant due to the limited accessibility of

many marine or coastal environments. These issues have

meant that manual data collection in ecological sciences is

rapidly being supplemented or replaced by remote sensing and

automated methods to obtain coveted “big data” (Kimball

et al., 2021). Big data is becoming an important facet of

ecology and has challenged the epistemology of scientific

disciplines, as it disrupts and reconfigures how research is

conducted (Kitchin, 2014; Durden et al., 2017). Big data

broadly refers to massive volumes of data that are not

feasibly able to be handled using manual methods. More

specifically, to be defined as big data it must possess the

qualities of the “five V’s”; variety, volume, velocity, veracity,

and value (Anuradha, 2015; Cappa et al., 2021). These

qualities define big data as different types and large volumes

of data created and transferred at increasing speeds that are

generally reliable, and of value, to a user. Using big data

enables a better understanding of systems and processes as

users have access to far greater sample sizes to accurately

reflect a greater variety of real-world scenarios and increase

statistical power in data analysis. The increased development,

prevalence, and accessibility of new technologies have enabled

researchers to access big data at higher spatial and temporal

resolution using remote sensing.
FIGURE 1

Implementing AI facilitated, automated methods to collect and process data allows users to increase the scope, resolution, and breadth of
conservation studies by providing managers with more information, and there a greater capacity to share and form knowledge on the target
ecosystem. Coupled with novel machine learning techniques to analyse and predict outcomes, this may provide a greater understanding of
the system, leading to a greater capacity to effectively manage degraded ecosystems. The removal of the processing bottleneck adds to the
increased speed at which the data is transferred and translated into useful information and utilised to create management decisions in a
timely manner.
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Remote sensing is the science of collecting data via

noncontact recording, often providing geospatial or

environmental information (Wang et al., 2010). When

implemented into wireless sensor networks, remote sensing is

ideal for integrating into an automated end-to-end system.

Remote sensing techniques have become increasingly

sophisticated over the last decade, leading to a marked

increase in obtaining big data quicker than manual methods

and at a lower cost (Malde et al., 2020). However, the scale at

which RS networks often collect data may not always be useful

for some active conservation projects. Monitoring animal

biodiversity and fitness after the implementation of

management actions is important when considering the

functional recovery of an ecosystem, but is rarely attempted or

considered in marine ecosystem conservation (Hale et al., 2019).

Additionally, the collection of ecological data on the behaviour,

abundance, and distribution of animals and plants, in marine

environments, presents unique challenges due to limited

accessibility and visibility that are often of less concern in

terrestrial environments.

A solution to the scale and visibility constraints traditional

RS provides is the use of portable devices that collect image-

based data. Unmanned aerial vehicles (UAVs), commonly

known as drones, can provide spatial information and a much
Frontiers in Marine Science 05
more targeted and relevant scale to managers for active

conservation projects (Belmonte et al., 2020). However, while

areas can be surveyed using satellite or aerial drone imagery

quickly and efficiently, this method for marine environments

requires good water clarity and relies on the monitoring target

utilising shallow waters (Hensel et al., 2018), which may not

provide information on sub-surface behaviours or distribution.

Airbourne or towed LiDAR systems can provide subsurface

geospatial information at high resolutions (centimetres), as

well as ecologically relevant data on animal behaviour. This

approach does not rely on high water visibility and has been used

to collect a range of data from mapping and monitoring coral

reef health to providing data to estimate seabird flight height

near offshore windfarms (Collin et al., 2018; Cook et al., 2018).

The uptake of collecting underwater video footage has also been

rapid in the last decade as they have become a cheap and

effective way to collect large amounts of data in a non-invasive

manner (Lopez-Marcano et al., 2021).

New, alternative, and novel technologies to provide

ecological data have begun to emerge as a potential solution to

obtain information on species with even less contact. For

example, eDNA (DNA collected from environmental samples

such as water and soil) can be used to observe genetic data

showing the presence of species in an area without the need for
FIGURE 2

Conceptual, cyclical diagram for the capacity for an automated system to support managers at all stages, from baseline data collection to
objective setting, to ongoing long-term monitoring and management actions. We summarise the main points in each step where managers may
benefit from implementing an automated system to assist in achieving management outcomes. Automation and AI technology can assist
managers in learning about the environment to support problem formation and inform objective setting, as well as assist in ongoing, high-
resolution monitoring to inform on the results of management actions.
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extensive visual monitoring (Barnes and Turner, 2016). The use

of eDNA can not only detect the presence of target species, for

example, the problematic Crown of Thorns Sea Star on the Great

Barrier Reef, but potentially the severity (abundance) and the

locations of these outbreaks (Uthicke et al., 2018; Kwong et al.,

2021). Furthermore, it has been shown that it can accurately

estimate the abundances of fish within enclosed water bodies,

and it is even emerging as a tool to estimate fish biomass in

unconstrained marine environments (Rourke et al., 2022).

Unfortunately, this technology is still prohibitively expensive

for many projects and requires further research to quantify its

usefulness, underscoring the need for cost-effective ways to

collect useful data.

Although the potential impact and importance of big data

collection have been widely acknowledged in environmental

monitoring, and the utilisation of technology has become

more common, there are barriers to implementing automated

data-collection networks in marine ecosystems. Some of these

barriers are not ecosystem specific, such as lack of technical

expertise, funding, transferability, accessibility, and even

awareness of the existence of potentially useful technologies

(Madin et al., 2019). However, the added difficulties of

accessibility and associated higher costs of effectively

monitoring across appropriate spatial and temporal scales are

exacerbated when managing marine environments .

Additionally, new and novel technologies are becoming

available to collect data remotely, however, these technologies

often come with a higher cost associated, at times limiting the

number of units that can be purchased, and in turn, limiting the

sample size collected in monitoring projects which in turn

creates uncertainty in the data collected. Furthermore, manual

data collection is hailed as an important tool for community

engagement and education through citizen science (Pecl et al.,

2019; Schuttler et al., 2019). Therefore, removing this public data

collection may have negative consequences. However, it is

possible to integrate AI with citizen science (McClure et al.,

2020), securing the benefits of both.
Data transfer and storage

Automated collection presents a key step in big data

acquisition, but the ability to transfer high volumes of raw

data to centralised systems for analysis requires innovative

technological solutions. Although remote sensors are widely

used in environmental studies, devices often require manual

extraction to download data. Automated data transfer enables

researchers to continuously receive data from regions that

may be logistically difficult or dangerous for humans to

retrieve devices (Caughlan and Oakley, 2001). Automated

data transfer suitable for long-term monitoring relies on the

ability to send data to a centralised location for analysis,

requiring an efficient means of wireless transfer. Currently,
Frontiers in Marine Science 06
wireless technologies often utilise satellite or mobile phone

networks to transfer environmental data (Pettorelli et al.,

2018). While sometimes successful, they can be expensive

and are limited in their deployment locations as they rely on

proximity to these signals.

The internet of things (IoT) describes a connected network

of physical devices (“things”) that can collect and exchange

data over the internet, extending the reach where the wireless

devices can be deployed. The IoT phenomenon has exploded

onto the scene in the 21st century, connecting devices and

providing researchers with an efficient means of transferring

data in real-time. Coupled with edge computing technology (a

means of on-board data processing for remote devices), these

technologies provide an elegant solution to process large

image-based data files into compressed, processed data for

transmission at lower costs. For example, the coupling of

remote sensing and edge computing to process images and

videos has been implemented within unmanned aerial vehicles

to manage disease outbreaks (Li et al., 2021) and in remote

underwater videos to detect and record large mobile animals

(Coro and Walsh, 2021). There are still challenges in data

transfer and storage that limit the scalability of these

technologies such as the relatively short range of transfer,

high noise, and limited bandwidth capacity of underwater

wireless sensor networks which are unique challenges in

marine environments (Coutinho et al., 2018). Similarly, with

cabled networks, devices are limited in their deployment

location as they required cabled networks to a central

location, often limiting their deployment to near coastal

areas. Additionally implementing these observatories requires

considerable infrastructure that is often extremely expensive,

and also requires scalable and accessible facilities for big data

storage and transfer to users (Barnes et al., 2012). However,

automatically processing videos and images to obtain

ecologically relevant data to detect trends is still emerging.

Further research into the feasibility and scalability of onboard

data processing using edge computing to effectively monitor

marine ecosystems is still needed.

Globally accessible data storage and sharing by use of cloud-

based platforms can facilitate collaborative efforts and increase

accessibility to existing information. This enables fast transfer of

data between managers and further supports managers by

integrating additional information into their decision-making

processes. An example of current efforts toward data integration,

democratisation, and accessibility is a newly developed platform

by the Australian Institute of Marine Science and partners;

ReefCloud (https://reefcloud.ai/). ReefCloud brings together

cloud computing, machine learning, and advanced statistical

modelling to support the integration, synthesis, and accessibility

of coral reef monitoring data for managers and decision-makers.

Such integrated platforms have the potential to revolutionise

conservation and management efforts by creating a

centralise platform.
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Data processing

Raw data must be processed or transformed into usable

information for analysis. This is particularly important for

raw data that cannot be used without transformation into a

format that computers can read, such as acoustic recordings,

video and camera footage, and sonar (hereafter all described

as image-based data). Deep learning techniques have been

implemented to count 1.8 billion individual trees over an area

of 1.3 million square kilometres from satellite images,

allowing researchers to map the variability of crown

diameter, coverage, and density with respect to land use and

rainfall (Brandt et al., 2020). Incorporating deep learning

technology into this process meant it was completed within

a few weeks; a task that would have taken years to achieve with

traditional methods (Brandt et al., 2020). While spatial data is

relatively easy to collect via remote sensing, ecological data on

the long-term impact of habitat conservation efforts on

marine animals has historically not been well documented.

Here, we focus on image-based data as it is becoming an

increasingly popular method of non-invasive data collection

on the abundance, behaviour, and distribution of marine

species, due to its accessibility and cost-effective ability to

collect large volumes of data.

Deep learning may be a solution to the manual processing

bottleneck faced by managers who rely on image-based data

to inform management decisions. One use of deep learning

algorithms is rapidly processing large volumes of raw image-

based data without the need for manual feature extraction

unlike other traditional ML algorithms, and with greater

accuracy (LeCun et al., 2015; Alom et al., 2019). For

instance, Torney et al. (2019) used deep learning algorithms

to survey wildebeest abundance in Tanzania at a rate of

approximately 500 images per hour. At this rate, future

survey data are estimated to be processed in under 24

hours, whereas manual processing by a wildlife expert

would take up to 24 weeks. Additionally, accuracy was not

compromised, with the abundance estimate from deep

learning within 1% of that from the expert manual analysis.

The classification of multiple coral fish species with high

accuracy showed that this method was feasible in

unconstrained marine environments, despite facing unique

environmental challenges (Salman et al., 2016; Shafait et al.,

2016). Ditria et al. (2020a) also demonstrated that deep

learning algorithms are faster, more accurate, and more

consistent than manual efforts in fish monitoring. While

these studies show promising results, further research into

other camera methods, such as automatically detecting and

sizing species using stereo-cameras, remains a gap in marine

research. However, if successful, may further expand our

ability to collect more ecologically relevant big data to assist
Frontiers in Marine Science 07
conservation management by providing in situ biomass and

size data of animals in impacted habitats.

The power of deep learning as a tool for processing image-

based data has been demonstrated in the last few years, however,

as these techniques are relatively new within the ecological

sciences, there are still substantial challenges that need further

exploration. For example, understanding the level of error and

confidence in the predictive model outputs are poorly

understood, and the quality to which the data is processed

may be different from the small-scale tests if biases are

accidentally introduced, for example, if the habitat the model

is trained on is different to the data it is processing (Ditria et al.,

2020b). Although these errors and subsequent uncertainties may

have implications in providing misleading information, the

impact on population monitoring and management is still yet

to be investigated in the literature. Accounting for the bias that

this uncertainty introduces to ecological inference is an active

area of research (Diana et al., 2020).

Currently, there are a number of gaps for potential

research using deep learning as an effective and reliable tool

for image processing. Most deep learning models in the

ecological literature are supervised models which require

large labelled datasets for training (Christin et al., 2019).

However, the sparsity of labelled ecological datasets for

training deep learning models presents a challenge for

developing robust models. While publicly available labelled

datasets are beginning to emerge as deep learning becomes

more prevalent in ecology (Saleh et al., 2020; Ditria et al.,

2021), there remains a need for research on the transferability

of these datasets in training models for specific purposes and

projects, an area known as domain adaptation (Wang and

Deng, 2018). For example, a large, labelled dataset depicting a

fish species from one habitat may not create a useful model to

predict the same species in another habitat. However, by

supplementing an existing, large training dataset of the

species of interest in other habitats with a small amount of

data from the target habitat, model predictions may improve

without the need to obtain large amounts of specific training

data (Ditria et al., 2020b). Despite the implementation of deep

learning for image processing of ecologically relevant data in

marine science being in its infancy, the implications for

automated image-based data processing using deep learning

are enormous when considering how much data can be

collected, and has historically been collected, using cheap

and accessible camera and video devices. However, further

research into deep learning as a scalable tool to process

ecologically relevant data in challenging marine ecosystems,

and the integration of deep learning model outputs and

ecosystem models should be encouraged to obtain accurate

information on the success of conservation efforts for

ecosystem function and animal health.
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AI technology for evaluation and
decision support systems

Data summary and analysis

The implementation of an automated monitoring process,

theoretically, provides managers with robust data at an

appropriate resolution to effectively detect changes in an

ecosystem over larger spatial and temporal scales. This may

allow managers to obtain insights that were never available

previously with the aforementioned limitations of manual

monitoring methods. It is therefore important that we

recognise the potential information that can be obtained from

these methods, and how we can obtain it using AI methods.

One approach to maximise the benefits of automatically

collected big data (as defined above) is data-driven modelling

(DDM). DDM utilises big data and ML algorithms (including

previously mentioned deep neural networks) to find non-linear

relationships and patterns between variables (Willcock et al.,

2018). This modelling approach has significantly expanded

empirical modelling capabilities over the last few decades,

driven by the technological increase in computational power

(Solomatine et al., 2008). DDM seeks an unbiased approach

using raw data and real-world observations without explicit or

prior information on the physical behaviour of the system,

which could influence results based on omission or

misunderstanding of environmental processes (Solomatine

et al., 2008; Montáns et al., 2019). DDM can produce more

accurate models in near or real-time using big data than

conventional modelling techniques (Shen et al., 2019). As

such, DMM can give an accurate picture of the system as it is,

instead of how researchers expect it to be directly analysing big

data in real-time. Nevertheless, understanding fundamental

ecosystem processes before implementation is essential, as the

potential omission of data describing a key process can be

particularly problematic and result in inaccurate prediction

outputs. The evolution of DDMs has stalled as ML techniques

remain restricted to predicting rather than describing and

investigating the underlying processes of model outputs

(Lucas, 2020). Many popular ML approaches have a “black

box” reputation, whereby models sacrifice transparency for

increased prediction accuracy (Zhao and Hastie, 2021).

Therefore, it is preferable to understand the mechanisms

underlying models before considering ML techniques as tools

for management applications (Schuwirth et al., 2019).

Given the popularity of implementing highly accurate ML

techniques due to the increasing accessibility and availability of

big data and the demand for more “transparent” machine

learning explanations, there is interest in combining the

exploratory benefits and predictive capacity of ML algorithms

with a mechanistic understanding of process-based models

(Charnock et al., 2020; Chibani and Coudert, 2020). DDM can
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be designed to alert users to previously overlooked correlations

which can be explored further to understand if there are cause-

and-effect processes at play within the ecosystem. Additionally,

DDM can be used to harness big data to exploit the correlations

in variables, allowing decision-makers to assign uncertainty

thresholds for ecological processes that may lack information.

(Willcock et al., 2018; Charnock et al., 2022). However, while

this hybrid modelling approach has been attempted and applied

in the last decade (Chau, 2006), there is still often a lack of big

data to implement into these models, particularly biological data,

which are more complex and less objectively interpretable than

physics-based data (Marx, 2013). The complementarity of DDM

and process-driven modelling may eventually result in a “best

practice” approach to environmental modelling, assisting

managers in effectively utilising and understanding data from

an automated system. However, there have been recent attempts

to “open the black box” in a number of biological fields such as

genetics (Azodi et al., 2020) and medicine (Baselli et al., 2020;

Poon and Sung, 2021) to create interpretable ML models. This is

important in conservation science as ensuring the collection of

appropriate data and understanding the driving ecosystem

processes is important to effect change in the appropriate areas

for managers. As computational power advances and big data

becomes ubiquitous in all disciplines, ML’s ability to adapt

continuously and quickly to changing environments may

provide near real-time prediction of complex environmental

processes with great accuracy.
Predictive models and adaptability

Predictive models can be used to make forecasts about future

ecosystem states and can inform decision-makers by comparing

alternative management strategies and quantifying uncertainties

(Geary et al., 2020). Due to the wide variety of data analysis

methods and tools, and the complexity of different monitoring

projects, there is no single best practice for data analysis that can

be suggested as an overarching solution. Choosing the most

appropriate modelling approach depends on the management

goals, requiring collaboration with modellers and managers to

determine the most appropriate approach. (Araujo et al., 2020)

Training ML algorithms by reinforcement learning (RL)

using real, raw data may better support adaptive management

and agile decision-making relative to supervised or unsupervised

training of machine learning algorithms (Figure 3). RL

algorithms do not require a pre-defined training dataset and

instead, interact directly with their environment to identify

optimal decisions to achieve a “goal” by being either

“rewarded” or “punished” for certain decisions (Sutton and

Barto, 2018). RL algorithms have been used in the context of

environmental management and conservation decision-making,

however, due to the historic lack of empirical data and

computational power, modelling using reinforcement learning
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has previously been limited to using simulated data and

theoretical approaches to management (e.g. Chades et al.,

2007; Verma et al., 2018; Frankenhuis et al., 2019). However,

the rise in computing power and increasing availability of big

data means that RL can now be combined with artificial neural

networks, i.e., “deep RL” to interact with real-world data and

exploit the advantages of this training approach to assist in

decision-making. In an automated monitoring system, deep RL

can not only be used to optimise the autonomous nature of

remote sensing networks at the data collection and transfer

stages (Luong et al., 2019), but algorithms could also interact

with continuous streams of real-world data (i.e. data-driven

reinforcement learning) and predict future ecosystem states

(the “goal”). If the model accurately predicts the variable of

interest, which is validated by the continuous incoming data, it is

“rewarded”, if not, the algorithm is “punished”, and so on.

Deep RL increases performance through continuous

interactions with its environment, making it ideal for

integration into long-term monitoring as it can adapt to

change since its actions are not predetermined, unlike

supervised learning. The ability to learn from continuous real-

world data and adapt outputs accordingly may enable managers
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to predict near-term future ecosystem states and decision

responses to provide effective solutions to real-world problems

by integrating this knowledge and linking automated

monitoring data, particularly with emerging biological big

data, in causal relationships using management frameworks

such as DPSIR (Sekovski et al., 2012; Tscherning et al., 2012;

Rodrıǵuez-González et al., 2017). This learning technique may

give the much-needed empirical support to mechanistic

frameworks which often face challenges in obtaining the

required ecosystem state knowledge under the effect of

potential management actions (Polasky et al., 2011).

Furthermore, RL can support iterative and near real-time

forecasting of management outcomes, thereby supporting agile

decision-making for effective and quick management

applications (Lapeyrolerie et al., 2021). This technology

highlights the ability of AI to produce immediate, actionable

solutions without introducing long-term threats to

environmental systems (Nishant et al., 2020). However, the

implementation of deep RL requires vast amount of data

relevant to the modelling goal. Current research using RL

modelling techniques including prediction of crop yield in

agriculture based on raw data collected on environmental
FIGURE 3

Traditional machine learning techniques improve prediction accuracy by incorporating more training data for the model to learn. Conversely,
deep reinforcement learning allows models to improve by incorporating more data through their continued exposure to their environment and
by rewarding or punishing correct and incorrect actions, respectively.
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parameters in a semi-constrained environment, to create models

that can create accurate outputs and learn from continuous data

over multiple crop seasons (Elavarasan and Vincent, 2020).

However further research is needed to test the scalability of

these models in large, unconstrained marine environments over

appropriate time scales, and what data is needed to achieve

accurate model outputs.
Enabling and supporting decision making

To facilitate effective management, information gathered from

automated monitoring must be efficiently transferred to decision-

makers. A technological solution for information transfer,

understanding, and interaction may come from a tailored and

management-oriented user interface at the end of the automation

pipeline (UI). A UI is a space where humans interact with machine

processes and can be designed to be “user friendly” to assist

interaction at an appropriate level of user understanding. For

example, the popular web-based search engine Google has a UI

designed to make information retrieval accessible to individuals

with little to no computer training. Programming languages such

as R have been utilised as an effective data visualisation tool and

statistical analysis tool for large datasets (big data) in the last

decade, increasing from 11% of ecological studies utilising R in

2008 to over 58% in 2017 (Lai et al., 2019). However, these require

skill-specific coding knowledge that is not always shared by

researchers and managers. Custom-built UI platforms, such as

web applications, designed for environmental monitoring could

provide managers with real-time information on the state and

condition of their management area without the need for coding

expertise. The UI could display key information for managers as

data summaries, such as trends in animal abundances over time or

if specific variables are nearing manager-defined thresholds, as well

as providing its own suggestions from automated, data-driven

decision making. Additionally, the use of AI algorithms can note

areas with data deficiencies, like the citizen science, bird

monitoring app eBird, recognises data-poor regions and gamifies

data collection in these areas for users to improve the spatial

balance of data collection (Kelling et al., 2013). However, the

development of tailored software can incur high initial costs in

proportion to project budgets andmay require collaboration across

different areas of expertise, including managers, software

developers, modellers, and researchers (McClure et al., 2020).

Integrating automated monitoring and UIs may be a useful tool

for long-term monitoring and management programs, which

otherwise can be troubled by issues with staff and leadership

turnover, ongoing training costs, and loss of skill sets (Caughlan

and Oakley, 2001; Likens and Lindenmayer, 2018). Informative

data summaries and predictive outputs should be accessible to

managers without extensive modelling expertise, including

predictions of environmental change under different

management scenarios that can also be displayed in the UI
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(Fer et al., 2021). As ML continues to demonstrate its

applications in environmental technology (Lamba et al., 2019),

increasing attention has been centred on maximising the

integration and usability of technologies towards management-

ready UIs that support decision-making by providing increased

accessibility to relevant information. Examples of these

collaborative efforts span from both land (e.g., https://www.

globalforestwatch.org/) to oceans (https://reefcloud.ai/, https://

allencoralatlas.org/ and https://datamermaid.org/). As AI can

make the tracking of progress on quantitative conservation

objectives easier, displaying and sharing data on these platforms

can also make providing this information to managers easier.
Current challenges to implementing
automated monitoring systems

While new technologies have been identified as valuable

tools in environmental monitoring to assist conservation and

management efforts for many ecosystems, there are still

roadblocks to overcome for efficient and cooperative

environmental management at the implementation level

(Table 1). Democratisation of data requires efforts to make

useful data accessible, including the effective management and

appropriate storage for these data (Pimm et al., 2015); a

challenge that requires global cooperation. Additionally, the

implementation of mechanisms to evaluate the accuracy and

precision of automatically collected and processed data are

needed to provide tools for quality assurance and control of

data provided by the automated system from the collection to

processing phases. The cooperation and implementation of a

standardised, systematic reporting framework for marine

monitoring may assist in the transfer of knowledge between

managers. Integrating AI technology with standardised

reporting could allow managers to make informed decisions

and share useful information to drive and improve management

success (Eger et al., 2022).

Social factors may also act as a roadblock to the proliferation

of automated monitoring. The reluctance or inability of groups

to share data could slow global, or even local, cooperative

research and impede quick and effective conservation efforts.

This is why making useful data easily accessible is important for

improving AI implementation in environmental research.

Additionally, while the benefits AI has provided to businesses

in many industries are increasingly evident, the hesitancy of in-

house employees to implement AI initiatives will inevitably

affect the efficacy of automated monitoring projects (Zhu et al.,

2021). While potentially controversial, the outputs from AI-

facilitated management suggestions can be highly informative

and useful, as Araujo et al. (2020) found that predictions made

by automated decision-making algorithms, on individuals’

opinions about the fairness and usefulness of automated

decision-making, ironically, were on or even better than
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human experts when given only data on an individual’s

general characteristics.

While these challenges highlight current roadblocks to

implementation, there are other considerations once these

automated systems begin to be utilised. It is important to note

the detriments of heavy reliance on automated systems,

particularly for quality assurance and control. There is already

a societally-normalized trust in AI that many already experience

in our day-to-day lives from phone applications to household

appliances (Bedué and Fritzsche, 2021). However, the benefits

that automation can provide often outweigh the risks which can

also be mitigated by accounting for perceived risks. For example,

AI has been implemented to detect a number of cancers in

patients (Hoshyar et al., 2011; Kudva et al., 2018; Espinosa et al.,

2020). However, the risk of the machine returning a false

negative for a patient can have dire consequences for the

individual. By factoring this into the automation process, in
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which the algorithms are set to have higher recall than precision

(higher false positives are generated instead of false negatives),

the risk of missed pathologies is reduced (Livingstone and Chau,

2020). These technologies, while useful tools for assistance and

increasing ecological knowledge, do not replace the many facets

that need to be considered by managers in the decision-

making process.
Conclusion

As funding for long-term monitoring projects remains

scarce, the cost of purchasing, implementing, and running AI

technology continues to decrease, making automation an

attractive alternative for conservation management in marine

ecosystems.We have shown that automated monitoring to obtain

big data may assist in broadening our understanding of these
TABLE 1 Summary of areas of research that have substantial gaps and challenges in marine ecosystems that require further research to create
useful tools to assist conservation management through automated monitoring facilitated by artificial intelligence.

Process step AI/Automation
technology

Gaps Challenges

Monitoring Data collection Cameras
UAVs
eDNA
Remote sensing

•Collecting big data on animal response to
restoration efforts across appropriate spatial and
temporal scales

•New technologies may be prohibitively expensive:
eg eDNA
•Processing bottlenecks
•Cost results in inappropriate monitoring designs
implemented

Data transfer Edge computing,
underwater networks,
cabled observatories

•Scalability and feasibility of edge computing in
marine environments

•Infrastructure is costly to implement
•Marine-specific environmental challenges eg short
transfer distance
•Big data transfer and storage needs

Data processing Computer vision/Deep
learning

•Scalability and accuracy of models to answer
ecological questions by integrating deep learning
model outputs
•Investigating alternative solutions to marine-
specific challenges such as varying water visibility
•Automated sizing using stereo-cameras

•Limitations of small training datasets
•Marine-specific environmental challenges
•Cost of marine-related site accessibility restricting
the breadth of studies eg boating and diving costs.

Evaluation
and decision
support

Data summary
and analysis

Data visualisation •Data-driven modelling for analysis of true “big
data” from raw data inputs
•Exploiting newly available capabilities of big
data analysis

•Biases in big data collection can lead to misleading
results
•Requires the possible creation of new metrics and
methods of data analysis

Predictive
models and
adaptability

Data driven modelling and
reinforcement learning

•“Opening the black box” for ML model
interpretability
•Reinforcement learning using continuous
streaming of raw data

•ML model interpretability may be difficult
depending on the complexity of the data input
•RL is computationally challenging and expensive
•Lack of ‘true’ big data to implement RL effectively

Decision making
support

Adaptable user interfaces •Easily interpretable information via user
interfaces to facilitate decision making

•Possibly expensive and outside project budget
•May need ongoing maintenance and flexibility for
adaptive management approach

Other Social challenges NA •Education on AI technologies and capabilities
•Appropriate upskilling of staff

•Wariness of new technology and implications for
jobs
•Possible high initial costs associated with
upskilling staff

Centralisation of
data and data
sharing

Data integration •Creation and implementation of standardised
reporting frameworks
•Democratisation of data

•Lack of global-cooperative efforts in
standardisation due to varying opinions and
resources
•Organisation intellectual property rules and lack of
centralised databases and frameworks for effective
data sharing
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relatively inaccessible marine ecosystems. Coupled with

sophisticated machine learning algorithms to analyse data,

automated monitoring can provide managers with a

comprehensive, cost-effective, and constant supply of accurate

information for long-term monitoring and optimal, adaptive

management decisions, particularly where systems are changing

due to anthropogenic influences. Despite the current

technological and social challenges facing the implementation

of AI and automated systems in management, the unprecedented

amount of data becoming available, coupled with advances in ML

over the last few years can providemanagers and researchers with

the tools to create accurate and agile predictions. This will ensure

appropriate and successful management outcomes with the aid of

additional analysis and decision support applied to an adaptive

management framework. However, there are still many areas of

research that need further investigation on the feasibility and

scalability of these technologies before they are implemented into

fully end-to-end automated monitoring systems. Despite this,

“semi-automated” approaches where individual technologies can

be adopted at different stages is currently feasible and may assist

in immediate increases in information. The more accessible and

pervasive use of technology can encourage uptake and improve

management outcomes and overall understanding of marine

environments and ecological processes for conservation.
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