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International scientific fishery survey programmes systematically collect samples of target 
stocks’ biomass and abundance and use them as the basis to estimate stock status in the 
framework of stock assessment models. The research surveys can also inform decision 
makers about Essential Fish Habitat conservation and help define harvest control rules 
based on direct observation of biomass at the sea. However, missed survey locations 
over the survey years are common in long-term programme data. Currently, modelling 
approaches to filling gaps in spatiotemporal survey data range from quickly applicable 
solutions to complex modelling. Most models require setting prior statistical assumptions 
on spatial distributions, assuming short-term temporal dependency between the data, 
and scarcely considering the environmental aspects that might have influenced stock 
presence in the missed locations. This paper proposes a statistical and machine learning 
based model to fill spatiotemporal gaps in survey data and produce robust estimates 
for stock assessment experts, decision makers, and regional fisheries management 
organizations. We apply our model to the SoleMon survey data in North-Central Adriatic 
Sea (Mediterranean Sea) for 4 stocks: Sepia officinalis, Solea solea, Squilla mantis, and 
Pecten jacobaeus. We reconstruct the biomass-index (i.e., biomass over the swept area) 
of 10 locations missed in 2020 (out of the 67 planned) because of several factors, including 
COVID-19 pandemic related restrictions. We evaluate model performance on 2019 data 
with respect to an alternative index that assumes biomass proportion consistency over 
time. Our model’s novelty is that it combines three complementary components. A spatial 
component estimates stock biomass-index in the missed locations in one year, given the 
surveyed location’s biomass-index distribution in the same year. A temporal component 
forecasts, for each missed survey location, biomass-index given the data history of that 
haul. An environmental component estimates a biomass-index weighting factor based 
on the environmental suitability of the haul area to species presence. Combining these 
components allows understanding the interplay between environmental-change drivers, 
stock presence, and fisheries. Our model formulation is general enough to be applied 
to other survey data with lower spatial homogeneity and more temporal gaps than the 
SoleMon dataset.
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1 INTRODUCTION

Understanding and estimating the status of fish stocks residing 
in a marine area, requires continuously collecting stock 
biomass and abundance samples through scientific surveys. 
After processing these data, scientific advice can be produced 
for policymakers to assess the stocks’ status and prevent their 
depletion. Since 2000, European Member States have been 
collecting fisheries data in a structured way within the Data 
Collection Framework (DCF) multi-annual programme (JRC, 
2021), and more recently under the EU-MAP programme 
(EUR-Lex, 2021). They advise for the EU Common Fisheries 
Policy (CFP) (Frost and Andersen, 2006), collect data according 
to national work plans, and report the results annually. In the 
Mediterranean context, the data are eventually analysed by 
fishery experts of European Regional Fisheries Management 
Organisations (RFMOs), such as the EU Scientific, Technical 
and Economic Committee for Fisheries (STECF), and the 
General Fisheries Commitee for the Mediterranean Sea 
(GFCM). The resulting recommendations are used in the 
CFP decision-making processes to regulate fishing activity, 
monitor Essential Fish Habitat conservation, and predict future 
resource exploitation scenarios (Rosenberg et al., 2000; Hilborn 
and Walters, 2013; Froese et  al., 2017). The data collected 
within the DCF are integral to several societal challenges 
of the EU Programmes and the European Marine Strategy 
Framework Directive (MSFD) (Long, 2011). In this context, 
fishery-independent data can come with gaps that must be 
filled to improve quality and reliability. For example, biomass 
measurements collected through trawl surveys, across several 
hauls in a marine area, might miss data for some locations 
in specific years. These data gaps also affect the estimation of 
catchability during the survey - a measure of fishery efficiency 
- which requires that the survey protocol and locations remain 
constant over the years (Swain et  al., 2000; Aeberhard et  al., 
2018). Other drivers of data biases are the possible non-
uniform spatial and temporal sampling and the change of the 
measurement tools. Various uncontrollable causes contribute 
to these drivers, such as funding delays, vessel unavailability or 
damage, long bureaucracy, adverse weather and sea conditions, 
and lastly, the COVID-19 pandemic (Coro et al., 2022b).

Producing accurate and unbiased spatial time series 
for fishery-independent surveys is crucial to inform stock 
assessment models and produce valuable results for decision-
makers (Maunder, 2001; Coro, 2020b). However, filling the 
data with stock biomass estimates requires modelling complex 
and complementary aspects such as (i) the spatial biomass 
distribution in the surveyed hauls, (ii) the historical stock 
presence and biomass in the unsurveyed hauls, and (iii) the 
environmental conditions that may have favoured or penalised 
the stock presence in the unsurveyed hauls (Jouffre et al., 2010). 
Artificial Intelligence, and in particular machine learning, can 
help model these factors and produce valuable estimates with 
measured uncertainty.

One of the most commonly used models for geospatial 
time series reconstruction is the Vector Autoregressive Spatio-
Temporal (VAST) model (Thorson and Kristensen, 2016; 

Thorson, 2019). VAST combines two estimators of average 
density variation in space and time, modelled as two linear 
predictors. One predictor approximates the probability of 
encountering the analysed species in an unsurveyed haul, and 
the other approximates the expected catch rate. VAST combines 
these two predictors to estimate stock biomass density in the 
unsurveyed hauls of a specific survey year. Despite the valuable 
results this technique can produce (Eisner et  al., 2020), it is 
potentially limited by (i) the exclusion of an explicit modelling 
of environmental aspects, (ii) the fixed prior assumptions on 
the predictors’ shapes, and (iii) the linear approximations used. 
Other studies have applied statistical approaches to infer stock 
structure (i.e., stock abundance-at-length) from incomplete 
survey data. In Breivik et  al. (2021), a model predicts the 
number of fishes per year and length class in the unsurveyed 
hauls. It uses a linear combination of multi-variate Gaussian 
functions dependent on time, location, and length class. The 
model assumes that each spatial distribution depends only on 
the previous year’s distribution. The potential limitations of this 
modelling approach are (i) the high computational complexity 
to optimise the multi-variate Gaussian functions, (ii) the weak 
temporal dependency assumed between the spatial distributions 
(i.e., one year instead of long-term), and (iii) the ambitious goal 
to infer the full stock structure from scattered and fragmented 
spatiotemporal data. Other similar modelling approaches have 
addressed the same goal using a more complex multi-variate 
function modelling. For example, state-space statistical models 
have been used to model biomass alongside recruitment, 
mortality, and growth (Payne, 2010; Aeberhard et  al., 2018). 
These models infer the principal statistical moments of their 
target distributions through iterative sampling (Fournier 
et  al., 2012; Coro, 2013), but still assume a one-year time 
dependency between the samples. Other studies have explored 
- especially through machine learning modelling - long-term 
dependencies in non-stationary geospatial time series to predict 
species presence and temporal persistence, and infer species 
abundance (Paradinas et  al., 2020; Lou et  al., 2021). Several 
other modelling approaches assume that the ratio between the 
stock biomass (or abundance) in a specific haul and the total 
biomass remains averagely constant in the survey years. The 
generated biomass indexes (hereafter named equiproportional) 
are easily implementable and applicable to heterogeneous 
survey data. They have been used to fill gaps in the Arctic, North 
Sea, Norwegian Sea, and the Barents Sea surveys (Schmidt 
et  al., 2009; ICES, 2020; Bergenius et  al., 2021). Some studies 
have tried to enhance these approaches by better modelling the 
co-variation between the missed hauls and known hauls over 
the years (Gröger et  al., 2001). Although these methodologies 
are widely used, they are more suited for short time series with 
few gaps where their basic assumptions are approximately valid.

This paper proposes a new model - made up of three 
machine learning and statistical sub-models - to fill gaps in 
the geospatial time series of stock biomass indexes collected by 
the SoleMon fishery-independent surveys in 2020 (Grati et al., 
2013; Scarcella, 2018). SoleMon is an experimental trawl survey 
collecting fishery-independent data since 2005 to facilitate the 
sustainable management of fisheries-exploited resources in the 
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North and Central Adriatic Sea, i.e., the GFCM Geographical 
Sub Area (GSA) 17 (FAO, 1999) (Figure  1). The SoleMon 
data presented gaps in 2020 due to unfavourable sea weather 
conditions and restrictions consequent to the COVID-19 
pandemic, which limited research vessel availability and survey 
duration and constrained access to territorial waters. These 
restrictions prevented surveying 10 hauls out of the 67 planned 
in 2020. The unsurveyed hauls were mostly concentrated on 
the Croatian side of the Adriatic, and potentially introduced 
a sampling bias that could affect the overall biomass estimates 
(Colloca et al., 2015).

We analysed the 2020 data gaps of four Adriatic commercial 
stocks targeted by SoleMon: Sepia officinalis, Solea solea, Squilla 
mantis, and Pecten jacobaeus. To this aim, we introduced a 
new model to estimate the biomass-index of these stocks in 
the 2020 missed hauls. Our model combines three sub-models: 
one sub-model uses a spatial analysis of the surveyed hauls in 
2020; a second sub-model processes the historical information 
on the missed hauls to forecast values in 2020; the third sub-
model estimates the environmental suitability of the missed 
hauls to species persistence. We implemented the three analysis 
dimensions as different machine learning and statistical 
models and eventually combined them into one overall model. 
We trained the sub-models with data up to 2019. Finally, we 
evaluated model accuracy by forecasting 2019 known data, 
using data up to 2018 to train the sub-models.

The proposed model is general enough to be re-used for 
other areas, years, stocks and survey programmes, reconstruct 
data in time and space, and produce valuable information for 
stock assessment models.

This paper is organised as follows: Section 2 describes our 
model and sub-models; Section 3 reports our model’s optimal 
parametrisation and accuracy to predict known 2019 data; 
Section 4 discusses the results and draws the conclusions.

2 METHODS

2.1 Model Overview 
This paper proposes a machine learning and statistical modelling 
solution to reconstruct a biomass density index (biomass over 
surface, expressed in kg/km2) over a set of survey hauls monitored 
by SoleMon (Figure 2). We targeted 4 stocks and 10 hauls (over 
67) in North-Central Adriatic that were not visited in 2020.

The premises of our experiment can be summarised as follows:

1. Scientists estimated stock biomass-index for 67 fixed-location 
hauls between 2006 and 2019. The 2005 survey was structured 
with another set of hauls and sampling plan, and was thus 
excluded from the analysis;

2. in 2020, biomass-index measurements were missed for 10 
hauls;

3. the biomass-indexes of the previous years - with possible 
sporadic gaps - were available for the unsurveyed haul;

4. the survey period was always late fall.

Our goal was to estimate:

1. the biomass-index of each missed haul in 2020 for the 4 
selected stock;

2. the 2020 total biomass-index for each stock, to be proposed 
as a fishery-independent tuning index in stock assessment 
models;

3. the contribution of each missed haul to the total biomass-
index as an indication of the priority to survey these hauls 
(haul contribution to total biomass-index);

4. the relation between model uncertainty and haul contribution.

We propose a haul biomass-index estimator (HBIE) that 
combines three components (Figure 3):

FIGURE 1 |   Distribution of Mediterranean geographical subareas (GSAs) of the General Fisheries Commission for the Mediterranean, with the highlight of the GSA-
17 addressed by our experiment.
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1. A spatial component that estimates the biomass index of a 
missed haul given the biomass index of the hauls surveyed 
in the same year. This model uses oceanographic data to 
estimate the spatial correlation between the surveyed hauls 
and the stock biomass index in the missed hauls (Section 2.3);

2. A temporal component that forecasts a missed haul’s biomass-
index in the analysis year based on the historical biomass-
index measurements in that location (Section 2.4). Differently 
from alternative models, this model can also discover long-
term correlations;

3. An environmental component that penalises or increments 
the biomass-index estimates in a missed haul by evaluating 
if it presents favourable environmental conditions for species 
presence (Section 2.5). This model represents a novelty in 
survey data gap filling because it hypothesises that favourable 
environmental conditions are key factors to compensate for 
fishing mortality (Froese et al., 2017).

The following sections explain how these components were 
implemented and combined through machine learning and 
statistical models and applied to the SoleMon 2020 survey 
data. Since independent measurements were not available 
for the missed hauls, model optimisation had to rely on the 
data at hand. Therefore, we used a precautionary optimisation 
constraint that assumed that the estimated total biomass-index 
was not too far from the one measured in the last year (Section 
2.7). Abrupt and unpredictable events of stock absence or boost 
from one year to the next are indeed uncommon, especially in 
a circumscribed area like the Adriatic (Stergiou and Pollard, 
1994; Coro et al.,  2016a).

2.2 Total Biomass-Index Calculation
The total biomass-index produced by the SoleMon surveys is a 
biomass density index (expressed in kg/km2) based on weighted 
depth strata, where larger strata have higher weights. It was first 
introduced by Cochran (1977) and later revised by Souplet (1995). 
Its calculation was adapted by Grati et al. (2013) to the Adriatic 

by assigning specific strata weights. This process currently uses 
three depth strata (at 5-30°m, 30-50°m, and 50-100°m, Figure 2), 
corresponding to those where the target stocks (mostly flatfishes) 
are more abundant. Each stratum u is assigned a predefined and 
fixed weight W (u) proportional to its extension. The input is the 
set of biomass-indexesb (h, s, y) estimated by a survey campaign 
for each year y, target stock s, and haul h. The index is the 
observed biomass (in kg) divided by the haul swept-area (in km2). 
The total biomass-index tb(s, y) of stock s in year y is calculated by 
(i) transforming each haul biomass index into a biomass estimate 
through multiplication with the haul’s swept area, (ii) summing 
all haul biomass estimates, (iii) dividing the total biomass by 
the total stratum area (to obtain a stratum biomass-index), and 
finally (iv) calculating the weighted sum of the stratum biomass-
indexes. The following algorithm summarises the process:

Algorithm 1 Total biomass index calculation algorithm
for each stock s and year y
for each stratum u
for each haul h
get the swept area a(h,u)
calculate the biomass of the haul and stratum: B(h,u,s,y)= 

b(h,s,y)·a(h,u)
calculate the overall stratum biomass across the hauls: 

B u s y B h u s y
h

( , , ) ( , , , )=∑  
calculate the overall swept area of the stratum: 

A u a h u
h

( ) ( , )=∑
calculate the biomass-index of the stratum: 

b(u,s,y)=B(u,s,y)/A(u)
calculate total biomass-index as the weighted sum of the strata 

biomass-indexes: tb s y b u s y W u
u

( , ) ( , , )• ( )=∑
The main aim of the present experiment was thus to estimate 

b(h*,s,y) in the hauls ( h*) missed by the SoleMon surveys in 
2020, and then calculate tb(s,2020) for 4 target stocks. The time 
series {tb(s,2006),tb(s,2007),&ctdot;,tb(s,2019),tb(s,2020)} of the 
4 stocks was meant to be proposed to the GFCM and STECF 

FIGURE 2 | Explanatory example of our model’s scope, i.e., estimating stock biomass-index (Sepia officinalis, in the example) in the hauls missed by the SoleMon 
programme surveys in 2020. The depth strata used by the total biomass index calculation are also reported.
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working groups as a fishery-independent support to stock 
assessment models.

2.3 Spatial Component
Our model’s spatial component estimates the stock biomass-
index in the hauls missed in a specific survey year (e.g., 2020) 

given the biomass-index distribution in the surveyed hauls. 
To this aim, it interpolates the measured biomass-indexes to 
produce a homogeneous distribution over the area. The model 
assumes that the measured biomass-indexes are punctual 
scattered observations of a parameter uniformly defined 
over the analysed area. It assumes that the spatial correlation 
between these observations relates to the species’ geographical 

FIGURE 3 | Overview of our overall biomass-index estimation model and its three components, alongside the parameters required by each model.
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spread, its ecological region in the water column, and the 
oceanic currents (Troupin et  al., 2010; Watelet et  al., 2016). 
To implement our spatial component, we used the Data-
Interpolating Variational Analysis (DIVA) model (Barth 
et al., 2010). DIVA is typically used to estimate the uniform 
spatial distribution of a marine parameter from scattered 
observations, assuming that it is subject to currents and 
dependent on sea depth (Schaap and Lowry, 2010; Coro et al., 
2018a; Coro and Trumpy, 2020). To this aim, DIVA solves the 
advection equation. As input parameters, it requires a prior 
estimate of the spatial correlation between the observations 
and the amount of noise in the data (signal-to-noise ratio) 
(Troupin et al., 2010; Troupin et al., 2012; Coro et al., 2016b). 
Internally, the model reconstructs a continuous vector field 
from the scattered measurements through the Variational 
Inverse Model (Bennett, 1992). It fits a generic continuous 
field to the data based on a minimization cost-function 
(Watelet et  al., 2016). The fit algorithm is a finite-element 
statistical method that uses bathymetry and oceanic-current 
values in the observation locations as constraints. The fitted 
field is eventually projected on a regular spatial grid, and a 
triangular-element mesh is traced over the interpolation area. 
The characteristic length of the mesh elements is related to the 
spatial correlation between the input observations.

Our spatial component was a DIVA model, which we 
trained on the b(h,s,2020) biomass-index available estimates 
of the SoleMon surveyed hauls in 2020 (57 values). We 
used the DIVA interpolated values in the 10 missed hauls 
h* as the biomass-index estimates b(h*,s,2020) of the spatial 
component. As further input to the DIVA model, we used 
the 2020 annual water-column averaged oceanic-current 
components, as NetCDF files, from the Copernicus Global 
Ocean Physic Analysis (Von Schuckmann et  al., 2018). 
Another input was a bathymetry NetCDF file from the high-
resolution GEBCO-2020 dataset (GEBCO, 2020). To speed up 
processing, we executed the model on the D4Science cloud 
computing platform (Coro et al., 2015a; Candela et al., 2016; 
Coro et al., 2017; Assante et al., 2019; Assante et al., 2020) that 
freely offers the DIVA software for notebook development 
(Blue Cloud, 2022). The used notebooks and platform are 
linked in the Supplementary Material.

2.4 Temporal Component
Our temporal component was based on Singular Spectrum 
Analysis (SSA), a signal processing model to forecast time 
series values based on long-term sample dependency (Vautard 
et al., 1992). SSA decomposes the input time series into the sum 
of simpler time series (hidden components), which represent 
its hidden structure. It eventually combines these components 
to reconstruct possible gaps and project the time series in the 
future. For the present experiment, we used our own open-
source JAVA implementation of this algorithm (Coro et  al., 
2016a), linked in the Supplementary Material.

One SSA main input parameter is the number of samples 
(M ) of a signal window that contains sufficient information to 
capture the time series structure. This parameter also represents 

the maximum temporal dependency between the samples. The 
algorithm can be summarised as follows (Golyandina and 
Osipov, 2007; Elsner and Tsonis, 2013):

Algorithm 2 Singular Spectrum Analysis algorithm
1. divide the time series X(t) (with t0≤t≤T) into N sub-

segments (chunks) using an M -sample window to cut the signal 
sequentially;

2. build a M×M matrix so that the (i,j) element is the cross-
covariance between the i th and j th chunks (lag-covariance 
matrix);

3. extract the lag-covariance matrix eigenvectors {e1,e2,…,eM} 
and eigenvalues through matrix decomposition;

4. project the time series X(t) onto the eigenvectors ek to 
estimate its components: a t X t j e jk kj

M( ) ( )( )•= + −
=∑ 1
1 ;

5. combine the components {a1,a2,…,aM} to reconstruct 
the time series (including possible missing samples): 

a t X t j e jk kj

M( ) ( )( )•= + −
=∑ 1
1

; with Nt being a time-

dependent normalization factor;
6. literate the process to forecast additional samples after T.
Differently from techniques based on Fourier Analysis, 

SSA does not use time series frequency information. This 
feature improves algorithm speed and allows processing also 
non-stationary time series (Coro et al., 2016a). The estimated 
eigenvectors represent the time series structure, and each 
eigenvalue represents the partial variance of the time series 
in the eigenvector direction. The sum of all eigenvalues is the 
time series total variance. Reducing the number of eigenvectors 
for reconstruction and forecast is essential to lowering data 
noise. The eigenvectors contain essential information about the 
time series, including noise, but discarding too many of them 
would generate trivial forecasts. The number of eigenvectors 
to keep for time series reconstruction and forecast is a crucial 
parameter to optimize.

In our experiment, the optimal SSA parameters for the time 
series of b(h*,s,t) values (with 2006≤t≤2019) were found for 
each target stock s and missed haul h* (Section 3.7). The process 
finally estimated the biomass-index forecasts Xr(t=T+1)= 
Xr(2020)=b(h*,s,2020). The SSA components {a1,a2,…,aM} were 
used to fill possible gaps in the time series (which were up to 
one missing year for each haul) before forecasting data in the 
future.

2.5 Environmental Component
Our environmental component was based on the Maximum 
Entropy model (MaxEnt) model, a machine learning-based 
ecological niche model that estimates species subsistence (i.e., 
habitat suitability) as a function of environmental parameters 
(Phillips and Dudík, 2008). MaxEnt can learn from species 
presence locations only (i.e., without using absence information), 
which in our case were the hauls surveyed in the analysis year 
that reported non-zero biomass. We used MaxEnt to simulate 
the probability that a missed haul fell in suitable habitat for 
each analysed stock. This probability was used to set a penalty/
bonus weight for the biomass estimates produced by the spatial 
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and temporal components (Section 2.6). MaxEnt was trained  
on expert-identified sea-water parameters potentially correlated 
(either directly or indirectly) with the analysed stocks (Mancinelli 
et  al., 1998; Zavatarelli et  al., 1998; Cibic et  al., 2007; Spagnoli 
et al., 2010; Lotze et al., 2011; Ninˇcevi´c-Gladan et al., 2015), i.e.:

1. average chlorophyll-a in the water column (mg/m3);
2. average mole concentration of dissolved molecular oxygen 

in the water column (mol/m3);
3. average moles of nitrate per unit of mass in the water 

column (mol/kg);
4. average moles of phosphate per unit of mass in the water 

column (mol/kg);
5. sea-bottom temperature (°C);
6. sea-surface temperature (°C);
7. average salinity in the water column (PSU);
8. bathymetry (m);
9. average size of grains in a sediment sample (m).
These data were mainly retrieved from Copernicus (Sauzède 

et al., 2017; Salon et al., 2019; Clementi et al., 2021; Feudale et al., 
2021) to have spatially aligned and verified data. Bathymetry was 
retrieved from GEBCO-2020 (GEBCO, 2020). Grain size data 
belonged to CNR historically-collected Adriatic data (Santelli 
et al., 2017). Data were retrieved for 2019 (for model evaluation) 
and 2020 (for data gap filling). The spatial resolution was 0.1°, 
consistent with the average haul swept area. We evaluated 
different temporal aggregations of the environmental parameters 
to train MaxEnt: annual (average over the year), seasonal (average 
per season), trimester (average per trimester), hot-cold months 
(separate averages for July-September and October-December), 
and survey period (November-December average). For each 
species, we also used MaxEnt to select the parameters with the 
highest correlation with presence and tested them for optimal 
modelling.

MaxEnt is widely used in ecological niche modelling (Raybaud 
et  al., 2015; Capezzuto et  al., 2018; Angeletti et  al., 2020). It is 
naturally suited for modelling the distribution of a fixed number 
of events in a delimited space (such as survey hauls) and is 
equivalent to a Poisson-regression generalized linear model 
(Renner and Warton, 2013). In the training phase, MaxEnt 
estimates a function π x( )  of environmental parameter vectors 
x  constrained to have maxima on species presence locations 
and minima on simulated absence locations. It is common 
to consider π x( )  a proxy of a probability density of species 
presence (Phillips and Dudík, 2008; Elith et  al., 2011; Merow 
et  al., 2013; Coro et  al., 2015b, Coro et  al., 2018b). Therefore 
MaxEnt estimates a functional relation between environmental 
parameters and the species’ presence to generalise the species’ 
distribution (Pearson, 2007). We trained and tested one MaxEnt 
model for each target species and every environmental parameter 
temporal aggregation (Section 2.7).

MaxEnt model inherits the spatial resolution of the 
environmental parameters (0.1°, in our experiment). The 
optimization algorithm estimates π x( )  after maximising the 

entropy function H x ln x= − ( ) ( )( )∑π π ^  on the training 
locations (e.g., non-zero biomass surveyed hauls in 2020) with 

respect to randomly-selected vectors in the study area (background 
points). During the process, it estimates the coefficients of a linear 
combination of the environmental parameters that represent the 
importance of each parameter to predict the species’ distribution 
(percent contribution). These coefficients can be used to select the 
parameters carrying the highest quantity of information for the 
model and re-train/re-test it (Phillips et al., 2017; Coro, 2020a; 
Coro and Bove, 2022). We used the estimated π x( )  function 
to build up a bonus/malus factor for the biomass estimates 
produced by the other two components (Section 2.6).

We used and configured a MaxEnt software implementation 
(Phillips et al., 2017) (linked in the Supplementary Material) to 
reduce over-fitting risk by (i) allowing random background point 
selection (i.e., pseudo-absence location estimation) to possibly 
include also surveyed hauls with non-zero biomass (Coro et al., 
2022a), and (ii) using hinge features to model complex presence-
environment relations (Hengl et al., 2009).

2.6 Haul Biomass-Index Estimator
We built the overall haul biomass-index estimator (HBIE) model 
as an open-source R program (linked in the Supplementary 
Material) that combined the three components described in 
the previous sections. Being x

h*  the set of environmental feature 
values in missed haul h*, HBIE estimates the biomass-index 
b h x s yHBIE h

* , , ,*( )  of stock s in year y and haul h* as:

b h x s y W x

b h s y b h
HBIE h h

spatial temporal

*

* *

, , , •

• , , • ,

* *( ) = ( )
( ) +α β ss y,( )

+α β

where

W x

k if x

k
h

h

*

*

{( ) =
( ) >bonus

penal

habitat suitability thresholdπ

tty otherwise
if environmental information is unavailable1

The W x
h*( )  term acts as a bonus multiplier if habitat is 

suitable in h*, and as a penalty factor otherwise. A habitat 

suitability threshold set on top of the π x
h*( )  values distinguishes 

between these two conditions.
In our experiment, we calculated b h x sHBIE h

* , , ,* 2020( )  for 
the 4 selected SoleMon stocks in the 10 hauls missed in 2020, 
but the HBIE model could be applied beyond the SoleMon 
data. Generally, it is applicable to stocks and survey data with 
temporal, spatial, and environmental information associated. It 
would work even if either the spatial or the temporal components 
were missing. Additionally, if environmental data were missing, 
the corresponding component factor would be 1.

HBIE introduces new parameters to be estimated in the 
optimization phase (Section 2.7), i.e., α; β ; kbonus; kpenalty, and the 
habitat suitability threshold.
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2.7 Model Optimization and Evaluation

2.7.1 Optimisation
The complete list of parameters to optimise is reported in Table 1. 
Of course, the optimal parametrisation depends on the stock. We 
translated the precautionary modelling assumption explained 
in Section 2.1 into the assumption that the optimal model was 
the one producing the minimum total biomass-index difference 
with respect to the last year. Therefore, in our case the optimised 
parameters were those that ended in the minimum total biomass-
index difference between 2019 and 2020.

To select the optimal DIVA parametrisation, we fit DIVA to 
the biomass-indexes of the 57 surveyed hauls of 2020 by testing 
several combinations of spatial correlation and signal-to-noise 
values. We searched for the parameters that minimised the 
difference between the total biomass-index in 2020 and 2019 
after the DIVA estimations. DIVA embeds the DIVAfit tool, a 
statistical tool that produces an initial estimate of the parameters. 
This tool estimates spatial correlation after fitting the target 
vector field to the data, under spatial homogeneity hypothesis. It 
also estimates signal-to-noise ratio based on the anomaly range 
of this fit (Troupin et al., 2010). Based on the DIVAfit indications 
on our data, we tested spatial correlations between 0.5° and 2° 
(by 0.5°steps) and signal-to-noise ratios between 0.1 and 10 (by 
0.2° steps).

We trained SSA for each of the 10 missed hauls separately 
to select the optimal temporal component parametrisation. We 
used historical biomass-index data from 2006 to 2019 (i.e., 14 
values) to forecast the 2020 haul biomass-index. We selected 
the individual-haul parameters minimising the total biomass-
index difference between 2020 and 2019. The optimal temporal 
correlation and number of eigenvectors depended on the haul 
and the stock. Thus, we optimised 4  stocks×10  hauls=40 SSA 
models. For each model, we tested all analysis window lengths 
between 2 (short-term dependency) and the maximum length 
of the time series (long-term dependency). We also iteratively 
incremented and tested the number of eigenvectors to keep for 
the forecast (Ding et al., 2008).

To select the optimal environmental component 
parametrisation, we used the non-zero biomass hauls in 2020 
as observation locations and tested different environmental 
parameter sets and temporal aggregations. We tested annual, 
seasonal, trimester, hot-cold months, and survey period 
aggregations of the 9 parameters listed in Section 2.4. The non-
zero biomass locations used as observation records were 31 for S. 
officinalis, 51 for S. solea, 51 for S. mantis, and 11 for P. jacobaeus. 
MaxEnt was configured to generate a maximum of 1000 

background points as pseudo-absence locations and conduct 
500 training iterations. Following the indications to reduce over-
fitting risk reported in Section 2.5, pseudo-absence locations 
were randomly taken with the possible inclusion of the surveyed 
hauls, and hinge feature usage was enabled. The projection area 
was made up of ~ 2900 locations. In the selection process, we 
first identified the optimal temporal aggregation by tracing 
the Receiver Operating Characteristic (ROC) curve. This curve 
allowed us to conduct a sensitivity analysis by calculating true-
positive and false-positive rates using various decision thresholds 
on the model output. The ROC curve integral is the Area Under 
the Curve (AUC) and was used as a model-selection criterion 
(Coro et al., 2015b; Coro et al., 2018b). The higher the AUC, the 
better the model because a high AUC indicates that the model 
simulates a probability distribution with significantly higher 
values on species-presence locations than on random locations. 
To further test the parameter set, we compared the model using 
all variables against one using the features carrying 95% of the 
total percent contribution (Coro et  al., 2015b). Eventually, we 
selected the model with the highest AUC. The habitat suitability 
threshold used by the HBIE model was the number that resulted 
in an omission rate (percentage of false absences over estimated 
absences) below 1% (Coro and Trumpy, 2020; Coro, 2020a; Coro 
and Bove, 2022).

After optimising the individual components, we optimised 
the HBIE model by testing all parameter combinations within 
the following prior ranges: [0.1;2] (by 0.1 steps) for α and β; [0;2] 
(by 0.1 steps) for kbonus and kpenalty. Eventually, we selected 
the set resulting in the minimum total biomass-index difference 
between 2020 and 2019.

2.7.2 Evaluation
In order to evaluate the HBIE model, we used 2019 as the 
analysis year and hypothesised that the missed hauls were the 
same 10 hauls missed in 2020. We used the time series of 2006-
2018 data of these hauls (i.e., 13 values for each haul) to train 
the temporal component and forecast the 2019 values. We used 
57 biomass-index values in 2019 (i.e., those from the same 
surveyed hauls of 2020) to train the spatial component and 
project its estimates in the missed hauls. The same 57 locations 
were used as observation records (when biomass-index was 
non-zero) to train the environmental component with the 
9 selected environmental parameters and, iteratively, on 5 
temporal aggregations (from annual to November-December 
period). We used 2019 values for all environmental and oceanic 
parameters involved. Non-zero biomass observation records 
were 32 for S. officinalis, 52 for S. solea, 32 for S. mantis, and 17 

TABLE 1 | Complete set of parameters used by our models and optimised in the training phase.

Model Parameters to estimate

Spatial component (DIVA) Spatial correlation between the observations; Signal-to-noise ratio
Temporal component (SSA) Window analysis length (M); Number of eigenvectors to keep
Environmental component (MaxEnt) Most influential environmental parameters for species habitat; Temporal aggregation
Overall model (HBIE) α; β ; kbonus; kpenalty; habitat suitability threshold
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for P. jacobaeus. MaxEnt was configured to generate a maximum 
of 1000 background points as pseudo-absence locations and 
500 training iterations.

We used the measured 2019 biomass-indexes in the missed 
hauls to calculate model accuracy, i.e., the percentage of 
correctly predicted indexes within statistical confidence limits. 
We also estimated the correct prediction of the 2019 total 
biomass-index.

As a baseline comparison index, we adopted an 
equiproportional index that assumed, for each missed haul, 
that the average ratio between the total biomass-index of the 
surveyed hauls and the missed hauls’ index remained constant 
over the years. Therefore, after calculating the average ratio for 
each unsurveyed haul, this index easily allowed estimating the 
unsurveyed hauls’ values. The equiproportional index calculation 
algorithm is summarised as follows:

Algorithm 3 Equiproportional index calculation algorithm
for each missed haul
for each year before the analysis year
estimate the ratio between the total biomass-index in the 

surveyed hauls and the biomass-index in the missed haul
average the ratios over the years
use the ratio to estimate the biomass-index in the missed haul, 

in the analysis year, given the total biomass-index of the surveyed 
hauls

estimate the total biomass-index using the surveyed values 
and the estimates for the missed hauls

We also analysed the relation between our HBIE model 
uncertainty and the hauls’ contributions to the total biomass-
index. Haul contribution was estimated as the average relative 
variation of the total biomass-index over the years when 
the haul (and its associated strata) was removed from the 
calculation. Evaluating the relation between haul contribution 
and HBIE model precision shed light on accuracy calculation 
reliability and stock biomass distribution homogeneity. It is 
worth noting that HBIE uncertainty comes from the DIVA 
model after propagating the confidence limits into the HBIE 
formula. In fact, the canonical SSA algorithm does not produce 
statistical uncertainty for its estimates (Allen and Smith, 1997) 
and MaxEnt was used as a thresholded factor.

3 RESULTS

3.1 Optimal Parameters
The optimal model parameters for the 2020 SoleMon data are 
reported in Table  2. The DIVA spatial correlation reflects the 
average spatial geographical distance from an abundant location 
to the other, with less mobile species (e.g., P. jacobaeus) having 
lower spatial correlation values. The signal-to-noise ratio was 
averagely low for all species, but was sensibly higher for S. solea. 
The average SSA temporal dependencies indicate that long-term 
dependency modelling (from 7 to 9 years) was necessary for good 
forecasts. MaxEnt gave optimal results when all parameters were 
used because they all brought essential information to properly 
model species presence. The optimal temporal aggregation was 
hot and cold months (i.e., separate averages over July-September 
and October-December). Cold months indeed included the 
environmental conditions of the survey period, and hot months 
included summer conditions that might have influenced species 
distribution in winter (Henderson et  al., 2017). The MaxEnt 
habitat suitability threshold depended on the species. Interestingly, 
these values almost corresponded to the lower confidence limit of 
a log-normal distribution traced over all MaxEnt values on low-
biomass locations. In this case, low-biomass locations were those 
with a biomass-index falling at the lower log-normal tail of the 
overall biomass-index distribution.

The HBIE optimal parameter values indicate that no component 
outperformed the other. Therefore the weighted average in the 
HBIE formula was a standard average. This condition was likely 
related to the specific SoleMon data, with few temporal gaps 
and a peculiarly invariant haul distribution over the years. We 
anticipate that conditions such as worse temporal sampling, less 
homogeneous spatial sampling, and under-representative data 
would result in different component weights. The environmental 
suitability bonus was 1 for all species, which indicates that the 
models directly reported the average biomass-index estimate 
for suitable habitat locations in the analysis year. Instead, all 
models applied a 0.4 penalty (i.e., a 60% reduction) on unsuitable 
habitat locations. Therefore, the environmental component only 
intervened in unsuitable habitat hauls to soften the biomass-index 
estimate.

TABLE 2 | Optimal model parameters estimated for the analysed stocks based on the SoleMon data.

Sepia officinalis Solea solea Squilla mantis Pecten 
jacobaeus

DIVA spatial correlation between observations 1° 0.2° 1° 0.15°
DIVA signal-to-noise ratio 2.4 6.5 4.5 2
SSA window analysis length (samples) - avg across hauls 9 7 7 9
SSA n. of eigenvectors to keep - avg across hauls 3 2 6 6
MaxEnt environmental parameters All All All All
MaxEnt parameter temporal aggregation hot-cold hot-cold hot-cold hot-cold
MaxEnt habitat suitability threshold 0.021 0.022 0.036 0.037
HBIE α 1 1 1 1
HBIE β 1 1 1 1
HBIE kbonus 1 1 1 1
HBIE kpenalty 0.4 0.4 0.4 0.4
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Two examples on S. officinalis missed hauls show the difference 
between the HBIE model and its components (Figure 4). The first 
example reports a haul’s historical biomass-index with tri-annual 
periodicity between 2011 and 2017. The equiproportional index 
coarsely identified a decreasing trend in the last years and thus 
estimated a slightly lower value for 2020 (32.9 kg/km2) than the 
2019 value (33.48 kg/km2). Our spatial component also estimated 
a slightly lower value for 2020 (32.62 kg/km2) than the 2019 
value. The temporal component better captured the decreasing 
trend in 2020 and reported a 23% lower value (25.11 kg/km2) 
than the other indexes. The environmental component classified 
the habitat as unsuitable for the species in the haul in 2020, and 
thus further decreased the estimated biomass-index to 11.55 kg/
km2. This penalty resulted in better capturing the low biomass 
that experts expected in the haul due to a delayed species absence 
periodicity and unsuitable habitat. It is worth noting that habitat 
was instead suitable in 2019, with a relatively high biomass-
index (33.48 kg/km2), and all HBIE components achieved a good 
prediction of this value (between 33.11 and 36.2 kg/km2). Instead, 
the equipropotional index overestimated the 2019 value as 44.9 
kg/km2.

The second example shows a particular non-periodical 
biomass-index time series associated with a missed haul. The 

equiproportional index estimate for 2020 (24.7 kg/km2) was 
higher than the 2019 value (16.13 kg/km2) because it captured an 
averagely increasing trend since 2012. The spatial model reported 
a similar estimate for the same year (24.95 kg/km2). Instead, the 
unpredictability of the time series of the last years made the 
temporal component estimate complete stock absence in the haul 
for 2020. Since habitat was estimated as suitable in the haul area 
in 2020, HBIE directly returned half of the spatial model estimate 
as the final result without further penalties (12.47 kg/km2). This 
estimate compensated for the potential bias of the temporal 
component. It is worth noting that this value is consistent with 
the time series values because it is close to the last 10-year average 
(14.3 kg/km2), if the 2018 value (55.63 kg/km2) were considered 
an anomaly. The evaluation of the 2019 value prediction shows 
that all HBIE components returned very close values (from 15.8 
to 16.04 kg/km2) to the real value (16.13 kg/km2), whereas the 
equiproportional index sensibly overestimated it (34.34 kg/km2). 
The temporal component prediction was particularly close to the 
real value, which demonstrates the SSA effectiveness with non-
stationary time series, but - considering the 2020 estimate - also 
its sensitivity on the number of samples and abrupt variations. 
All the time series comparisons for the missed hauls are reported 
in the Supplementary Material.

FIGURE 4 | Two cases demonstrating substantial differences between the biomass-index estimates of our combined model (HBIE) and its temporal and spatial 
components with respect to a baseline estimate (equiproportional index). The two cases show a quasi-periodic and a non-periodical time series, respectively. The 
rightmost charts report forecasts of 2019 values and comparison with known data. The middle charts report forecasts of 2020 values. The dashed lines highlight 
the correspondence between the measurements (real data) and the same points in the forecast charts. The colours of the numbers and lines in the forecast charts 
correspond to the legend indications.
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3.2 Performance
We trained a model using 2019 data, while excluding the same 
hauls missing in 2020. We used the 2006-2018 data for time 
series analyses and took 2018 data as a reference for model 
training. Since temporal and spatial sampling data were constant 
in the surveyed area over the years, the estimated optimal 
HBIE parametrisation - apart from the habitat suitability 
thresholds - was equal to the one for 2020 data (Table 2). The 
MaxEnt environmental parameters were all confirmed to carry 
important information for optimal modelling. The hot-cold-
months aggregation was confirmed to be optimal, and thus was 
not specific to the 2020 data. The average SSA and the DIVA 
parameters were not sensibly different from the 2020 model’s 
ones, thus they only depended on the spatiotemporal structure 
of the data.

Average accuracy on haul-biomass recognition ranged from 
80% to 100% (Table 3), which was higher than the 30%-80% range 
of the equiproportional index. The lowest accuracy was obtained 
for S. mantis, and was probably due to the very low biomass in 
the missed hauls, going down to complete absence in some cases. 
The total biomass-index fell within the confidence ranges for all 
stocks, whereas the equiproportional index correctly estimated the 
total biomass-index of P. jacobaeus only. The comparison table also 
reports the estimated 2020 total biomass-indexes, which are meant 
to feed RFMOs’ stock assessment models (Froese et al., 2020).The 
overall biomass-index distributions are displayed in Figure 5.

3.3 Model Uncertainty and Haul 
Contribution to Total Biomass-Index
Highly contributing hauls to the total biomass-index were present 
throughout the entire area (Figure 6). However, no stock presented 
an isotropic and homogeneous distribution of highly contributing 
hauls. One small homogeneous area of lowly contributing hauls 
can only be observed for S. mantis in the deep area halfway 
between the Italian and Croatian coasts.

It is worth noting that the unsurveyed 2020 hauls were not 
randomly distributed, but mostly concentrated off the Croatian 
coasts with generally high contributions to the total biomass index. 

Therefore, it was crucial to estimate these values correctly because 
they sensibly influenced the total biomass-index estimates.

Due to inhomogeneous distribution, low-contribution 
locations could reside very close to high-contribution locations 
because low-biomass hauls could surround large-biomass hauls. 
Therefore, high-contribution hauls were peaks of the contribution 
distribution close to minima. This scenario increased the 
estimation uncertainty on high-contribution hauls. This 
observation is confirmed by a direct linear relation between the 
2020 HBIE model uncertainty and the haul contribution to the 
total biomass-index (Figure  7). The correlation strengths range 
between moderate (0.36 for S. solea, 0.44 for P. jacobaeus, and 
0.46 for S. officinalis) and high (0.95 for S. mantis). The higher 
the contribution, the higher the uncertainty. Understanding this 
relationship is important when re-using our model for other stocks 
and areas. Generally, this relation complies with the expected 
properties of a biomass estimation model. It is reasonable that 
such a model predicts missing data with higher precision over a 
small area with homogeneous biomass, and with lower precision 
over a wide area with jeopardised large-biomass distribution.

4 DISCUSSION AND CONCLUSIONS
We have presented a model to estimate stock biomass density in 
occasionally unsurveyed areas, with an application to the 2020 
SoleMon survey data in North-Central Adriatic Sea. The model 
combines three complementary components: spatial, temporal, 
and environmental. When applied to the 2019 SoleMon data, our 
model was able to estimate the total biomass-index of all analysed 
stocks correctly. The accuracy over individual haul biomass-index 
estimation was also high (80-100%). We observed that model 
uncertainty was higher for larger biomass-index hauls, probably 
because of the jeopardised biomass distribution of the analysed 
stocks. Moreover, the model achieved a higher estimation 
accuracy than an alternative, widely used index that assumed 
the conservation of average surveyed/unsurveyed biomass 
proportion over time. The advantage of this alternative index is 
its fast implementation, but our results showed that it is more 
suited for coarse approximations. Our model implementation 

TABLE 3 |  Performance of our model with respect to measured 2019 biomass-indexes across the four analysed stocks. 

Accuracy of the 
2019 model at 
predicting the  
2019 hauls

Accuracy 
of the 2019 
equiproportional 
index at 
predicting the 
2019 hauls

Total biomass-index 
 in 2019

Total model-predicted  
biomass-index  
in 2019

Total equiproportional- 
index predicted biomass  
in 2019

Model-predicted  
biomass-index  
in 2020

Sepia officinalis 90% 30% 37.03 37.27 [35.16; 39.39] 46.29 [45.78; 46.81] 27.98 [26.53; 29.44]

Solea solea 90% 60% 72.71 68.10 [56.39; 82.32] 66.30 [66.07; 66.53] 71.09 [57.86; 85.84]

Squilla mantis 80% 50% 25.75 25.72 [25.29; 28.60] 26.20 [26.08; 26.32] 26.76 [26.56; 28.06]

Pecten jacobaeus 100% 80% 7.47 9.11 [5.14; 15.61] 8.82 [6.82; 10.83] 4.12 [3.30; 5.04]

Total Accuracy 4/4 1/4

A comparison with a conservative surveyed/unsurveyed haul proportion index (equiproportional) is reported. The last column (bold-highlighted) reports final 2020 estimates to be 
used in stock assessment models. Square brackets indicate lower and upper confidence values.
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is fully based on open-source software, and every sub-model is 
available either as desktop software or notebook (Supplementary 
Material). After data preparation, running the sub-models for 
one species on a modern desktop PC or laptop - e.g., endowed 
with an Intel i9 CPU with 8 GB of Random Access Memory - 
requires about 1 hour. Moreover, all sub-models can be used 
through free-to-use Web interfaces based on cloud computing 
systems that simplify model configuration and speed up data 
processing. One limitation of our current implementation is that 
the three sub-models are not integrated into an all-in-one offline 
process because DIVA is currently released as a notebook that 
can be hardly transformed into an automatic process. Our next-
future plan is to transform DIVA into a Web service to facilitate 
its automatic integration with the other sub-models, which will 
require preparing specific cloud services and infrastructures 
(Assante et al., 2020).

One similarity between our model and VAST is that they 
both include spatial and temporal models, although they are 
modelled and combined differently. VAST uses two functions 
to estimate stock biomass density in the unsurveyed hauls for a 
specific survey year: one is the probability p(si,tj) of encountering 
the species in unsurveyed haul si in year tj, and the other is the 

expected catch rate r(si,tj). The expected stock biomass density 
d(si,tj) in si is calculated as the product of these two terms, i.e., 
d(si,tj)=p(si,tj)·r(si,tj). VAST models p(si,tj) as a logit distribution 
approximated by a linear combination of unknown random 
variables defined on si and tj. Moreover, it models r(si,tj) as the 
mean of a log-normal distribution approximated by another 
linear combination of random variables. The probability ( p) 
of encountering the species in the unsurveyed hauls in the 
analysis year coarsely corresponds to our environmental and 
spatial components, although VAST does not explicitly use 
environmental variables. The VAST catch rate term ( r) is a time-
dependent model that, differently from our temporal component, 
does not estimate a biomass index directly. Moreover, being d 
the product of the two r and p terms, the two models should 
be very accurate because multiplication is highly sensitive to 
individual function biases. Conversely, in our model, one of the 
biomass-index estimators could even be missing. Finally, VAST 
finds the optimal distributions using the Akaike Information 
Criterion as a model quality measurement, which introduces 
the potential bias to always select models with a higher number 
of parameters among equal-likelihood models (Guthery et  al., 
2005; Arnold, 2010; Coro et al., 2022a). Conversely, our model 

FIGURE 5 | Distribution of measured (red) and estimated (green) SoleMon biomass-indexes per haul for 2020.
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trains the components independently of each other using the last 
known biomass index as a reference. Moreover, each component 
models a more complex function than a linear combination 
of random variables.Our model shares characteristics with 
general spatiotemporal data gap filling models for remote 
sensing imagery reconstruction, which separately fill spatial and 
temporal gaps and eventually combine the estimates (Weiss et al., 
2014; Metz et al., 2017; Yan and Roy, 2018). With respect to these 
models, our model uses an ocean-specific kriging model for 
spatial modelling. Moreover, it uses a general signal processing 
technique for temporal modelling that is more complex than 
the pixel-wise temporal smoothing functions used by most 
alternative models. One interesting comparison is with deep-
learning-based models that directly simulate a space-time data 
reconstruction function and can reach very high performance 
in specific contexts (Belda et  al., 2020; Varshney et  al., 2021; 
Goodman, 2021). Differently from our model, deep-learning 
models can difficultly be re-implemented and adapted to new 
contexts - that usually require new model topologies and specific 
large training sets - and optimisation is very time-consuming. 
Moreover, performance and bias interpretability are easier for 

our type of model components than for deep learning models 
(Chakraborty et al., 2017; Zhang and Zhu, 2018).

We conjecture that our model is general enough to be applied 
also to other fishery trawl survey data. However, we acknowledge 
that the performance on SoleMon data were facilitated by 
favourable conditions such as a low inter-annual spatio-
temporal variability of the haul distribution. Unfortunately, 
such conditions are uncommon and unlikely in more extended 
and multi-country survey programmes. For example, the 
Mediterranean MEDITS programme (Spedicato et  al., 2019) is 
a 30-year data collection action that has been subject to changes 
due to revisions, optimisation, and re-planning. These changes 
corresponded to data gaps and inhomogeneity in time and space. 
Our model can manage this scenario by giving the highest weight 
to the component using the most informative data. Generally, in 
our future applications we will test our model on survey data that 
include issues such as (i) haul distribution change across the years, 
(ii) survey season change, and (iii) haul historical data containing 
several gaps. A potential limitation of our model when applied 
to other trawl surveys is that it cannot predict stock abundance 
directly, which will require integrating more data with the model.

FIGURE 6 | Percent average contributions, over the survey years, of the SoleMon hauls to the total biomass-index. Colours highlight the 2020 measured (red) and 
estimated hauls (green).
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We believe that our model can improve the quality of the 
information used by the GFCM, STECF, and MSFD, and 
improve stock status evaluation. Indeed, the biomass indexes 
reported in Table 3 have already been proposed and used for 
the 2022 GFCM stock assessments, after experts’ consistency 
evaluation of the model (Scientific Advisory Committee on 
Fisheries, 2022).

4.1 Model Applications
The major applications of our model can be summarised as 
follow:

• Data enhancement: The estimated biomass indexes can 
independently enrich the data coming from fishery survey, 
especially when major issues prevented complete monitoring. 
They also help monitor the correlation between biomass 
distribution and environmental conditions;

• Re-application to other scientific survey data: other scientific 
survey programmes can reuse our models to reconstruct 
biomass-indexes and compare the results to their current 
estimates;

• Haul contribution analysis: In critically limiting survey 
conditions, surveys could be prioritised to visit the hauls with 
the highest contribution to the total biomass-index calculation;

• Supporting stock assessment and harvest control rules: Stock 
status assessment is the basis for setting management rules, 
i.e., the amount of days fishing vessels can spend at sea and the 
harvest control rules that limit the catches. Indexes of relative 
abundance – such as the survey biomass index - are primary 
input data for stock assessment (Maunder and Punt, 2004). 
Using robust model-based input data is encouraged when raw 
observations are not sufficiently reliable (Thorson and Haltuch, 
2019). Having access to complete time series with spatial gaps 
reliably filled would help experts parametrise stock assessment 
models and increase result reliability and precision;

• Understanding the interplay between environmental change and 
fisheries: Environmental change may affect stock distribution 
and productivity (Free et  al., 2019). The stock-specific 
intrinsic rate of increase and carrying capacity depend on the 
interaction between the species and the environment where 
it lives (Froese et  al., 2017). Understanding the interplay 
between environmental conditions and stock dynamics 
is crucial for integrated environmental assessment and 

FIGURE 7 | Linear fit between the HBIE 2020 model uncertainty and the percent haul contribution to the total biomass, with the indication of the Pearson 
Correlation Coefficient (PCC).
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ecosystem approaches to fishery management (Antunes and 
Santos, 1999; Rosenberg et al., 2000; Karp et al., 2019; Marshall 
et al., 2019; Coro et al., 2021). Our model can contribute to this 
context because it can model species’ habitat suitability change 
over the years and attach this information to the survey data.
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