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Lighting the darkness in the
sea: A deep learning
model for underwater
image enhancement
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1Sanya Oceanographic Institution, Ocean University of China, Sanya, China, 2College of Electronic
Engineering, Ocean University of China, Qingdao, China
Currently, optical imaging cameras are widely used on underwater vehicles to

obtain images and support numerous marine exploration tasks. Many

underwater image enhancement algorithms have been proposed in the past

few years to suppress backscattering noise and improve the signal-to-noise

ratio of underwater images. However, these algorithms are mainly focused on

underwater image enhancement tasks in a bright environment. Thus, it is still

unclear how these algorithms would perform on images acquired in an

underwater scene with low illumination. Images obtained in a dark

underwater scene usually include more noise and have very low visual

quality, which may easily lead to artifacts during the process of

enhancement. To bridge this gap, we thoroughly study the existing

underwater image enhancement methods and low illumination image

enhancement methods based on deep learning and propose a new

underwater image enhancement network to solve the problem of serious

degradation of underwater image quality in a low illumination environment.

Due to the lack of ready-made datasets for training, we also propose the first

dataset for low-light underwater image enhancement to train our model. Our

method can be implemented to skillfully and simultaneously address low-light

degradation and scattering degradation in low-light underwater images.

Experimental results also show that our method is robust against different

illumination levels, which greatly expands the applicable scenarios of our

method. Compared with previous underwater image enhancement methods

and low-light image enhancement methods, outstanding performance is

achieved using our method in various low-light underwater scenes.

KEYWORDS

underwater image enhancement, low-light image enhancement, deep learning,
scattering removal, image decomposition
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1 Introduction

Scattering and absorption are two widely discussed causes of

image degradation in the field of underwater image

enhancement. Low illumination, which is an unavoidable

situation in the case of deep-sea exploration, makes

underwater image enhancement tasks more challenging. The

quality of information from underwater images captured under

low illumination conditions is often poor. As a result, it may

difficult to complete further application such as underwater

environmental monitoring, object recognition, and tracking.

The existing underwater image enhancement methods can

be used to improve the color distortion and blur of underwater

images affected by backscatter noise under normal illumination

to a certain extent, and the existing low-light image

enhancement methods can be used to adjust the brightness of

low-light images in the air and recover the image degradation

caused by insufficient illumination well. However, the problem

of low-light underwater image degradation cannot be solved

using these methods.

As shown in Figure 1, (A) shows the input image, and (B)

shows the enhanced result obtained by successively removing

scattering using the underwater image enhancement method

Ushape (Peng et al., 2021) and low-light degradation using the

low-light image enhancement method KinD (Zhang et al., 2019b);

(C) shows the enhanced result obtained by successively removing

low-light degradation using the low-light image enhancement

method KinD (Zhang et al., 2019b); and scattering using the

underwater image enhancement method Ushape (Peng et al.,

2021); (D) shows the result of using our method to process the

input image. It can be seen from (B) and (C) that good results in

terms of removing scattering and low-light degradation in low-

light underwater images have not been achieved using the existing

methods. Suppose that the scattering is first removed from the

low-light underwater image. During the process of removing the

scattering, the image texture structure may be changed, which
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affects the accuracy of the subsequent low-light image restoration.

Therefore, (B) appears fuzzy. In addition, most of the current

scattering removal methods are based on normal lighting scenes

and cannot be directly used for low-light scenes. As a result, some

blue fog is visible in subfigure (B), which indicates that the

scattering in the image has not been completely removed.

Instead, suppose that the image degradation caused by low-light

conditions is first removed. In this process, the original

backscattering structure of the image may be damaged. As a

result, the scattering degradation in the image is not completely

removedby the underwater image enhancement method.

Therefore, the foggy scattering in subfigure (C) is more

pronounced than that in subfigure (B).

Based on the above considerations, we aim to find a

method to simultaneously solve the complex degradation of

low-light underwater images caused by scattering and

insufficient illumination.

However, due to the flow of water and the complexity of

shooting underwater images, it is difficult to capture underwater

scenes under low-light and normal light conditions. We also lack

paired data to describe the image degradation characteristics in

the underwater low-light scenes. Influenced by LED-Net (Zhou

et al., 2022b), we process the normal underwater scattering

image by changing the exposure function of Zero-DCE (Guo

et al., 2020) to obtain low-light underwater scattering image sets

for pairwise training. We have named this dataset LUIE

By studying the existing underwater image enhancement

and low-light image enhancement methods based on deep

learning, we propose an effective network LDS-Net to

simultaneously solve the problems of scattering and

insufficient illumination of low-light underwater images.

In our method, we consider the degradation of underwater

images caused by the scattering in water and insufficient

illumination as damage to scene reflectance and then let the

network learn the transformation of the nondegraded image

according to the reflectance map and illumination map of the
A B DC

FIGURE 1

Comparison of enhancement effects of different methods on low-light underwater images. The subfigure (A) means the input image, (D) means
processing the input image by our method, (B) means processing the input image by underwater image enhancement method and low-light
image enhancement method in turn. (C) means processing the input image by low-light image enhancement method and underwater image
enhancement method in turn.
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degraded image obtained by image decomposition. Specifically,

inspired by Retinex-Net (Wei et al., 2018) and KinD (Zhang

et al., 2019b), o, our model first decomposes the low-light

underwater image into an illumination map and a reflectance

map through the decomposition network and transmits them to

the restoration network. The restoration network takes the

normal light underwater image without scattering as a

reference, inputs the given illuminance and reflectance maps,

and outputs the restoration results.

Based on a large number of experiments, our method

works well to address the problem of low-light underwater

image degradation and is beneficial in other applications of

underwater vision tasks using low-light underwater images.

Overall, our contributions are summarized as follows:

First, for low-light underwater image enhancement, we

propose a dataset that is generated by strictly screening 890

image pairs from the UIEB (Li et al., 2020) datasets and 5004

image pairs from the LSUI (Peng et al., 2021) datasets and

obtaining low-light image samples through a variant of the Zero-

DCE (Guo et al., 2020) network.

Second, we propose the first network for low-light

underwater image enhancement LDS-Net, which is composed

of Decom-Net and Restor-Net. Combined with Retinex theory

and image decomposition technology, LDS-Net regards the

impact of scattering degradation and low-light degradation on

the image as a new hybrid degradation on scene reflectance

obtained by image decomposition. Therefore, it can

simultaneously deal with scattering degradation and low-light

degradation in low-light underwater images of different sizes.

Third, our method can enhance underwater images with

different illumination from low illumination to normal

illumination. Different illumination maps and similar reflectance

maps will be obtained through image decomposition from

underwater images with different illumination of the same

scene. Taking different illumination maps as a conditional prior

and inputting them together with reflectance maps into the

Restor-Net for training can make our network enhance

underwater images with different illumination.
2 Related work

2.1 Underwater image enhancement

Based on whether they are data-driven, underwater image

enhancement methods can be divided into deep learning

methods and non-deep learning methods.

The underwater image enhancement method without deep

learning can be roughly divided into the methods that directly

change the image pixel value to enhance the image and methods

based on priors.

In the former methods, high-quality underwater images

are obtained by adjusting the image pixel values by stretching
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them or by image fusion. For example, Ancuti fused a

contrast-enhanced image with a color-corrected image

through a multiscale mechanism to generate an enhanced

image with better global contrast and richer detail

information (Ancuti et al., 2012). Zhou proposed a visual

quality enhancement method (Zhou et al., 2022a) for

underwater images based on multifeature prior fusion. By

applying a gamma correct ion power funct ion and

spatial linear adjustment to enhance the brightness and

structural details of the image, the overall quality of the

image improved.

In the latter methods, the image degradation process is

mostly reversed according to key parameters of the physical

model, which are deduced by priors to restore the image. For

example, Wang proposed an adaptive attenuation curve a priori

(Wang et al., 2017), which compensates for the transmission by

estimating the attenuation factor, to achieve the effect of image

restoration. Drew proposed a method based on the physical

model of light propagation (Drews et al., 2016), in which the

effects of absorption and scattering on image degradation were

comprehensively considered, and statistical priors were used to

restore the visual quality of the images acquired in typical

underwater scenarios.

Image enhancement methods based on deep learning can

be roughly divided into network-based GAN (Goodfellow

et al., 2014) models, such as UWGAN (Wang et al., 2019),

WaterGAN (Li et al., 2018), MyCycleGAN (Lu et al., 2019),

and UGAN (Fabbri et al., 2018), and network-based CNN

models, such as UIR-Net (Cao et al., 2018), URCNN (Hou

et al., 2018), and Ucolor (Li et al., 2021). WaterGAN (Li et al.,

2018), which is a representative GAN (Goodfellow et al., 2014)

network model, solves the problem that there is a lack of real

and reliable paired training data of underwater images by using

the GAN network to synthesize degraded/normal image pairs

and generate underwater images with good perceptual quality

through loss function constraints.

The authors who proposed Water-Net (Li et al., 2020),

facing the problem that there is a lack of paired data

for underwater image training, manually selected good

results through different enhancements of underwater

scattering images as nonscattered reference standards and

constructed the paired training dataset UIEB (Li et al.,

2020), which contains corresponding scattered underwater

images. Most of the subsequent underwater image

enhancement networks based on CNNs are also trained

based on this dataset. In the CNN network model Ucolor

(Li et al., 2021), the common scattering problem in

underwater images is solved by integrating the underwater

imaging model into their network.

However, these existing underwater image enhancement

methods cannot be applied to low-light scenes. Therefore, we

aim to find a method to process both normal illumination

underwater images and low-light underwater images.
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2.2 low-light image enhancement based
on deep learning

After the development of the first low-light image

enhancement method LLNet (Lore et al., 2017), which was

based on deep learning, an increasing number of low-light image

enhancement methods based on deep learning, such as

MBLLEN (Feifan Lv et al., 2018), EXCNet (Zhang et al.,

2019a) and EnlightenGAN (Jiang et al., 2021), were proposed.

In Retinex-Net (Wei et al., 2018), KinD (Zhang et al., 2019b) and

RRDNet (Zhu et al., 2020), different subnetworks were designed

by combining Retinex theory as guidance to estimate the

components of the Retinex model. EnlightGAN (Jiang et al.,

2021), which was introduced to solve the problem of the poor

generalization ability of models trained with paired data, uses

GAN (Goodfellow et al., 2014) to generate normal illumination

images according to the low-light images. Yan also proposed a

low-light image enhancement method (Yan et al., 2021) based

on the enhanced network module optimized generative

adversarial network (Goodfellow et al., 2014). Compared with

traditional image enhancement methods, this method has better

overall perception quality.

Facing the problem that supervised learning and unsupervised

learning have poor generalization ability or unstable training,

ExCNet (Zhang et al., 2019a) was proposed as a zero-shot low-

light image enhancement method, in which learning and

enhancement come from only the test image. The input image

is decomposed into a base layer and detail layer, and the image is

enhanced by adjusting the base layer through the estimated S-

curve. For a low-light image, simply adjusting the brightness of the

image inevitably amplifies the image noise. Faced with this

problem, AGLL (Lv et al., 2021) was proposed, in which a

synthetic dataset was constructed carefully designed with low-

light simulation strategies. Then, a novel end-to-end attention-

guided method was proposed based on a multibranch

convolutional neural network trained with the new dataset to

enhance low-light images. Facing the problem that no paired data

are available to characterize the coexistence of low-light and blur,

Zhou introduced a novel data synthesis pipeline (Zhou et al.,

2022b) that models realistic low-light blurring degradation. An

effective network (Zhou et al., 2022b) named LED-Net was

proposed to perform joint low-light enhancement and deblurring.

Inspired by LED-Net (Zhou et al., 2022b), we also synthesize

a low-light image dataset for joint low-light enhancement and

scattering removal by modifying the Zero-DCE (Guo et al.,

2020) network. However, our modification to the Zero-DCE

(Guo et al., 2020) network makes it different from the original.

In this method, we also decompose the image into

reflectance and illumination according to Retinex theory and

then enhance the image by learning the mapping from the

obtained reflectance map and illumination map to the

nondegraded underwater image.
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Unlike KinD (Zhang et al., 2019b) and Retinex-Net (Wei et al.,

2018), which restore the illuminance map and reflectance map,

respectively, for image enhancement, we input the decomposed

illumination map and reflectance map into the restoration network

at the same time and the generation of the enhanced image is

directly learned according to the ground truth. In addition, given

that in KinD (Zhang et al., 2019b), the image degradation caused by

low-light is considered as pollution in the image scene reflectance

map, we further explore the feasibility of treating the image

degradation caused by low-light and scattering as pollution

related to image reflectance.
3 LUIE dataset

3.1 Motivation

Due to the fluidity of water and the difficulty of underwater

shooting, it is difficult to capture underwater low-light images

and underwater normal light images with consistent scenes.

Therefore, we consider synthesizing appropriate underwater

images with low-light degradation and scattering according to

the existing datasets for network training.

We choose to synthesize underwater images with low-light

degradation and scattering by using underwater images under

normal light conditions with scattering in the UIEB (Li et al.,

2020) and LSUI (Peng et al., 2021) datasets and take the normal

light images without scattering in the original datasets as the

ground truth. Because the data results synthesized by GAN

(Goodfellow et al., 2014) often contain artifacts, adding low-light

degradation to the original scattering underwater image through

the GAN (Goodfellow et al., 2014) may change the original

scattering degradation of the image. Therefore, we consider a

method to synthesize underwater images with low-light

degradation and scattering without damaging the inherent

scattering degradation in the image as much as possible.

Inspired by LED-Net (Zhou et al., 2022b), we also modify

Zero-DCE (Guo et al., 2020) from a low-light image

enhancement model to a normal light image darkening model

to add low-light degradation to the image. However, our

modification to the Zero-DCE (Guo et al., 2020) network is

different from previous approaches. We reduce the exposure loss

function of the original network from 0.6 to (0.24, 0.25, 0.26,

0.27, 0.28, 0.29) to obtain six variants of the Zero-DCE (Guo

et al., 2020) network and add different degrees of low-light

degradation to the normal illumination images.
3.2 Data synthesis pipeline

Our data generation process can be roughly divided into

four stages
frontiersin.org
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First, we collected the UIEB (Li et al., 2020) and LSUI (Peng

et al., 2021) datasets, selected paired images of the appropriate

size and removed 600 × 400 blocks from these images for

subsequent data generation.

In the second step, we noted that the quality of the paired

images was uneven, and some reference images had problems

such as red color deviation and blur. Therefore, we

preliminarily screened the datasets to remove the data pairs

with poor quality, such as those with color deviation and blur.

Next, we changed the exposure loss function weight of the

Zero-DCE (Guo et al., 2020) network to obtain six network

models for adding different degrees of low-light degradation

to normal light. Then, we performed six different degrees of

light degradation on the scattered images under normal light

conditions, which were obtained in the previous stage, and

took the normal light images without scattering, which were

obtained in the previous stage, as the reference standard for

the degraded images.

In the fourth step, we further screened the dataset to

remove the synthetic low-light images with poor quality. For

example, some synthetic images have contain color deviation,

blur, and artifacts. Therefore, we removed them from

the dataset.

Finally, we used 362 images of underwater scenarios to

synthesize 2524 pairs of 600 × 400 size data as the training

dataset, and 14 images underwater scenarios were used as the

test set. It should be noted that in the 2524 pairs of

experimental data in the training dataset, data of the same

scene have the same reference standard of normal

illumination without scattering and consistent scattering

degradat ion , and only the degree of i l luminat ion

degradation differs.
4 Method

4.1 Research background

As mentioned in our previous analysis of the results

shown in Figure 1, when dealing with the dual degradation

of a low-light underwater image caused by scattering and low-

light, whether the scattering degradation or low-light

degradation is removed first, there will be a change to the

image degradation remaining in the image while removing

the current kind of image degradation, resulting in difficulty

during subsequent image processing.

Therefore, we aim to find an effective method to

simultaneously address the dual degradation caused by low-

light and scattering. Inspired by the KinD (Zhang et al.,

2019b) method, the image degradation caused by low-light

is regarded as the degradation of the inherent reflectance of

the image. We consider whether the image degradation
Frontiers in Marine Science 05
caused by scattering can also be regarded as having an

impact on the inherent reflectance of the image. After

analysis, we believe that this assumption is reasonable to

some extent.

According to the image imaging model commonly used in

underwater scenes (Tan, 2008), without considering the

influence of forwarding scattering on underwater imaging, the

underwater image can be expressed as:

I1 = Jt + A 1 − tð Þ (1)

where J represents the underwater image without scattering

degradation, A represents the ambient light, and t represents the

transmittance. According to Retinex theory, the restored

underwater image J can be expressed as:

J = RL1 (2)

where R represents the reflectance of image J, and L1
represents the illumination of image J. Then, Equation 1 can

be expressed as:

I1 = RL1t + A 1 − tð Þ (3)

Referring to the representation of the low-light image in

air in KinD (Zhang et al., 2019b), in which the low-light

degradation of the image is considered light pollution P1, the

low-light underwater image I2 can be expressed as:

I2 = RL2t + A 1 − tð Þ + P1 (4)

where L2 represents the illumination of image I2. It should

be noted that the effect of low-light degradation on the image

is not only based on simply changing the image illumination

from L1 to L2 but also introducing blur, noise, and other

negative effects to the image. Therefore, P1 is used to express

these negative effects. We regard the backscattering effect of

atmospheric light on the image as another kind of light

pollution P2.

P2 = A 1 − tð Þ (5)

Then I2 can be expressed as:

I2 = RL2t + P1 + P2 (6)

If we regard the influence of low-light pollution P1 and

atmospheric light pollution P2 on image I2 as the influence p1
and p2 on the image reflectance R, Equation 6 will become:

I2 = R + p1 + p2ð ÞL2t (7)

Meanwhile, we regard the image degradation caused by

the scattering rate t as reduction in the inherent reflectance of

the image. Because of the existence of medium scattering, the

light reflected by the object will be reduced by a certain

proportion, which is equivalent to the reduction in the

inherent reflectance of the object by a certain proportion

under the assumption that there is no medium scattering.
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Then, the reflectance of the degraded image can be expressed

as Rp, and

RP = R + p1 + p2ð Þt (8)

For the nondegraded image J, the degraded image I2 can be

expressed as:

I2 = RPL2 (9)

Then, according to Equations 2 and 9, the image

degradation caused by low-light and scattering is equivalent

to degrading the inherent reflectance of the image from R to

Rp and the illumination of the image from L1 to L2.

Similar to the KinD (Zhang et al., 2019b) and Retinex-Net

(Wei et al., 2018) methods, we decompose the low-light image

I2 and normal light image J into illumination maps L1 and L2,

respectively, and reflectance maps Rp and R, respectively, and

then restore the image according to the decomposed

illumination map and reflectance map. However, in KinD

(Zhang et al., 2019b) and other methods, images are restored

by learning the mapping from Rp to R and the mapping from L2
to L1. We choose to directly learn the mapping of generating

the real image J according to the Rp and L2 of the low-light

image. Because image decomposition is an ill-posed problem,

the decomposed Rp, R, L1 and L2 are approximate results. For

example, in theory, J = RL. However, there may be a certain gap

between the approximate result RL1 and the real ground truth J.

Instead of letting Rp and L2 learn the approximate R and L1,

respectively, to complete image restoration, we choose to let Rp

and L2 learn the real ground truth J to complete

image restoration.

It should be noted that we do not need to obtain a

reflectance and illumination decomposition as accurate as the

eigen image decomposition methods TSSD (Cheng et al., 2018)

and ULID (Liu et al., 2020). Instead, we utilize the scene

consistency between low-light images and normal light

images to obtain an approximate representation of scene
Frontiers in Marine Science 06
reflectance to facilitate subsequent image restoration.

Meanwhile, we also believe that through the process of image

decomposition, we can increase the amount of image

information input into the restoration network and reduce

the overall difficulty of image restoration. Obviously, compared

with one single input image I2 for restoration, a combination

between reflectance map Rp and illumination map L2 can make

the network (Restor-Net) easier to converge (Figure 2).

Equation 9 also provides an additional constraint to

reconstruct I2 and guide the training process of Decom-Net.

In order to further prove the significance of the image

decomposition process, we conduct an ablation study in

Figure 3. Without Decom-Net for image decomposition, the

images are enhanced with serious color deviation and artifacts

as shown in the middle column of Figure 3. In the right

column, the images enhanced with Decom-Net has better

structured information, and higher quality.
4.2 LDS-Net

The general structure of our network is shown in Figure 2.

As seen from Figure 2, our LDS-Net is composed of Decom-Net

and Restor-Net. A low-light underwater image is first

decomposed into an illumination map and reflectance map

through the Decom-Net network. Then the illumination map

and reflectance map are concentrated and passed to the Restor-

Net network to obtain the restoration results.

4.2.1 Decom-Net
Our Decom-Net structure is shown in Figure 4. For

simplicity, Decom-Net uses the same network structure as

KinD (Zhang et al., 2019b). It contains two branches that

correspond to reflectance and illumination. The reflectance

branch adopts a simplified U-Net [24], and the illumination

branch has a convolutional layer on concatenated feature maps
FIGURE 2

Overview of the LDS-Net.
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A B C

FIGURE 3

Ablation study of the decomposition process. The subfigure (A) means the input images, (B) means the images enhanced without Decom-Net,
and (C) means the images enhanced with Decom-Net.
FIGURE 4

The network structure of Decom-Net.
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from the reflectance branch to exclude scene textures

from illumination.

Recovering two components from an image is a highly ill-

posed problem. Without the information based on the ground

truth as guidance, we cannot guide the network to directly

learn the accurate decomposition results. We can only guide

the network to approach the correct decomposition direction

through the constraint of the loss function.

Theoretically, the reflectance of a scene should be shared

among different images. Therefore, the image reflectance R

and Rp obtained by decomposition of low-light scattering

underwater image I2 and normal light underwater image J

without scattering are similar. Ideally, if there is no

degradation, the image reflectance in both images should be

the same.

Therefore, we define the reflectance similarity loss Lr to

restrict the similarity of the reflectance decomposition results:

Lr = ∥R − RP ∥2 (10)

where ‖·‖2 means the ℓ2 norm.

In addition, the illumination in natural images is generally

smooth, so the decomposed illumination map should be smooth.

We define the light smoothness loss Li to constrain the

smoothness of the illumination map:

Li = ∥
∇L2

max   ∇I2, ϵð Þ ∥1 + ∥
∇L1

max   (∇ J , ϵ)
∥1 (11)

where ∇ represents the first-order derivative operator

containing ∇x (horizontal) and ∇y (vertical) directions. In

addition, ϵ is a small positive constant (0.01 in this study) that

is utilized to prevent a zero denominator, and ‖·‖1 represents the
ℓ1 norm.
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Meanwhile, for the low-light underwater scattering image

I2 and the normal light scattering underwater image J, if they

share the same reflectance, the ratio of the two illumination

maps should be I2 / J. Specifically, according to Equations 2

and 9, if Rp = R (ideally, if there is no degradation, they should

be the same because I2 and J have the same scene), then we

have I2 /J = L2 / L1 and �I2=�J = �L2=�L1, where �I2 and �L2 represent

the means of I2 and L2, respectively.

Therefore, we define the Lc loss to constrain the accuracy of

the decomposed illumination map:

Lc =
�I2
�J
−
�L2
�L1

�
�
�
�

�
�
�
�

(12)

where | · | is the absolute value operator.

Finally, the decomposition result should be able to

reproduce the input, so we use the reconstruction loss Lrec to

limit the error of reconstructing the input from the

decomposition result:

Lrec = ∥ J − RL1 ∥1 + ∥ I2 − RPL2 ∥1 (13)

The total loss function of the training decomposition

network can be expressed as:

Lt = w1Lr + w2Li + w3Lc + Lrec (14)

where w1 = 0.009, w2 = 0.05, w3 = 0.1.

4.2.2 Restor-Net
The structure of our Restor-Net is shown in Figure 5. It

adopts almost the same network structure as that of U-Net

(Ronneberger et al., 2015). The illuminance map and

reflectance map of the low-light image decomposed by the

decomposition network are taken as input, and the
FIGURE 5

The network structure of Restor-Net.
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underwater image without scattering normal light is taken as

the reference to learn low-light image restoration. Inspired by

ESRGAN (Wang et al., 2018), we do not add a BN layer

behind the network volume layer. Similar to Real-ESRGAN

(Wang et al., 2021) and Ucolor (Li et al., 2021), we choose to

use the perceptual loss function as the training loss. However,

different from these approaches, we only use the perceptual

loss function for training.

The perceptual loss is computed based on the VGG-19 net-

work (Simonyan and Zisserman, 2014), which is pre-trained on

the ImageNet dataset (Deng et al., 2009).

Specifically, we calculate the total perceptual loss with weight

(0.1, 0.1, 1, 1, 1) on the (conv12, conv22, conv32, conv42, conv54)

feature layer of the VGG-19 network (Simonyan and Zisserman,

2014), where convij indicates the features obtained by the jth
convolutional layer in the ith block.
5 Experiment

In this section, we first describe the implementation

details and introduce the experimental settings. Then, we

compare our method with representative low-light image

enhancement methods and underwater image enhancement

methods. Then, we show the enhancement effect of LDS-Net

on underwater images with different brightness. In the

ablation experiment, we verify the necessity of each part of

the loss function in Decom-Net. Finally, we show the

enhancement effect of our method on underwater images

with different illumination.
5.1 Implementation details

We choose to train our network with our synthesized LUIE

dataset. Meanwhile, to enable our network to process the

underwater images with normal illumination, we also add the

original normal scattering underwater images used to synthesize

the LUIE dataset for training. We use Adam for network

optimization. When training Decom-Net, the learning rate is

initialized to 0.0008, the batch size is set to 32, and the patch size

is set to 48 × 48. When training Restor-Net, the learning rate is

initialized to 0.001, the batch size is set to 64, and the patch size is

set to 384 × 384. The entire network is trained on an Nvidia GTX

3090 GPU using the PyTorch framework. Our method can

process 13 pictures of 600 × 400 size and more than 30

pictures of 256 × 256 size per second.
5.2 Experiment settings

To test the enhancement effect of our method on low-light

underwater images, we use 14 images of underwater scenarios
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with normal illumination, which were reserved for testing. These

images are used to synthesize low-light underwater images using

the modified Zero-DCE (Guo et al., 2020) network; this

collection of images is referred to as test set A. Additionally,

we collect some real low-light underwater images from the Great

Barrier Reef documentary with David Attenborough; this

collection of images is referred to as test set B. We use the

unreferenced underwater image quality evaluation standards

UIQM (Panetta et al., 2016) and UCIQE (Yang and Sowmya,

2015) and the referenced image quality evaluation standard

PSNR to evaluate image quality.
5.3 Comparison of underwater image
enhancement methods and low-light
image enhancement methods

Since underwater image enhancement methods are

mostly applied to underwater images taken under normal

lighting conditions, an ideal enhancement effect cannot be

achieved when applying these methods to low-light

underwater images. As shown in Figure 6, even if we apply

the latest two underwater image enhancement methods,

DeepWave-Net (Sharma et al., 2021) and Ushape (Peng

et al., 2021) to process low-light underwater images, there is

no obvious quality improvement in the enhanced results.

Therefore, in situations in which the underwater image

enhancement methods under normal illumination have no

enhancement effect when applied to the low-light underwater

image, we only compare our method with low-light image

enhancement methods based on deep learning, which are

state-of-the-art methods, and a traditional method

LUWE [21], which focuses on low-light underwater image

restoration. First, we qualitatively and quantitatively

compare our method with KinD (Zhang et al., 2019b),

Zero-DCE (Guo et al., 2020), MBLLEN (Feifan Lv et al.,

2018), RUAS (Liu et al., 2021), HEP (Zhang et al., 2021),

HWMNet (Fan et al., 2022), and LUWE (Porto Marques and

Branzan Albu, 2020) on the test set A. The results are

shown in Figure 7 and Table 1. Due to the limited space, we

only show the qualitative comparison results of some

representative methods in Figure 7.

As seen from Figure 7, compared with other methods, our

method has a better effect on image detail restoration and higher

image quality. In addition, it can be seen from the restoration

results that when low-light degradation is removed from the

low-light underwater images using Zero-DCE (Guo et al., 2020)

and KinD (Zhang et al., 2019b) the scattering degradation in the

images cannot be removed. As a result, the restoration results

appear foggy, especially in subfigure (C).

From the results of test set A in Table 1, we can see that the

best results using the UIQM (Panetta et al., 2016) and UCIQE

(Yang and Sowmya, 2015) evaluation standards and the second-
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A

B

D

C

FIGURE 6

Comparison with representative underwater image enhancement methods. The subfigure (A) means the input images, (B, C) mean the images
enhanced with the latest two underwater image enhancement methods DeepWave-Net and Ushape, and (D) means the images enhanced with
our method.
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best results using the PSNR evaluation standards are achieved

using our method. Overall, our method has a better image

restoration effect.

Then we qualitatively and quantitatively compare our

method with KinD (Zhang et al., 2019b), Zero-DCE (Guo

et al., 2020), MBLLEN (Feifan Lv et al., 2018), RUAS (Liu

et al., 2021), HEP (Zhang et al., 2021), HWMNet (Fan et al.,

2022), and LUWE (Porto Marques and Branzan Albu, 2020) on

test set B. The results are shown in Figure 8 and Table 2.

As seen from Figure 8, compared with other methods,

better image details, lower image blur, and higher image

quality are observed from using our method. From the test
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results of test set B in Table 2, we can see that higher scores for

the e UIQM (Panetta et al., 2016) and UCIQE (Yang and

Sowmya, 2015) evaluation standards are obtained using our

method than other methods, and our method has a better

image restoration effect.
5.4 Experiments on underwater images
with different illumination using LDS-Net

In this section, we show the enhancement effect of our

method on underwater images of different scenes under
A

B

D

E

C

FIGURE 7

Enhancement results of different methods on test set A. (A) means the input images, (B, C) mean the images enhanced with the representative
low-light image enhancement methods KinD and Zero-DCE, (D) means the images enhanced with our method, and (E) means the groundtruth
of the input images.
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different illumination conditions. Due to the limited space, we

only show the comparative experimental results of two scenes.

For example, subfigure (A) in Figure 9 shows the underwater

images of Scene 1 under three different illumination

conditions, and subfigure (B) shows the corresponding

enhancement results. As seen from subfigure (B) and

subfigure (D), our method can achieve a good enhancement

effect for underwater images with different illumination. In

addition, from the last column results of subfigure (B) and

subfigure (D), we can see that our method has a good effect on

sca t t e r ing remova l for underwater images under

normal illumination.
5.5 Ablation experiment

We conduct detailed ablation experiments to analyze the

importance of each component of the loss function of Decom-

Net. Decom-Net decomposes the input low-light image into two

parts: an illumination map and a reflectance map.

To make the contrast effect of the ablation experiment more

obvious, we choose to use different illumination maps obtained

by Decom-Net trained with different loss functions

for comparison.

Figure 10 is the result of the ablation experiment, where w/o Lr
loss means that Decom-Net is trained without Lr loss, w/o Li loss

means that Decom-Net is trained without Li loss, w/o Lc loss means

that Decom- Net is trained without Lc loss, w/o Lrec loss means that

Decom-Net is trained without Lrec loss, w / Lt loss means that

Decom-Net is trained with Lt loss and Lt loss is the total loss

function used when we train Decom-Net.

Since the illumination of the image in the real scene is

generally smooth and independent of the objects in the scene,

the illumination map obtained from the image input in

Decom-Net should also be smooth and reflect the
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i l lumination characteristics of the input image. In

Figure 10, subfigure (A) is an input image, and the other

subfigures are different illumination maps obtained by

Decom-Net tra ined with di ff erent loss funct ions .

Comparing the subfigures (B) and (C) in Figure 10, it can

be seen that the decomposition result of the illumination map

obtained with Lr loss is smoother and more accurate. The

illumination map in subfigure (D) is the same as the input

image. The illumination maps in subfigures (E) and (F) are a

pure white image and a pure black image, respectively. As

seen from these three subfigures, the use of Li, Lc and Lrec is

crucial. Without them, the training effect of Decom-Net is far

from the results obtained under ideal conditions in

subfigure (B).
6 Conclusion

In this paper, we propose a dataset LUIE for low-light

underwater images, which provides a basis for the further

explorat ion of low il lumination underwater image

enhancement. In addit ion, we propose a low-light

underwater image enhancement method LDS-Net based on

deep learning. This method can remove the influence of low-

light degradation and scattering degradation on the low-light

underwater images at the same time. Through experimental

verification, our method can be applied to underwater images

with different illumination. Our method can also provide a

baseline for follow-up low-light underwater image research. In

future work, we will attempt to find a way to combine the two

subnetworks Decom-Net and Restor-Net of our LDS-Net into

one network so that network training can be completed in one

step. We will also try to combine our method with the target

detection/classification algorithm to improve the accuracy of

the object detection/classification.
TABLE 1 Using UIQM, UCIQE and PSNR to evaluate the results of different methods on test set A, the higher the score, the better the
enhancement effect.

Methods UIQM UCIQE PSNR

Input 2.319 0.350 9.388

Zero-DCE 2.836 0.280 11.680

KinD 3.157 0.330 17.201

MBLLEN 2.392 0.321 13.944

LUWE 1.845 0.195 11.847

RUAS 2.658 0.370 10.070

HEP 2.816 0.275 10.670

HWMNet 2.857 0.366 14.282

Ours 3.159 0.425 16.155

Ground Truth 3.011 0.466 100.00
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The best results are marked in red, and the second best results are marked in blue.
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B

D

C

FIGURE 8

Enhancement results of different methods on test set B. The subfigure (A) means the input images, (B, C) mean the images enhanced with the
representative low-light image enhancement methods KinD and Zero-DCE, and (D) means the images enhanced with our method.
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TABLE 2 Using UIQM and UCIQE to evaluate the results of different methods on test set B, the higher the score, the better the enhancement
effect.

Methods UIQM UCIQE

Input 1.138 0.377

Zero-DCE 1.394 0.360

KinD 2.482 0.371

MBLLEN 1.780 0.330

LUWE 1.542 0.213

RUAS 1.571 0.397

HEP 2.144 0.304

HWMNet 1.896 0.351

Ours 2.687 0.412
Frontiers in Marine Science
 front14
The best results are marked in red, and the second best results are marked in blue.
A

B

D

C

FIGURE 9

Enhancement results of underwater images with different illumination with LDS-Net. The subfigure (A, C) mean the input images in one Scene
with different illumination. (B, D) mean the corresponding enhancement results with our method.
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