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Fish surveys on the move:
Adapting automated fish
detection and classification
frameworks for videos on a
remotely operated vehicle in
shallow marine waters

Rod M. Connolly1*, Kristin I. Jinks1, Cesar Herrera1

and Sebastian Lopez-Marcano1,2

1Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and
Science, Griffith University, Gold Coast, QLD, Australia, 2Quantitative Imaging Research Team,
CSIRO, Epping, NSW, Australia
Mobile underwater cameras, diver-operated or on underwater vehicles, have

become popular for monitoring fisheries. Replacing divers with cameras has

clear advantages, such as creating permanent records and accessing waters

unavailable to divers. The use of cameras, however, typically produces large

quantities of video that are time-consuming to process manually. Automated

analysis of underwater videos from stationary cameras using deep learning

techniques has advanced considerably in recent years, but the use of mobile

cameras potentially raises new challenges for existing methods. We tested how

well three automation procedures for stationary underwater cameras, taking an

object-centric rather than background-centric approach, performed on

surveys of fish using a mobile camera. We analyzed underwear drone videos

from reef and seagrass habitat to detect and count two marine fisheries

species, luderick (Girella tricuspidata) and yellowfin bream (Acanthopagrus

australis). Three convolutional neural network (CNN) frameworks were

compared: Detectron Faster R-CNN, Detectron2 Faster R-CNN (using a

Regional Proposal Network, RPN), and YOLOv5 (a single-stage detector,

SSD). Models performed well overall. Per frame, overall F1 scores ranged 81.4

- 87.3%, precision 88.2 – 96.0%, and recall 73.2 - 88.2%. For quantifying MaxN

per video, overall F1 ranged 85.9– 91.4%, precision 81.9– 95.3%, and recall 87.1

– 91.1%. For luderick, F1 was > 80% for all frameworks per frame and 89% or

higher for MaxN. For yellowfin bream, F1 scores were lower (35.0 - 73.8% for

frames, 43.4 - 73.0% for MaxN). Detectron2 performed poorly, and YOLOv5

and Detectron performed similarly with advantages depending on metrics and

species. For these two frameworks, performance was as good as in videos from

stationary cameras. Our findings show that object detection technology is very

useful for extracting fish data from mobile underwater cameras for the system
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tested here. There is a need now to test performance over a wider range of

environments to produce generalizable models. The key steps required area to

test and enhance performance: 1. for suites of species in the same habitats with

different water clarity, 2. in other coastal environments, 3. trialing cameras

moving at different speeds, and 4. using different frame-rates.
KEYWORDS

underwater drone, object detection, diver-operated video (DOV), remotely operated
vehicle (ROV), deep learning, ego-motion, fish recognition
Introduction

The use of cameras to survey fish populations is becoming

increasingly widespread for fisheries assessments and fish

ecology (Sward et al., 2019). Mobile underwater video

cameras, either diver operated or on underwater drones,

remotely operated vehicles (ROVs) or autonomous underwater

vehicles, are beginning to replace traditional underwater visual

census (UVC) techniques for habitats such as coral reefs, rocky

reefs, deep waters, and offshore gas platforms (Andaloro et al.,

2013; Goetze et al., 2015; Sward et al., 2019). Cameras have clear

advantages over UVC: 1) cameras produce permanent records

during a survey; 2) remote cameras on drones or ROVs can be

used in deep waters inaccessible to divers, and in waters with

dangerous animals; 3) remote cameras reduce costs associated

with diving (Andaloro et al., 2013; Sward et al., 2019; Garner

et al., 2021). Cameras can also avoid the known biases of UVC

for different types of fish (Bernard et al., 2013; Sheaves et al.,

2020). Regardless of the technique utilized, the use of cameras

generates large volumes of imagery that can be time-consuming

and costly to process manually (Sheaves et al., 2020).

Automating the processing and analysis of underwater videos

therefore becomes a valuable step for fisheries management.

Deep learning, a form of machine learning, has been used to

automate the analysis of imagery from a wide range of

environments, including aquatic ecosystems (Dawkins et al.,

2017; Jalal et al., 2020; Salman et al., 2020). Deep learning

techniques such as convolutional neural networks (CNNs)

have proven successful for fish recognition and tracking from

stationary cameras such as baited/unbaited remote underwater

video systems (BRUVs/RUVs) (Mandal et al., 2018; Villon et al.,

2018; Ditria et al., 2020a; Coro and Walsh, 2021; Ditria et al.,

2021; Lopez-Marcano et al., 2021). Object recognition can be

conventionally achieved by object- and background-centric

methods (Heo et al., 2017). In object-centric methods objects

of interest are detected by training a model capable of localizing

and identifying object features in the image. Background-centric

methods, by contrast, first attempt to differentiate background

and foreground elements in the image, so moving objects of any
02
type can then be localized and identified. While both methods

can accomplish object recognition, the first one is solely

concerned with the object detection task, while the second

involves image segmentation and object detection tasks.

Furthermore, recent advances on instance, semantic and

panoptic segmentation combine several computer vision tasks

to achieve an holistic understanding of the scene (Kirillov et al.,

2019; Kim et al., 2020). However, complex dynamic scenes, such

as those created by mobile cameras, pose a different set of

challenges to object recognition and segmentation methods.

The main challenge is that constantly changing backgrounds

can make it difficult to detect objects of interest that are also in

motion (Wei et al., 2021). Complementary methods and

additional developments and modelling are required for

background-centric methods to be reliable on moving cameras

at the required accuracy (for instance, Cutter et al., 2015; Heo

et al., 2017; Diamantas and Alexis, 2020; Wei et al., 2021); and a

holistic understanding of underwater scenes (e.g. panoptic

segmentation) requires a considerable effort of annotating and

training segmentation models beyond the scope and capabilities

of most organizations (but note O’Byrne et al., 2018; Arain et al.,

2019; Islam et al., 2020; Liu and Fang, 2020). Given these

difficulties and complexities, for single-camera surveys it will

be beneficial if existing object-centric methods already

developed for underwater imagery prove to be reliable in

complex dynamic scenes. Additionally, increased occurrence of

blurred images from mobile compared with stationary cameras,

as reported in automated image analyses from unmanned aerial

vehicles (Sieberth et al., 2013), represents another challenge

influencing the applicability of object-centric methods to

underwater imagery. It is therefore important to test whether

recent successes in automation for underwater surveys using

stationary cameras can be achieved for methods using

mobile cameras.

Automation, in the form of object detection on underwater

videos from mobile cameras, has been used in certain situations.

For example, Francisco et al. (2020) used a multi-device camera

system to track fish against a complex background, one a diver-

operated stereo-video system, the other a single camera fixed on
frontiersin.org
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the seabed. They used CNNs to detect the position of fish within

a 3D re-creation of the substrate background. The success of the

algorithms used by Francisco et al. (2020) is promising but is

difficult to apply to the more typical situation of a diver or drone

operating a single camera device. Machine learning algorithms

have also been used to guide underwater ROVs, for example in

tracking marine animals such as jellyfish (Katija et al., 2021).

Walther et al. (2004) used selective attention algorithms on

ROVs to automatically detect and track a range of animals,

including jellyfish. However, although these studies used

automated object detection, none of them reported on the

effectiveness of automated data extraction on videos from

mobile cameras. The need remains, therefore, to test and

report the performance of deep learning algorithms for

identifying and counting fish in videos from mobile cameras.

We tested how object-centric automation procedures

established for stationary underwater cameras performed on

videos from a mobile camera. Our aim was to establish whether

videos obtained from a mobile camera could be reliably trained

and analyzed using deep learning to achieve high accuracy of

detecting and counting fish. To achieve this, we developed

multispecies fish detection models trained and tested on videos

from an underwater drone. We compared performance of object

detection per frame, and on extraction of MaxN values, the

maximum number of fish of a particular species in any single

frame of a video (Langlois et al., 2020). Performance was

compared with that in comparable previous studies on

stationary cameras. Given the increasingly widespread use of

mobile cameras in fisheries science, our finding that an existing

object-detection method developed for stationary cameras is

suitably reliable for identifying and counting fish in videos from

mobile cameras offers a potentially important step-change in

image processing efficiency.
Frontiers in Marine Science 03
Materials and methods

Data collection and preparation

To achieve our aim of testing the effectiveness of deep

learning techniques on videos from mobile cameras, we used

CNNs to detect and count two common species offish in surveys

using an underwater drone. We surveyed a mixed reef and

seagrass habitat in 3 m water depth, in Tallebudgera estuary,

southeast Queensland, Australia (28°05’54.0”S, 153°27’20.5”E).

The two target species, luderick (Girella tricuspidata) and

yellowfin bream (hereafter bream, Acanthopagrus australis),

are commercially and recreationally harvested fisheries species

that also have important ecological roles in coastal waters

(Ferguson et al., 2013; Gilby et al., 2017).

Three surveys using a QYSea FiFish V6 drone (Figure 1)

filming at 25 fps were conducted on each of three days during

November 2021. Each survey ran for 20 min, haphazardly criss-

crossing the ~ 1 ha site, with a minimum of 20 min between

consecutive surveys. Videos from each survey were clipped into

2.5 min segments to obtain multiple replicates per survey per

day. This resulted in 8 segments per survey (except for one

survey cut short by an increase in turbidity that reduced

visibility). Video snippets were created from these segments,

focusing on periods with one or more fish, for a total of 237

snippets of varying length (approximately evenly spread across

surveys and days).

We created two completely independent datasets: 1) the

training dataset, using snippets from surveys on two of the three

days, and 2) the testing dataset, using snippets from surveys on

the remaining day. All individuals of the two target species were

annotated using bounding boxes in all snippets in both datasets,

on 5 frames per second of video (i.e., every fifth frame), for a
FIGURE 1

Images showing underwater drone with camera during fish surveys (left), and an example image from a video of fish being automatically
identified and counted using Detectron model (TP = true positive identification) (right).
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total of 11,714 annotations (8,830 luderick and 2,884 bream;

Table 1). Although luderick and bream were the most common

species, two other species occurred occasionally, common

silverbiddy (Gerres subfasciatus) and estuary glassfish

(Ambassis marianus), and a small number of annotations of

these other species were also included in the training dataset

(total of 460 annotations); the objective was not to count these

non-target species in testing performance, but to optimize the

model for the target species (a technique used previously on

stationary videos (Connolly et al., 2021).
Object detection, MaxN, and
performance metrics

For object detection, the tasks of localizing and classifying

fish into the two pre-determined labels, we used three CNN

frameworks, the first being particularly widely used recently for

fish detection in videos from fixed cameras (e.g. Ditria et al.,

2020a; Ditria et al., 2021; Lopez-Marcano et al., 2021): (1)

Detectron Faster R-CNN (Ren et al., 2015) with a RestNet50

configuration pre-trained using the ImageNet1k dataset (Deng

et al., 2009), (2) Detectron2 (Wu et al., 2019) Faster R-CNN

(Ren et al., 2015) with ResNet50 and Feature Pyramid Network

(FPN) configuration pre-trained using the Common Objects in

Context (COCO v2017) dataset (Lin et al., 2014) and a Regional

Proposal Network (RPN), and (3) YOLOv5 (Jocher et al., 2020) a

single shot detector (SDD) with new CSP-Darknet53 backbone

(Wang et al., 2020), Spatial Pyramid Pooling-Fast (SPP) neck,

and YOLOv3 head (Redmon and Farhadi, 2018) trained on the

COCO dataset (Lin et al., 2014) with pre-trained weights from

YOLOv5x. Model training, evaluation and testing were

conducted in two cloud platforms: Detectron was run on a

Microsoft Azure Data Science virtual machine equipped with an

NVIDIA V100 GPU, while Detectron2 and YOLOv5 were ran

on a virtual machine provided by the Australian Research Data

Commons Nectar Research Cloud equipped with an NVIDIA

A100 GPU. All models were developed using Python PyTorch

framework (Paszke et al., 2019). We used base model pre-trained

weights during model initialization to transfer CNN general

purpose detection knowledge to the fish detection domain, an

effective and common procedure used in the literature (Ditria

et al., 2020a; Zhuang et al., 2020; Saleh et al., 2022a). This

procedure also shortens training time in new datasets. The
Frontiers in Marine Science 04
hyper-parameters used for each model can be found online

(https://github.com/globalwetlands/fish-on-mobile-cameras).

Overfitting was mitigated by: using the early-stopping technique

(Prechelt, 2012), performing data augmentation during training,

and by assessing model performance (i.e. loss) in an evaluation

set (a subset of the training set not used during model training).

We had two strategies for optimizing model performance:

adjusting confidence thresholds (CTs) and using a spatio-

temporal filter for each target species. The varying CTs change

how many predictions of a species occurrence are confirmed in

each frame. We varied CTs between 0-95% in 5% increments.

For the spatio-temporal filter, we used sequential non-maximum

suppression (Seq-NMS), which links detections in neighboring

frames (Han et al., 2016). We had Seq-NMS turned on and off,

both before and after CT selection, and varied the number of

frames for Seq-NMS from 1 to 15 frames.

For each of the three frameworks, we developed one model

trained to identify the two species classes. We tested the

performance of models using two key metrics of fish

abundance, separately for the two species: 1) count per frame

(object detection), and 2) MaxN per video snippet. Count per

frame was calculated over a total of 1,939 frames in the testing

dataset, and MaxN was calculated across 84 video snippets. Two

performance criteria, precision and recall, were determined for

each confidence threshold and Seq-NMS frame. Precision

measures the fraction of fish detections that were correct, and

recall measures the fraction of fish actually present that were

detected.

Precision =  
True   Positive

True   Positive + False   Positive

Recall =  
True   Positive

True   Positive + False  Negative

Overall performance for count per image and MaxN was

determined by the F1 score, which represents the balance

between precision (P) and recall (R):

F1   =   2� P  �  R
P + R

At the optimal CT, we proceeded to run two additional

replicate models, giving a total of three models generated from

the same training dataset. F1 performance could therefore be

reported as an average with an estimate of confidence

(standard error).

We assessed two factors potentially contributing to

prediction errors, fish bounding box blurriness and fish

relative size (the size of the bounding box). Blurriness was

estimated using a Laplacian-based operator (LAP family as per

Pertuz et al., 2013), which assesses the ‘amount’ of edges using

the second derivative of the image. The underlying assumption is

that fish in focus present more conspicuous edges than blurred

fish. For calculating Laplacian values, we firstly computed the
TABLE 1 Numbers of annotations for training and testing of models
on underwater drone videos (relative abundances of the two species
varied between training and testing because of natural fluctuations
among survey days).

Annotations Total Luderick Bream

Training 8,282 5,660 2,622

Testing 3,432 3,170 262
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Sobel operator using a kernel of 3-pixel size convolved over

the bounding box, with scale factor of 1. We then applied the

Laplacian method to return a value for each pixel within the

bounding box. We reported the variance of Laplacian values as

our blurriness estimate, with lower Laplacian values indicating

high blurriness, and vice versa. Fish relative size was reported

directly as pixel area, the product of the bounding box width

and height.
Results

The models generally performed well. Detectron2 performed

more poorly than other frameworks, whereas YOLOv5 and

Detectron performed similarly, sometimes better, sometimes

worse than each other, depending on key metrics and species.

On a count per frame basis (Table 2), the average overall model

F1 scores for the three frameworks ranged from 81.4 - 87.3%,

precision 88.2 – 96.0%, and recall 73.2 - 88.2%. Of the two better

frameworks, Detectron had fewer False Negatives than YOLOv5

(16% vs 20%), but more False Positives (in all 382 vs 115).

The F1 score on a count per frame basis for luderick specifically
Frontiers in Marine Science 05
was > 80% for all frameworks; and lower for bream ranging

35.0 – 73.8%.

Performances based on extraction of MaxN values (Table 3)

were solid overall; for the different frameworks, F1 ranged from

85.9 – 91.4%, precision 81.9 – 95.3%, and recall 87.1 – 91.1%. For

extraction of MaxN, F1 values were high for luderick (89% or

higher) and lower for bream (43.4 - 73.0%). Detectron

outperformed both other frameworks for bream, with higher

precision and recall and thus superior overall performance

(Tables 2, 3).

The best performance metrics occurred with Seq-NMS

turned on prior to applying confidence thresholds and using

three frames. A CT of 40% for both species maximised F1 and

balanced precision and recall (shown for Detectron: Figure 2).

Further analysis to determine potential factors contributing

to prediction errors, especially false negatives and particularly

for bream, revealed that false negatives (FNs) were consistently

labelled as such across the models, with 74% of luderick FNs and

67% of bream FNs classified as such in all three models. So these

errors are consistent and therefore worth assessing for other

causative factors. Blurriness did not differ among classes (TP,

FN, FP) for either species (Figure 3). If anything, there was a bias
TABLE 2 Count per frame results.

Detectron Detectron2 YOLOv5

Overall model Luderick Bream Overall model Luderick Bream Overall model Luderick Bream

F1 score 85.8 86.7 73.8 81.4 80.8 35.0 87.3 87.6 69.3

Precision 88.2 88.5 84.3 91.7 95.7 28.3 96.0 95.8 82.2

Recall 83.5 85 65.6 73.2 69.9 45.8 80.0 80.7 59.9

Ground-truths (GT) 3432 3170 262 3432 3170 262 3432 3170 262

True positives 2867 2695 172 2512 2215 120 2745 2557 157

False negatives (FN) 565 475 90 920 955 142 687 613 105

FN proportion of GT 0.16 0.15 0.34 0.27 0.30 0.54 0.20 0.19 0.40

False positives 382 350 35 227 100 304 115 112 34
frontie
Overall and per species model performance for three CNN frameworks on the fish count per frame task (confidence thresholds of 40% for both species).
TABLE 3 MaxN per video results.

Detectron Detectron2 YOLOv5

Overall model Luderick Bream Overall model Luderick Bream Overall model Luderick Bream

F1 score 90 93.4 73 85.9 87.1 43.4 91.4 90.3 65.3

Precision 95.3 98.2 78.9 81.88 89.38 29.03 91.8 90.7 57.1

Recall 87.1 89.9 71.4 90.37 84.87 85.71 91.1 89.9 76.2

Ground-truths (GT) 135 119 21 135 119 21 135 119 21

True positives 122 107 15 122 101 18 123 107 16

False negatives (FN) 18 12 6 13 18 3 12 12 5

FN proportion of GT 0.11 0.1 0.28 0.10 0.15 0.14 0.09 0.10 0.24

False positives 6 2 4 27 12 44 11 11 12
Overall and per species model performance for three CNN frameworks on the MaxN fish per video task (confidence thresholds of 40% for both species).
rsin.org
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towards lower blurriness in FNs; although this was very slight, it

shows clearly that the FNs were not the result of high blurriness.

Fish relative size (bounding box area) did differ among classes,

with FNs for bream (but not luderick) having a preponderance

of smaller areas (Figure 4). Frequencies of image sizes for bream

in training and evaluation datasets were similar although there

were slightly fewer small images in training (Figure 5).
Frontiers in Marine Science 06
Discussion

The performance of the deep learning models was suitable for

multi-species detection and counting of fish in mobile underwater

videos. For the two better performing frameworks, Detectron and

YOLOv5, overall F1 values above 85% for object detection (counts

per frame) and above 90.0% for MaxN values are comparable with
A

B

C

FIGURE 2

Precision and recall values for count per frame results for (A) overall model, (B) luderick and (C) bream, shown for Detectron as example.
Confidence intervals are in 5% increments; a confidence threshold of 40% is highlighted as resulting in the best F1 score, for performance as
reported in Table 2.
FIGURE 3

Distribution of blurriness values for three classes of predictions (True Positives, False Negatives, False Positives), for luderick and bream, shown
for Detectron model. No substantial differences among classes are evident. Low Laplacian variance values are indicative of high blurriness.
Results are for one of the three Detectron models, other model results were very similar.
frontiersin.org
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those using deep learning on videos from stationary cameras.

CNN models in recent multispecies analyses of videos from

underwater stationary cameras have produced overall

performances (as % of object detection correct, similar to F1) of:

86.9% average on 18 fish species (Villon et al., 2018), and 78.0% on

20 species (with values for individual species ranging from 63 –

99%, Villon et al., 2021). Single species CNNmodels for stationary

cameras in local waters near the current survey location have
Frontiers in Marine Science 07
produced a range of F1 values in object detection analyses: 87.6%

and 92.3% over seagrass habitat (Ditria et al., 2020a; Ditria et al.,

2020b); 83.0% and 90.6% over reef (Ditria et al., 2020b; Lopez-

Marcano et al., 2022), albeit with much lower values where

training did not include the habitat over which test videos were

filmed (e.g. 58.4% and 73.3%, Ditria et al., 2020b).

Model performance on individual fish species varied. For

luderick, counts per frame showed good accuracy for the two
FIGURE 4

Distribution of fish relative sizes (bounding box areas in pixels) for three classes of predictions (True Positives, False Negatives, False Positives),
for luderick and bream. No substantial differences among classes are evident for luderick but for bream image size tends to be smaller for FNs).
Results are for one of the three models using the Detectron framework, other model results were very similar.
FIGURE 5

Distribution of relative fish sizes (bounding box areas in pixels) in the training and evaluation datasets for bream. Size distributions were similar,
although with slightly fewer small images used in training.
frontiersin.org
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better performing models (F1 approx. 87% for both), and for

MaxN excellent accuracy (93.4% for Detectron, 90.3% for

YOLOv5). This level of accuracy for MaxN extraction

for luderick more than matches recent evaluations from

stationary cameras ranging from 65.0 – 91.5% (F1 values from

Ditria et al., 2020b). We therefore conclude that for this species,

automated analysis of videos from mobile cameras is suitable for

routine use in surveys. This finding is of immediate relevance

given current interest in the significant grazing impacts of

luderick in seagrass habitat (Wendländer et al., 2020), and

early indications of a range shift for this species under climate

change (Pollock, 2017).

Model accuracy for bream was lower than for luderick. Even

for the two better performing frameworks, accuracy for counts

per frame was below 80% (73.8% for Detectron, 69.3% for

YOLOv5, as well as for MaxN (73% for Detectron, 65.3% for

YOLOv5). Object detection performance on stationary cameras

for this species has had a wide range of outcomes in recent

studies, namely: 91% F1 value in a single species model (Lopez-

Marcano et al., 2021), but also 75.0% in a three species model

(Lopez-Marcano et al., 2022). For bream, we are unable to clearly

state whether automation algorithms are performing differently

on mobile than on stationary cameras. However there does seem

room for substantial improvement in deep learning models for

bream, a species that is abundant and important for estuarine

and marine ecosystem function in local estuaries (Gilby et al.,

2017; Olds et al., 2018; Henderson et al., 2020).Given that

juveniles and adults share the same habitats, training datasets

become too variable where there are significant intra-specific

variabilities in sizes, colorations and behaviors. Employing

adaptive deep learning frameworks that account for this large

variability may help improve bream models (Qiu et al., 2019).

Mobile cameras can produce some level of additional

blurring due to ego-motion, which results in more rapid

changes in object perspective and scale (Chuang et al., 2017).

To some extent, this effect could be prevented by using higher

frame rates. Errors in model predictions do not appear to be

related to the movement of the camera. Blurriness values were

much the same for true and false predictions. Errors were more

prevalent for smaller fish images, either for small fish or fish

further from the camera. This could be an issue for mobile

cameras if the movement of the drone, vehicle, or diver on which

the camera is mounted scare fish to swim away. Several

attraction and repulsion effects have been documented during

fish surveys using ROVs (e.g., Stoner et al., 2008; Baker et al.,

2012; Laidig et al., 2013). The source of bias and behavioral effect

on fish taxa are not universal, but standard surveying procedures

can minimize sampling variation (Stoner et al., 2008; Sward

et al., 2019). Future work can experiment with the speed of

movement of the camera, a factor that has been insufficiently

assessed in the literature (Sward et al., 2019), potentially

balancing efficiency of surveying large areas of the seabed

against the proportion of images that are blurred.
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Notwithstanding the need for further testing and fine-tuning,

the object detection method employed here seems effective for

mobile cameras, and avoids issues with having to ‘know the

background’ and subtract it prior to conventional deep learning

for object detection (Wei et al., 2021).

Other challenges for automated fish identification and

counting in videos from mobile cameras are the same as for

videos from stationary cameras. Detection of crypto-benthic fish

can be unreliable, for example, either when using ROVs on

offshore industrial platforms (Andaloro et al., 2013), or when

using stationary cameras (Sheaves et al., 2020). However mobile

cameras probably work well for pelagic species, but cannot avoid

the same challenge faced with stationary cameras of repeatedly

counting the same individuals of schooling species.

Another challenge for developing deep learning models to

underwater environments and fish detection is that datasets are

often small relative to those for common terrestrial topics (Jin &

Liang, 2017; Saleh et al., 2022b). Overfitting is therefore difficult

to avoid because just a small sample from the population of fish

and underwater conditions is used during model training and

optimization. In our study, keeping imagery from one of the

three days for testing, independently of videos from other days

used for training, was the best way to reduce overfitting.

Nevertheless, given the modest size of our dataset, with

imagery from consecutive days, and from a single estuary, the

variability within and among training and testing datasets is less

than would be expected if other estuaries and times of year were

included. Our intention is not to provide a model to be used out-

the-box, in fact our model would likely underperform in a novel

dataset. To our knowledge, there is not a publicly available

dataset from mobile cameras for fish detections that we could

use for testing, thus restricting us from providing an unbiased

estimate of performance. We are making our dataset public so

others can use it as part of the training and optimization process,

or for an unbiased assessments of model performance. As fish

monitoring is anticipated to be enhanced by new technologies

including remotely operated and autonomous underwater

vehicles, upcoming fish detections models would likely have

access to a larger bank of fish images captured from mobile

cameras. Furthermore, aside from ego-motion and behavioral

effects from mobile cameras on the quality of fish images, which

can create a distinctive type of dataset, fish detection models for

mobile cameras could take advantage of images and annotations

captured from stationary ones. Further research, using a mix of

images from stationary and mobile cameras for fish detection

model is needed to elucidate if high prediction performance for

both types of images can be accomplished, and/or if low-

dimensional features in those types of images are similar.

In summary, we find that existing deep learning procedures

developed for stationary cameras can be used to reliably identify

and count fish in videos from mobile cameras. Extraction of

MaxN values, the most commonly used indicator of fish

abundances (Harvey et al., 2021), were automated for target
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species with some confidence in the current study. There is

variability in performance among species, even for the two target

species in the current study, and further testing is warranted on

mobile cameras used in surveys of other species and habitats.

Cameras on underwater drones and remotely operated and

automated vehicles offer advantages over traditional UVC, for

example avoiding observer bias (Sheaves et al., 2020; Ditria et al.,

2022). Video surveys can also circumvent the weakness of UVCs

in situations with high fish abundances, particularly when

automation is used in conjunction with additional post-

processing mathematical solutions to increase the rigor of

automated fish counting (Connolly et al., 2021). We encourage

analysis of imagery from mobile cameras to be included in

ongoing refinement of deep learning procedures for automated

fish counts in underwater videos.
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