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Heavy metal pollution in the mariculture areas is of considerable attention due to its
potential ecological effects and public concern for seafood safety. A better understanding
of the current contamination status and historical trend of heavy metals in the ecosystems
of mariculture areas has an important implication for the sustainable development of
marine ecosystems and for public health concerns. To assess the impact of human
activities on heavy metal pollution in the mariculture area, seven metals (Cu, Pb, Zn, Cd,
Hg, As, and Cr) and the environmental parameters were seasonally investigated in the
surface seawater and sediments in Qinzhou Bay, a typical mariculture bay in South China.
Seasonal variations in the concentration of heavy metals were found in both seawater and
sediment, which are mainly influenced by seasonal hydrological change, biological activity,
and human influence. The concentration of heavy metals in the seawater was at a relatively
higher level than that of other mariculture areas in China, while a lower level was found in
the sediment. The concentration of Cu increased in both seawater and sediment for the
past decades (by nearly 2 times), which is mainly influenced by the mariculture and
shipping activities. The concentration of Hg decreased significantly in the seawater for the
past 40 years (decreased by 13 times) due to the decrease in production and usage of Hg.
However, the concentrations of Pb, Zn, and Cd in seawater showed an increasing trend in
the mariculture bay, while the concentrations of Pb, Zn, As, and Cr decreased in the
sediment over the past decades. The decrease in pH value (decreasing by 4.7% for the
past 20 years) was responsible for the different trend of those metals between seawater
and sediment because the decrease in pH could re-release metals from sediments into
the water column. Hg and As are the main ecological risk factors in the mariculture bay.
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This study suggests that environmental changes, such as ocean acidification, affect the
distribution of metals in seawater and sediments, which we should be more vigilant and
concerned about under the global climate change.
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INTRODUCTION

Heavy metal pollution has become a global concern because of
their high toxicity, persistence, and bioaccumulation (Duodu
et al., 2016; Gong et al., 2018; Alengebawy et al., 2021). The
coastal ecological environment is now facing a significant risk
due to heavy metal pollution caused by intensive human
activities (Wang et al., 2013; Lao et al., 2019; Adyasari et al.,
2021; Li et al., 2022). Although many countries have made great
efforts to reduce the anthropogenic discharges of heavy metals
for the past decades, high levels of heavy metals can still be found
in various environmental mediums around the world due to their
persistence, particularly in the coastal areas (Chen et al., 2018;
Wu et al., 2018; Cai et al., 2019; Kumar et al., 2019; Yan et al.,
2022). Excessive amounts of heavy metals in the coastal
environment would adversely affect the health of marine
organisms and eventually threaten human life (Castro-
González and Méndez-Armenta, 2008; Achary et al., 2017;
Mishra et al., 2019; Liu et al., 2021).

Seafood from mariculture is an important animal protein
source for humans and is a developing industry that greatly
contributes to the national economy (Wang et al., 2016). With
the global climate change and the continuous expansion of the
mariculture scale, various environmental problems have also
appeared in the mariculture areas, such as eutrophication
(Baquiran and Conaco, 2018; Lao et al., 2021a), hypoxia, ocean
acidification (Clements and Chopin, 2017; Ng and Chiu, 2020),
and heavy metal pollution (Wang et al., 2016; Liu et al., 2020).
Excessive heavy metals are discharged into the mariculture area,
which strongly cause accumulation and biomagnification by
aquaculture organisms along the water, sediment, and aquatic
food (Islam and Tanaka, 2004; Jiang et al., 2018). Moreover,
sediments are not only the sink for heavy metals in marine
environments but also the source of heavy metals by the
disturbance of bottom water and the changes in environmental
conditions, such as pH (Ma et al., 2016) because the absorbed
heavy metals can be released again with the decrease in pH value
in the environment (Kashem and Singh, 2001). Under the stress
of anthropogenic input and environmental change, the issue of
heavy metal pollution in mariculture areas has become more and
more serious. Thus, a better understanding of the current degree
of contamination and historical trend of heavy metals in the
ecosystems of mariculture areas has an important implication for
the seafood industry, the sustainable development of marine
ecosystems, and public health concerns.

Qinzhou Bay, located in the northern Beibu Gulf, South
China Sea, is one of the most important mariculture grounds
in the coast of the South China Sea. The bay is influenced by the
discharge of several rivers and tidal influx from outer Beibu Gulf
in.org 2
and constitutes a good estuary–bay multi-ecosystem with rich
biological diversity (Xu et al., 2020 and Xu et al., 2021). However,
with the rapid development of urbanization and industrialization
around the coast regions in the Beibu Gulf, a large amount of
terrestrial contaminant input resulted in the bay facing many
environmental problems now (Gu et al., 2015; Lao et al., 2021a;
Lao et al., 2021b and Li et al., 2018; Liu et al., 2020; Lao et al.,
2021c). Rivers around the Qinzhou Bay discharged a large
amount of terrestrial contaminants into the bay every year,
and the contaminant input by the river has shown an
increasing trend in the recent two decades (Lao et al., 2020).
This resulted in the eutrophication increase over the past 40
years (increased by 18 times) (Lao et al., 2021a), and the
pollution of heavy metals in Qinzhou Bay is more serious
when compared with that of other bays in Beibu Gulf (Lao
et al., 2019; Liu et al., 2020). In addition, a higher level of heavy
metal pollution in seawater was found in the Maowei Sea (Upper
Qinzhou Bay, Figure 1) among the four main mariculture areas
in the Guangxi Beibu Gulf, and the level of some metals, such as
Cu, was much higher than that found in the past 20 years (Liu
et al., 2020). In sediments, high concentrations of Pb, Cr, and Cu
were observed in Qinzhou Bay, which is not suitable for
mariculture, endangered species reserves, and nature reserves
(Gu et al., 2015). However, systematic studies on heavy metal
pollution in seawater and sediments, including the estuary and
the mariculture areas, have not been reported. The dynamic
processes and the internal factors causing the changes of heavy
metals between seawater and sediments in the bay are still
unclear, which is significantly important for the sustainable
development of the mariculture and seafood industry.

In this study, the seasonal concentrations of metals and other
physicochemical parameters in seawater and sediments of the
Jingu River Estuary and the adjacent mariculture area in
Qinzhou Bay were investigated and combined with the
historical data to identify the occurrence, potential sources,
historical trend and its influencing factors, and ecological risk
of heavy metals in the mariculture bay.
MATERIALS AND METHODS

Study Area and Sampling
Qinzhou Bay is s semi-enclosed bay in the northern Beibu Gulf,
located at the northwest of South China Sea (Figure 1). The area
of Qinzhou Bay is 908 km 2, and the water depth is mostly <10 m.
The climate in the bay is controlled by the East Asian Monsoon,
with the monthly air temperature ranging from 13.9 to 28.6°C
(average of 22.5°C) (http://data.cma.cn/site/index.html). The
annual rainfall is 2,174 mm, of which over 83% falls during the
June 2022 | Volume 9 | Article 923494
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rainy season (from April to September), and the rainfall
increased significantly from April [average of 113.8 mm in
April, which is significantly higher than that from October to
March (average of 54.8 mm)] and decreased significantly after
October (http://data.cma.cn/site/index.html). Due to the unique
ecological environment and mixture of freshwater and saltwater,
Qinzhou Bay and the Maowei Sea in the north of the bay have
been used for mariculture over 50 years, and these regions are the
largest natural oyster seeding (~2,340 hm2) and mariculture bay
in China (Yang et al., 2019; Xu et al., 2020). The bay represents a
significant economic developing area, which has been greatly
influenced by anthropogenic activities (Xu et al., 2021).

In this study, two cruises were conducted in the Jingu River
Estuary and the adjacent mariculture area in Qinzhou Bay in
winter (December 2019, dry season) and spring (the end of April
2020, early rainy season), respectively. A total of 20 seawater
stations (20 seawater samples) and 11 sediment stations (11
seawater samples) were investigated during the dry season and
early rainy season, respectively (Figure 1). In addition, the
historical data of the surface water and sediment in 2010 and
2013 were collected in a similar station in Qinzhou Bay (data
obtained from the Marine Environmental Monitoring Centre of
Beihai, State Oceanic Administration). Surface seawaters (depth
of 0.5 m) were collected using a rosette sampler fitted with a 5-L
Niskin bottle and then transferred into acid-cleaned
polypropylene bottles. The temperature, salinity, dissolved
oxygen (DO), and pH were measured on-site. For the
chlorophyll a (Chl a) sample, about 1,000 ml seawater was
filtered using glass fiber filters (GF/F, 0.7mm, Whatman) and
stored at -20°C until further analysis. The total suspended
particulate matter (TSM) samples were filtered through pre-
weighed GF/F. For the heavy metal analysis, the seawater
samples were filtered through acid-cleaned cellulose acetate
filters (0.45-mm pore size and 47-mm diameter, Whatman),
and then the filtrate was placed into 250-ml acid-cleaned
polyethylene bottles, and HNO3 was added to the filtrate to
achieve a pH of approximately 2. Finally, the filtrate was stored at
Frontiers in Marine Science | www.frontiersin.org 3
-20°C until further analysis. Surface sediment (0–5 cm) was
collected using a grab sampler. The upper sediment samples (1 to
2 cm) were removed using an acid-washed plastic spoon to avoid
any pollution from the metallic sampler, and the sediment
sample was placed into a polyethylene bag and stored at -20°C
until further analysis. Six metals (Cu, Pb, Zn, Cd, Hg, and As)
and seven metals (Cu, Pb, Zn, Cd, Hg, As, and Cr) were
measured in the seawater and sediment samples, respectively.
The pretreatment and laboratory analyses for the heavy metal
samples were conducted according to the method by Lao et al.
(2019). The measurement of Cu, Pb, Zn, Cd, As, and Cr in the
sediment samples were oven-dried at 105°C for ~72 h, and the
sediment samples for Hg were dried naturally at room
temperature (24°C). After drying, the sediment samples were
ground with a pestle and agate mortar and then sieved through
an 80-mesh sieve for Hg and a 160-mesh sieve for Cu, Pb, Zn,
Cd, As, and Cr.
Chemical Analysis
Salinity was measured using a salinometer (SYA2-2, Beijing,
China), and pH in the field was measured using a pH meter
(PHS-3C, Shanghai, China). The DO samples were analyzed by
theWinkler titration method with a precision of 0.07 mg L-1. The
chemical oxygen demand samples were measured by the
potassium permanganate oxidation method with a precision of
0.15 mg L-1. The Chl a samples were extracted using 90% acetone
solution (v/v) and measured by a spectrophotometer (Turner
Designs Fluorometer, Model 10AU, Shanghai, China). The total
organic matter (TOC) in the sediment samples were freeze-dried
for the analysis, and the level was determined using the
potassium dichromate oxidation–ferrous titration method
(GAQS-IQ, 2008). The detection limit of TOC was 0.01%. The
sediment samples for the grain size were pretreated according to
the Chinese National Standard (GB/T12763.8-2007), and the
granulometry was determined by a laser diffractometer (Malvern
Mastersizer 3000, UK).
FIGURE 1 | Study area and the sampling stations in the estuarine and the adjacent sea in Qinzhou Bay. The red box in the left is the sampling area, the red dots in
the right are the seawater sampling stations, and the blue crosses in the right are the sediment sampling stations. SM, summer monsoon; WM, winter monsoon.
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The analysis of heavy metal in the seawater and sediment
samples in this study was conducted according to Lao et al.
(2019). The measurements of Cu, Pb, Zn, and Cd in seawater
were used in anodic stripping voltammetry (797 VA
Computrace, Wantong, Switzerland). The measurements of Hg
and As were used in atomic fluorescence spectrometry (ASF-
9530, Beijing Haiguang Instrument, China). The detection limits
of Cu, Pb, Zn, Cd, Hg, and As in the seawater samples were 0.6,
0.1, 1.0, 0.01, 0.007, and 0.5 µg L-1, respectively. During the
analysis of heavy metals in the sediment, 0.5 g of processed
sediment samples was digested with a mixture containing HCl
and HNO3 at 95°C for 1 h and then diluted to 50 ml with distilled
water before the analysis. Cr, Pb, Zn, Cu, and Cd were measured
by atomic absorption spectrometry (ZEENH700P, Jena,
German). As and Hg were measured by atomic fluorescence
spectrometry (ASF-9530, Beijing Haiguang Instrument, China).
The detection limits of Cu, Pb, Zn, Cd, Cr, Hg, and As were 2.0,
1.0, 6.0, 0.04, 2.0, 0.002, and 0.06 µg g-1, respectively.

Quality Control and Quality Assurance
All glassware during the experimental procedure were soaked in
nitric acid solution (HNO3, 1:3) for 7 days and then cleaned with
ultra-pure water before use. To ensure high accuracy and
precision, the number of duplicate samples, blanks, and
certified reference material [GBW-07309 from the State
Oceanographic Administration of China and GBW(E)-080040
from the Second Institute of Oceanography, Ministry of Natural
Resources of China] accounted for 20% of samples in the batch
digestion experiments. The results were all blank-corrected in
this study. Duplicate samples were analyzed to check the
reproducibility, and the relative difference was <5%. Spike
recovery test was conducted to test the analytical procedures,
and the recoveries in the standard were 99 ± 4% for Cu, 95 ± 5%
for Pb, 102 ± 3% for Zn, 98 ± 3% for Cd, 95 ± 6% for Cr, 103 ±
6% for Hg, and 97 ± 3% for As.

Heavy Metal Pollution Assessment
The contaminant degree of heavy metals in seawater was
assessed by the ecological risk index (ERI) (Hakanson, 1980).
The equation is as follows:

ERI =o
N

i=1
Ei
r =o

N

i=1
Ti
f �

Ci

Co
(1)

where Ei
r , T

i
f , Ci, and Co represent each heavy metal potential

ERI, toxic response factor (TRF), heavy metal value in the
seawater, and standard value. The Co in this study adopted the
National Standard of China for Seawater Quality GB 3097-1997,
grades I and II (Table 1). According to this method, Ei

r <40 and
ERI <150 represent a low ecological risk, 40 < Ei

r <80 and 150 <
ERI <300 represent a moderate ecological risk, 80 < Ei

r <160 and
300 < ERI <600 represent a high ecological risk, 160 < Ei

r <320
represent a very high ecological risk, and Ei

r ≥320 and ERI ≥600
represent an extremely high ecological risk. The TRF of Cu, Pb,
Zn, Cd, Hg, and As are 5, 5, 1, 30, 40, and 10, respectively (Liu
et al., 2020).
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The contaminant degree of heavy metals in the sediment was
assessed by the pollution load index (PLI), geoaccumulation
index (Igeo), and enrichment factor (EF). The background
values of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment were
from the Beibu Gulf, and the values were 15.8, 28.9, 75.8, 0.09,
35.0, 0.029, and 7.8 µg g-1, respectively (Lao et al., 2019).

The PLI, Igeo, and EF values were calculated according to
Islam et al. (2015) and Lao et al. (2019). The PLI value was
calculated as follows:

PLI = CF1 � CF2 �…� CFnð Þ1=n (2)

where CF denotes the ratio of heavy metal concentration and
background value (CF = Cmeasured/Cbackground). A PLI value of 0
represents no contamination, a value of 1 represents the presence
of only a baseline level of contamination, and >1 represents
progressive deterioration. In addition, a CF value <1 represents a
low degree, 1 ≤ CF ≤3 represents a moderate degree, 3 ≤ CF ≤6
represents a considerable degree, and CF ≥6 represents a very
high degree (Lao et al., 2019).

The Igeo value was calculated as follows:

Igeo = log2
Cn

1:5Bn

� �
(3)

where Cn represents the measured value of each metal in the
field, and Bn represents the background value of each metal. Igeo
≤0 represents being practically uncontaminated, 0 ≤ Igeo ≤1
represents low contamination, 1 ≤ Igeo ≤2 represents moderate
contamination, 2 ≤ Igeo ≤3 represents moderate to heavy
contamination, 3 ≤ Igeo ≤4 represents heavy contamination, 4
≤ Igeo ≤5 represents heavy to extreme contamination, and Igeo ≥5
represents extreme contamination (Islam et al., 2015; Lao
et al., 2019).
RESULTS

Environment Background Properties in the
Seawater and Sediment
The variations of the physico-chemical parameters in Qinzhou
Bay are presented in Figure 2 and Table 1. The temperature in
the mariculture area was higher than that in the estuary area
during winter, but the opposite feature was found in spring
(Figure 2A). Salinity exhibited an upward trend from the upper
estuary to the mariculture area during both seasons, with higher
salinity in the dry season (ranging from 27.59 to 30.75) and lower
salinity in the early rainy season (ranging from 23.11 to 27.99)
(Figure 2B). This suggested that the seawater intruded into the
estuary with the decrease in runoff due to the low rainfall in the
dry season. The pH and DO values were higher than those in the
estuary area during both seasons (Figures 2C, D). The TSM
concentration in spring was higher than that in winter, while
there was a little difference between the values of the estuary and
mariculture area during both seasons (Figure 2E). The Chl a
levels were all higher in spring and lower in winter (Figure 2F).
During spring, phytoplankton blooms occurred in the
June 2022 | Volume 9 | Article 923494
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mariculture area (Figure 2F). There was a little difference in the
pH values in the sediment between winter (average of 7.67) and
spring (average of 7.67), but the value in the mariculture area was
higher than that in the estuary area during both seasons. Notably,
the pH values in Qinzhou Bay decreased during the rainy seasons
for the past 20 years, decreasing by 4.7% (Figure 3). The TOC
concentrations in the sediment during spring (average of 1.53
µg g-1) were higher than those in winter (average of 1.04 µg g-1).
Figure 4 displays the composition of the grain size of the
sediments. The composition of the grain size of the sediments
is similar during both seasons, and silt- and sand-sized grains
mainly exist in the two regions.
Frontiers in Marine Science | www.frontiersin.org 5
Heavy Metals in the Seawater
The concentrations of six metals in the surface seawater are
presented in Figure 5 and Table 2. The average concentration of
heavy metals followed a decreasing order of Zn > Cu > Pb > As >
Cd > Hg during both seasons. Generally, the concentrations of
Cu, Pb, Zn, Cd, and As in winter were higher than those in
spring, while the concentration of Hg in spring was higher than
that in winter (Figure 5 and Table 2). The concentration of Cu in
the mariculture area was higher than that in the estuary, while Zn
exhibited an opposite trend during both seasons (Table 2). The
other metals showed a little difference between mariculture and
estuary area. The concentrations of Cu, Zn, Cd, Hg, and As were
within the range of grade I in seawater, and the concentration of
Pb was within the range of grade II in seawater (Table 2).
Compared with the other areas, the concentrations of heavy
metals were generally lower than those in developed coastal
areas, such as the Yellow River Estuary (Wang et al., 2018) and
Guangdong coastal area (Zhang et al., 2015), while the level was
higher than the other mariculture areas in China (Table 3)—for
example, all metals except As are higher than those in Laoshan
Bay (Wang et al., 2019); the concentrations of Pb, Zn, and Cd are
higher than those in Zhanjiang Bay (Zhang et al., 2018) and
Lianzhou Bay in northeastern Beibu Gulf (Liu et al., 2020) and
Maowei Sea in the upper Qinzhou Bay (Liu et al., 2020); and all
metals except Hg are higher than those in Pearl Bay in
northwestern Beibu Gulf (Liu et al., 2020). Notably, despite the
fluctuation, the concentrations of Cu, Pb, Zn, and Cd showed an
increasing trend in the seawater, while the concentration of Hg
decreased over the past 40 years (Table 3).

Heavy Metals in the Sediments
The concentrations of seven metals in the surface sediments are
presented in Figure 6 and Table 2. The average concentrations of
the seven metals revealed a decreasing order of Zn > Cr > Cu > Pb
> As > Cd >Hg during the spring, while the concentrations showed
a decreasing order of Zn > Pb > Cr > As > Cu > Cd >Hg during the
winter (Table 2). The different orders suggested that different metal
sources may occur in different seasons. The concentrations of Cu,
Zn, As, and Cr in spring were higher than those in winter, while Pb
and Hg exhibited higher concentrations in winter but lower
concentrations in spring. The concentration of Cd in winter was
similar to that in spring. Differently from those in the seawater, the
concentrations of heavy metals in the sediment were more
complicated between mariculture and the estuary area. The
TABLE 1 | Summary of the average values of physico-chemical parameters in the seawater of different areas during spring and winter.

Temperature
(°C)

Salinity pH Dissolved oxygen
(mg L-1)

Total suspended particulate matter
(mg L-1)

Chemical oxygen demand
(mg L-1)

Chl a
(mg L-1)

Spring Estuary area 26.45 23.96 7.55 5.93 23.77 1.57 2.13
Mariculture

area
24.42 27.13 8.11 6.99 24.28 1.19 11.18

Average 25.54 25.38 7.81 6.41 24.00 1.40 6.44
Winter Estuary area 18.11 28.77 7.83 6.93 20.54 1.09 0.48

Mariculture
area

18.27 30.22 8.08 7.67 20.97 0.84 1.24

Average 18.18 29.42 7.95 7.27 20.73 0.98 0.83
Annual average 21.86 27.40 7.88 6.84 22.37 1.19 3.63
June 2022 | Volume 9 | Art
FIGURE 2 | Variations of the physico-chemical parameters in the seawater of
the estuary and mariculture area in Qinzhou Bay during winter and spring.
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concentration of Cu in the estuary area was higher than that in the
mariculture area, while the concentration of Zn showed an
opposite trend during both seasons (Table 2). The concentration
of Pb in spring were higher in the estuary area, while higher
concentrations in winter were found in the mariculture area. Other
metals showed a little difference between mariculture and the
estuary areas during both seasons. Differently from those in the
seawater, the concentrations of heavy metals in the sediment were
generally lower than those in other similar coastal mariculture bays
and other coastal regions in China (Table 4). The concentrations of
all metals in the sediment were within the range of grade I
(Table 4). In contrast to the tendency of heavy metals in
seawater, except for the concentration of Cu which increased, the
concentrations of Pb, Zn, As, and Cr generally decreased in the
sediment for the past 20 years, and the concentration of Hg in the
sediment has a little change for the past years (Table 4).
Frontiers in Marine Science | www.frontiersin.org 6
DISCUSSION

The Hydrodynamic and Biological Effects
on the Distribution of Heavy Metals in
Qinzhou Bay
In the marine environment, the distribution and transportation
of heavy metals are greatly influenced by the physicochemical
processes (Lao et al., 2019) and the external inputs of heavy
metals, including anthropogenic and terrestrial sources,
sediment release, biogenic processes, and hydrography (Lao
et al., 2019). To better understand the control factors for the
distribution of heavy metals in the estuary and adjacent
mariculture area in Qinzhou Bay, the relationships between
heavy metals and environmental parameters in both seawater
and sediment were analyzed, and the results are presented in
Tables 5, 6. Zn is not related to the physicochemical factors in
FIGURE 4 | Seasonal and spatial variations of grain size composition in the surface sediment of the estuary and mariculture area in Qinzhou Bay.
FIGURE 3 | Variations of pH values during the rainy seasons for the past 20 years. Data obtained from the Marine Environmental Monitoring Centre of Beihai, State
Oceanic Administration.
June 2022 | Volume 9 | Article 923494
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the seawater. Hg is negatively correlated with salinity,
suggesting that the metal is greatly influenced by the
terrestrial input. In contrast, there is a significantly positive
relationship between Cu, Pb, Cd, and As, and they showed
Frontiers in Marine Science | www.frontiersin.org 7
positive correlations with salinity while showing negative
correlations with Hg, suggesting that the level of these metals
may be influenced by the intrusion of seawater. Previous studies
have found that, under the influence of the circulation of Beibu
Gulf, a high concentration of heavy metals in the other areas
can be introduced into the coastal seawaters of Guangxi Beibu
Gulf (Lao et al., 2019; Liu et al., 2020). Correspondingly, Cu, Pb,
Cd, and As showed a significantly positive correlation with
temperature, indicating that the intrusion of these metals into
the coastal mariculture area mainly occurred in winter (dry
season). During the dry season, the runoff around the coastal
area decreased sharply (Lao et al., 2020; Lao et al., 2021b), and
the seawater could intrude into the bay; thus, the salinity
increased. In contrast, Hg showed a positive correlation with
temperature, indicating that the increase of runoff in the rainy
season (higher temperature) could introduce more land-based
Hg into the bay. Hg showed a significantly negative correlation
with pH. This suggested that, except for the terrestrial input, the
Hg level in the estuary and the bay may also be influenced by
the water environment. Pb and As showed a significantly
negative correlation with TSM level, indicating that Pb and
As may be absorbed into the particulate matter under the
higher TSM level in the water. According to the partition
coefficient (Kd) in the similar semi-enclosed bay in South
China, a high ratio of particulate Pb to dissolved Pb was
found (higher than other metals), indicating a stronger
affinity between Pb and suspended particles (Zhang et al.,
2018). A high partition coefficient of Pb was also found in
Yangtze Estuary in East China (Feng et al., 2017). In addition,
As would be more easily adsorbed onto TSM under the higher
TSM level and salinity in the estuary areas (Feng et al., 2017).
Although the salinity slightly decreased in spring, the salinity in
the study area was still >23 during that season, which was
favored by the metal adsorbed onto TSM (Wang and Liu, 2003).
Thus, the lower level of Pb and As that was observed in spring
TABLE 2 | Summary of the average value of heavy metals in the seawater (mg L-1) and sediment (µg g-1) of different areas in Qinzhou Bay during spring and winter.

Seawater Cu Pb Zn Cd Hg As Cr

Estuary area 1.07 1.27 14.18 0.22 0.058 0.59
Spring Mariculture area 2.11 1.26 13.43 0.25 0.051 0.71

Seawater Average 1.60 1.26 13.84 0.24 0.055 0.65
Estuary area 2.99 1.71 15.55 0.28 0.033 0.73

Winter Mariculture area 3.05 1.74 14.44 0.34 0.021 0.75
Average 3.01 1.72 14.50 0.31 0.028 0.74

Seawater
Annual average 2.31 1.49 14.17 0.27 0.041 0.69
Grade I 5 1 20 1 0.05 20
Grade II 10 5 50 5 0.2 30

Sediment

Estuary area 20.33 14.12 56.37 0.10 0.028 12.46 21.55
Spring Mariculture area 18.06 13.46 66.60 0.07 0.022 13.58 21.98

Average 19.30 13.82 61.02 0.09 0.026 12.97 21.75
Estuary area 11.93 12.37 37.83 0.09 0.084 12.32 12.62

Winter Mariculture area 6.14 16.56 42.86 0.08 0.085 11.39 13.30
Average 9.30 14.27 40.12 0.09 0.084 11.90 12.93

Sediment
Annual average 14.30 14.04 50.57 0.09 0.055 12.43 17.34
Grade Ia 35.0 60.0 150.0 0.50 0.20 20.0 80.0
Grade IIa 100.0 130.0 350.0 1.50 0.50 65.0 150.0
J
une 2022 | Volu
me 9 | Article 9
aNational Standard of China for Seawater Quality (GB 3097-1997).
FIGURE 5 | Variations of heavy metals in the seawater of the estuary and
mariculture area in Qinzhou Bay during winter and spring.
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may be influenced by the higher TSM level due to the increase
of runoff in that season. In addition, Cu, Pb, Cd, and As showed
positive correlations with DO, while Hg showed a negative
correlation with DO. Pb showed a negative correlation with Chl
Frontiers in Marine Science | www.frontiersin.org 8
a. These results suggest that these metals may present a close
relationship with biological activities. The complexation
prosperities of heavy metals with organic matter in the
marine environment could result in the metal remaining in
the water (Baeyens et al., 1998; Lao et al., 2019). In the
sediment, Cu, Zn, and Cr showed significantly positive
correlations with TOC, indicating that the TOC level greatly
influenced their distribution and enrichment. There are
significantly positive correlations between Cu, Pb, Cd, and
Cr, indicating that there may be similar sources in the
sediment. However, Hg showed a negative correlation with
Cu, Cd, and TOC, suggesting that other factors influenced the
distribution of Hg in the sediment.

To further evaluate the correlations and the possible
origins of heavy metals in Qinzhou Bay, the principal
component analysis (PCA) for heavy metals and the related
environmental parameters in the seawater and sediment were
analyzed in this study, and the results are presented in Figure 7.
In the seawater, three principal components that accounted for
73.458% of the total data variance were identified. PC1
accounted for 47.696% of the variance, with high negative
loadings for Hg and salinity and high positive loadings for
Cu, Pb, and As. This further confirmed that those metals are
influenced by their hydrological characteristics. Hg in the
seawater may be influenced by the terrestrial inputs, and Cu,
Pb, and As may be influenced by the intrusion of water with
higher salinity from the outer bay. Pb is widely used as an
antiknock agent in diesel fuel and anti-corrosive compound for
shipping, Cu and As are constituents of some algaecides and
fungicides, and the high concentrations of these two metals are
usually found in mariculture areas (Wang et al., 2018). Thus,
mariculture and shipping activities mainly contributed to PC1.
PC2 accounted for 16.003%, with high negative loadings for Pb,
pH, and Chl a. PC3 accounted for 9.759%, with high positive
FIGURE 6 | Variations of heavy metals in the sediments of the estuary and
mariculture area in Qinzhou Bay during winter and spring.
TABLE 3 | Comparison of heavy metal levels in seawater with those in other regions (mg L-1).

Area Period Cu Pb Zn Cd Hg As Reference

World average 0.25 0.03 0.5-4.9 0.07-0.11 0.00023 (Reimann and De Caritat, 2012)
Zhanjiang Bay, China 2014 4.40 0.23 12.64 0.12 (Zhang et al., 2018)
Xiangshan Bay, China 2011–2016 3.35 1.93 16.75 0.22 0.060 2.58 (Zhao et al., 2018)
Yellow River Estuary, China 11.6 5.61 14.9 0.66 0.24 2.59 (Wang et al., 2018)
East Guangdong coastal area, China 2006–2007 2.24 1.94 14.05 0.11 2.48 (Zhang et al., 2015)
West Guangdong coastal area, China 2006–2007 1.91 1.81 11.86 0.09 1.86 (Zhang et al., 2015)
Laoshan Bay, China 2017–2018 1.50 0.81 1.81 0.12 0.015 1.16 (Wang et al., 2019)
Beibu Gulf, China 2003 1.08 0.74 0.07 0.01 1.24 (Lao et al., 2019)
Beibu Gulf, China 2017 3.03 0.71 10.0 0.17 0.10 0.74 (Lao et al., 2019)
Pearl Bay, China 2018 1.63 0.84 4.77 0.14 0.094 1.56 (Liu et al., 2020)
Lianzhou Bay, China 2018 2.69 0.78 9.62 0.17 0.052 0.89 (Liu et al., 2020)
Maowei Sea, China 2018 3.69 0.85 15.28 0.11 0.099 0.81 (Liu et al., 2020)
Qinzhou Bay, China 1983 1.71 1.00 3.14 0.20 0.48 (Wei and He, 2004)
Qinzhou Bay, China 2003 1.10 0.60 0.01 0.014 1.28 (Lao et al., 2019)
Qinzhou Bay, China 2010 1.12 0.87 0.22 0.017 0.92 This study
Qinzhou Bay, China 2013 2.64 0.68 13.94 0.14 0.044 0.38 This study
Qinzhou Bay, China 2018 1.69 0.79 4.67 0.21 0.033 0.91 (Liu et al., 2020)
Jingu River estuary 2020 2.08 1.49 14.37 0.25 0.046 0.66 This study
Qinzhou Bay 2020 2.58 1.50 13.94 0.30 0.036 0.73 This study
June 20
The data in the table are from Beibu Gulf, including the coastal areas of Fangchenggang, Qinzhou, and Beihai in Guangxi province, and the same is true for Table 4.
ND, not detected.
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loadings for Zn, Cd, and Chl a. PC2 and PC3 indicated the
influence of biological activities. The growth of phytoplankton
would not only absorb some metals but also could induce the
decomposition of organic matter that releases the metal into the
water. The increase of phytoplankton (fresh and labile organic
matter) tended to modify and, more generally, increase the
Frontiers in Marine Science | www.frontiersin.org 9
decomposition rate of the more recalcitrant organic matter
(Fontaine et al., 2003; Guenet et al., 2010). The increase in
decomposition rate would result in more specific metals
released into the water (Cotrufo et al., 1995; Luo et al., 2022).
Thus, except from the influence of hydrological processes,
biological activity is another important factor that influences
TABLE 5 | Correlation analysis between heavy metal concentrations and the physicochemical parameters in surface water.

T PH S DO TSM Chl a Cu Pb Zn Cd Hg As

T 1.000 -0.422a -0.889a -0.733a 0.261 0.442a -0.819a -0.618a -0.041 -0.293b 0.662a -0.653a

PH 1.000 0.751a 0.813a -0.029 0.507a 0.528a 0.140 -0.027 0.166 -0.402a 0.596a

S 1.000 0.920a -0.175 -0.100 0.804a 0.486a -0.054 0.279b -0.641a 0.740a

DO 1.000a -0.162 0.113 0.703a 0.445a -0.013 0.307b -0.571a 0.693a

TSM 1.000 0.153 -0.198 -0.375a -0.075 -0.179 0.026 -0.319b

Chl a 1.000 -0.193 -0.389a -0.087 -0.082 0.365a 0.042
Cu 1.000 0.740a 0.161 0.486a -0.556a 0.611a

Pb 1.000 0.257 0.698a -0.497a 0.348b

Zn 1.000 0.091 -0.021 -0.122
Cd 1.000 -0.245 0.120
Hg 1.000 -0.451a

As 1.000
June
 2022 | Volu
me 9 | Article
aCorrelation is significant at the 0.01 level.
bCorrelation is significant at the 0.05 level.
TABLE 4 | Comparison of heavy metal concentrations (mg g-1) in surface sediments with those in other regions.

Area Period Cu Pb Zn Cd Hg As Cr Reference

Zhanjiang Bay, China 2014 18.74 43.89 73.60 0.15 63.83 (Zhang et al., 2018)
Xiangshan Bay, China 2011–2016 36.8 38.5 121 0.15 0.11 12.3 81.7 (Zhao et al., 2018)
Coast of Hainan, China 2012–2014 29.4 19.2 81.4 0.19 57.3 (Xu et al., 2015)
Nan’ao Island, China 2014–2015 15.26 40.81 102.72 0.35 (Luo et al., 2020)
Zhelin Bay, China 2011 32 76 156 0.108 0.08 14.5 31 (Wang et al., 2016)
Zhelin Bay, China 2013 28 56 121 0.082 0.07 11.8 23 (Wang et al., 2016)
Xiamen Bay, China 2004 44.0 54.0 139.0 0.331 74.5 (Zhang et al., 2007)
West Guangdong coastal area, China 2006–2007 43.83 44.29 139.93 0.38 0.13 20.83 86.97 (Zhao et al., 2016)
Pearl River Estuary, China 2007 348.0 102.6 383.4 1.72 93.1 (Niu et al., 2009)
Beibu Gulf 2003 9.57 18.72 0.03 0.03 12.59 (Lao et al., 2019)
Beibu Gulf 2017 15.07 14.64 52.37 0.06 0.06 7.82 44.42 (Lao et al., 2019)
Qinzhou Bay, China 2003 8.6 18.4 0.02 0.027 15.94 (Lao et al., 2019)
Qinzhou Bay, China 2010 15.58 12.42 61.33 0.11 0.050 17.58 61.02 This study
Qinzhou Bay, China 2013 17.7 39.9 61.0 0.10 0.040 13.20 36.50 This study
Qinzhou Bay, China 2017 13.4 14.65 43.20 0.05 0.026 10.79 43.40 (Lao et al., 2019)
Qinzhou Bay, China 2020 12.10 15.01 54.73 0.08 0.050 12.48 17.64 This study
Jingu River Estuary 2020 16.13 13.24 47.10 0.10 0.056 12.39 17.08 This study
TABLE 6 | Correlation analysis between heavy metal concentrations and the environmental parameters in sediment.

pH TOC Cu Pb Zn Cd Hg As Cr

pH 1.000 -0.079 -0.339 -0.019 0.236 -0.261 -0.032 -0.016 -0.054
TOC 1.000 0.748** -0.007 0.765** 0.279 -0.453* 0.136 0.482*
Cu 1.000 0.052 0.725** 0.430* -0.699** 0.133 0.752**
Pb 1.000 0.029 0.036 0.061 0.144 0.007
Zn 1.000 0.164 -0.678** 0.322 0.779**
Cd 1.000 0.106 -0.434* 0.066
Hg 1.000 -0.353 -0.866**
As 1.000 0.371*
Cr 1.000
* Correlation is significant at the 0.05 level; ** correlation is significant at the 0.01 level.
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the distribution of heavy metals in the seawater. In sediments,
three principal components that account for 75.513% of the
total variance were identified. PC1 accounted for 43.804% of
the variance, with high positive loadings for Cu, Zn, Cr, and
TOC and high negative loadings for Hg and TOC, further
confirming that TOC was the main controlling factor for the
distribution of these metals. PC2 accounted for 19.215% of the
total variance, with high negative loadings for Cd and As,
suggesting the different fate of these two metals in the
sediment. Cd is widely used in chemical plants, and chemical
material manufacturing discharges wastewater containing high
Cd concentrations (Wang et al., 2018). Thus, Cd reflects the
input of terrestrial and industrial sources, while As reflects
mariculture activities. Generally, mariculture activity keeps
away from urban and industrial wastewater outlets. PC3
accounted for 12.494%, with high negative loadings for Pb
and pH, indicating that the sediment environment (acidity and
alkalinity) was the main factor influencing the enrichment of
Pb in the sediment.

Historical Trend and Its Influencing
Factors of Heavy Metals in Qinzhou Bay
The concentration of Cu increased in both seawater and
sediment of the mariculture area in Qinzhou Bay over the past
years (Tables 3, 4). This is similar to the observation in Beibu
Gulf (Lao et al., 2019; Liu et al., 2020). Cu is used as fertilizers and
as additive in algaecides and agriculture fungicides (Burgos-
Núñez et al., 2017; Wang et al., 2018; Naser, 2013). Previous
studies suggested that the concentration of Cu showed a
significantly increasing trend in both seawater and sediments
of the whole Guangxi Beibu Gulf due to the influence of rapid
industrial development and the enhancement and expansion of
mariculture activities over the past years (Lao et al., 2019; Liu
et al., 2020). In addition, due to the great toxicity and harm of
Hg, the production of mercury began to decline as early as 1884,
and the usage of Hg has also decreased significantly in the past
years (Schuster et al., 2002; Pacyna et al., 2006). Thus, the
decrease in production and usage of Hg may be responsible for
Frontiers in Marine Science | www.frontiersin.org 10
the decrease in Hg concentration in the seawater over the past 40
years. Notably, the concentration of Hg showed a significantly
negative correlation to pH, indicating that pH would directly
affect the biosorption of metal ions (Atkinson et al., 2007; Ma
et al., 2016; Lao et al., 2019).

However, different variation tendencies of some metals were
observed in seawater and sediment according to the historical
data. The concentrations of Pb, Zn, and Cd showed an increasing
trend in the seawater of Qinzhou Bay for the past 40 years
(Table 3), while the concentrations of Pb, Zn, As, and Cr in the
sediment generally decreased for the past 20 years (Table 4). If
the increase of terrestrial input and the enhancement of human
activity intensity are the dominant factors that result in the
increase of those metals in the mariculture area, the level of the
metal in both seawater and sediment should be increased. In
contrast, the level of some metals decreased in the sediment,
indicating that other factors may control such an opposite trend
between the seawater and the sediment. The change in the water
environment in Qinzhou Bay may be an important factor
causing the different change trends of heavy metals in seawater
and sediments. For the past 20 years, the pH value of seawater in
Qinzhou Bay has decreased significantly (Figure 3). In addition,
the results of correlation and principal component analyses show
that the pH value is the important parameter affecting the
distribution of heavy metals in both seawater and sediment
(Tables 5, 6 and Figure 7)—for example, high negative
loadings for Pb and pH were found in both sediment and
seawater (Figure 7), indicating that the increased Pb
concentration in seawater and the decrease in the sediment
may be greatly influenced by the decrease in pH over the past
decades. The pH in the aquatic environment and sediment is
very important for the mobility of heavy metals because metal
availability is relatively low when the pH value is at a low level
(Ma et al., 2016). The absorbed metals can be released into the
water again with the change of pH (Kashem and Singh, 2001).
The release of heavy metals is associated with a lower pH
since the low pH can weaken the strength of heavy metal
association and impede the retention of heavy metals by
A B

FIGURE 7 | Results of principal component analysis of heavy metal concentrations and environmental parameters in the estuary and the adjacent mariculture in
Qinzhou Bay.
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particulate matter and sediments, while the higher pH value
promotes precipitation and adsorption (Ma et al., 2016; Zhang
et al., 2014). Thus, the decrease in pH value would lead to the
re-release of heavy metals in particles and sediments into the
water column, resulting in the decrease of heavy metals in the
sediment and an increase in the seawater.

Pollution Status of Heavy Metals and Their
Feedback to Environmental Change
In the seawater, the Ei

r in the estuary and the adjacent
mariculture area decreased in the order Hg > Cd > Pb > Cu >
Zn > As during both seasons. Although the ERI value (60) in
spring was higher than that in winter (44), those values were all
lower than 150, indicating that the potential risks of the six
metals to the aquaculture ecosystem were relatively low. Notably,
the Ei

r value for Hg (44) in spring was higher than 40 (at the level
of moderate ecological risk), and the contribution for ERI was
73%, showing a potential ecological risk.

In the sediment, the mean values for the seven metals were in
the decreasing order of Hg (2.91) > As (1.53) > Cd (0.98) > Cu
(0.59) > Zn (0.53) > Pb (0.49) > Cr (0.37) during winter and As
(1.66) > Cu (1.22) > Cd (0.96) > Hg (0.88) > Zn (0.80) > Cr (0.62)
> Pb (0.48) during spring. Hg and As in winter and As and Cu in
spring exhibited a moderate degree of contamination. The PLI
values of those seven metals ranged from 0.70 to 0.96 (an average
of 0.79) and from 0.64 to 1.14 (an average of 0.86) during winter
and spring, respectively. The PLI level is an important reference
index to decision-makers about pollution status and can provide
inhabitants with an understanding of the environmental quality
of the mariculture area (Islam et al., 2015; Lao et al., 2019). The
lower PLI values (<1) in both seasons indicated the presence of
only the baseline levels of pollutants.

The Igeo values for Hg are in the range of 0.79 to 1.06 (an
average of 0.95), while the average Igeo values for other metals are
all lower than 0 in winter. This indicates that Hg is moderately
contaminated, while the other metals are uncontaminated in the
sediment. In the spring, the Igeo values for As are in the range of
-0.05 to 0.33 (an average of 0.15), indicating that As is a potential
ecological risk factor during that season. However, the average
Igeo values for other metals are all lower than 0, suggesting that
those metals are uncontaminated in the sediment during spring.
Overall, Hg and As presented a higher risk in both the seawater
and sediment of the mariculture area, and the heavy metal
contamination in the mariculture area must not be ignored.

Environmental change, such as the decrease in pH and
seasonal hypoxia, likely changes the heavy metal status in
aquatic systems (Atkinson et al., 2007; Chakraborty et al., 2016;
Ma et al., 2016; Lao et al., 2019). Previous studies have found that
the DO level is a key factor controlling the stability and lability of
metals in the sediment (Chakraborty et al., 2016)—for example,
some metals, such as Pb, associated with Fe/Mn-oxyhydroxide
phases in the sediment would reduce with the decreasing DO level
of the overlying water because of the dissolution of the Fe/Mn-
oxyhydroxide phase (Chakraborty et al., 2016). In Qinzhou Bay,
the eutrophication degree has increased in the past few decades
due to the rapid development of industrialization and
urbanization and the continuous expansion of aquaculture
Frontiers in Marine Science | www.frontiersin.org 11
activities (Lao et al., 2021a), which may induce seasonal hypoxia
in the bay (Howarth et al., 2011). Moreover, the pH value has
decreased significantly over the past 20 years in Qinzhou Bay,
which may cause more metals to be released into the water
environment. In addition, Qinzhou Bay is a sea area with strong
hydrodynamic conditions in Beibu Gulf (Chen et al., 2022).
Particularly under the influence of the northeast monsoon in
winter, the bottom sediment is resuspended into the water
column, which may also lead to the increase of heavy metal
release in a more acidic environment. The increase of heavy
metal concentrations in seawater would lead to the increase of
heavy metal absorption by aquaculture organisms, which poses a
great threat to the health of organisms and ultimately endangers
human health. Especially under global climate change, the
acidification of seawater in most aquaculture areas in the world
is aggravated (Clements and Chopin, 2017; Ng and Chiu, 2020; Jin
et al., 2020; Swezey et al., 2020), which may also lead to the
increase of heavy metal released into the seawater. This problem
should be more vigilant and concerned in the future.
CONCLUSION

Seasonal changes in the concentrations of heavy metals were
found in Qinzhou Bay. The concentrations of heavy metals in
the seawater were higher, while the levels in the sediment were
lower than that in other mariculture areas in China. The
concentration of Cu in the seawater and sediment increased
over the past decades, mainly influenced by the enhancement
and expansion of mariculture and shipping activities. The
concentration of Hg has decreased significantly in the
seawater over the past 40 years due to the decrease in
production and usage of Hg. However, the concentrations of
Pb, Zn, and Cd in the seawater showed an increasing trend over
the past 40 years, while the concentrations of Pb, Zn, As, and Cr
in the sediment generally decreased over the past 20 years. The
decrease in pH value (by 4.7%) over the past 20 years was
responsible for the different trends of those metals between
seawater and sediment. Hg and As presented a higher risk in
both the seawater and sediment of the mariculture area.
Overall, this study suggests that environmental changes, such
as decrease in pH, affect the distribution of heavy metals in
water and sediments, which we should be more vigilant and
concerned about under the global climate change.
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