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This study investigated the total concentrations and geochemical compositions of metals
(Cd, Cr, Cu, Ni, Pb, Zn, Fe and Mn) in surface sediments of Zhanjiang Bay (ZJB) in spring
and summer, to assess the contamination status, mobility and influencing factors of
spatial-seasonal changes of these metals. The average total concentration for each
studied metal in the surface sediments of ZJB was 0.173 mg/g for Cd, 58.25 mg/g for
Cr, 17.11 mg/g for Cu, 16.89 mg/g for Ni, 28.70 mg/g for Pb, 67.91 mg/g for Zn, 30.18 mg/
g for Fe, and 275.5 mg/g for Mn during the investigation period. Generally higher total
concentrations of metals were found in the channel and coastal sediments of ZJB
compared with those in the central ZJB, which may be probably resulted by the input
of Suixi river, domestic sewage and industrial wastewater. The grain size compositions
and TOC contents also had influences on the distributions of metals in ZJB. In the channel,
total metals and reducible and bioavailable fractions of metals generally showed
decreased concentrations in summer compared with those in spring, suggesting the
release of metals from sediments. Organic matter degradation and Fe and Mn (hydr)
oxides reduction processes may contribute much to this phenomenon. Relatively high
proportions of Cd and Zn (average of 21.7% and 14.6%, respectively) were associated
with the acid soluble fraction, indicating their high risk to the environment. The combined
assessment results of enrichment factor, contaminated factor and the percentages of acid
soluble fraction indicated that Cd and Zn in the surface sediments of ZJB were generally
contaminated and they had medium to high risk to the environment. The average values of
pollution load index in the channel, coastal and central ZJB were 1.28, 0.93 and 0.81,
respectively, indicating the deterioration of surface sediments in the channel of ZJB. More
attention should be paid on the metals in surface sediments of the channel of ZJB.
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1. INTRODUCTION

Metals are one of the major anthropogenic contaminants in
coastal environments (Yu et al., 2008; Hossain et al., 2020). Some
metals (e.g. Fe, Mn, Zn etc.) are essential for living organisms
when they are in very low concentrations (Hossain et al., 2020).
While some metals (e.g. Cd, Cu, Zn etc.) are very toxic when they
are supplied above a certain concentration (Pais and Jones, 1997;
USEPA, 2000). For example, Cu is an essential element which
serves as a cofactor in a number of enzyme systems. However,
high intake of Cu can cause adverse health effect problems for
most living organisms (Mohanraj et al., 2021). Therefore,
assessment of metals in marine environments is useful to
determine contamination levels and provide information for
determining health risks.

Metals in the coastal environment have natural and
anthropogenic sources. With the rapid industrialization and
economic development in coastal regions, metals are
continuing to be introduced to coastal environment through
river runoff and land-based point source discharge (Yu et al.,
2008; Anandkumar et al., 2018; Hossain et al., 2020).
Anthropogenic sources such as industrial sewage and domestic
sewage have led to an increase of metal concentrations in the
coastal environments (Gao et al., 2014; Freitas et al., 2019). A
major fraction of metals entering into the aquatic systems are
rapidly transported into sediments (Wang and Chen, 2000; Gu
et al., 2016). Sediments are recognized as an important sink of
heavy metals in coastal ecosystems (Pekey, 2006; Hossain
et al., 2020).

In sediments, metals can exist in many chemical species and
exhibit different behaviors (Akcay et al., 2003; Gao et al., 2010).
Investigations on the geochemical forms of metals by sequential
extraction give further information about the fundamental
reactions that govern the behavior of metals in sediments
(Tessier et al., 1979; Gao and Chen, 2012; Prabakaran et al.,
2020; Shibini Mol and Sujatha, 2020; Chakraborty et al., 2021;
Zhao et al., 2021). The study of metal speciation in sediments is
essential for estimating the mobility and bioavailability of
metals (Chakraborty et al., 2015; Chakraborty et al., 2017).
The chemical forms that are weakly bounded to the sediment
(such as acid soluble, reducible and oxidizable forms) are
considered as the bioavailable forms (Peña-lcart et al., 2014;
Freitas et al., 2019). Under certain conditions, the bioavailable
forms of metals in sediments can be released from sediment.
For, example, changes in the redox conditions of sediment can
lead to the reductive dissolution of Fe and Mn (hydr)oxides in
sediments and result in the release of associated metals from
sediment to water (Charriau et al., 2011; Dang et al., 2015). The
study of Duan et al. (2019) found that obvious seasonal
variations of metals occurred at the surface sediments of
Changjiang Estuary, which was related to the seasonal
variation of temperature, dissolved oxygen (DO) and organic
matter in the overlying waters. Many previous studies also
indicated that, benthic diffusive fluxes of metals from sediments
to water column are equivalent to or even exceed riverine
influxes in many coastal areas (Rivera-Duarte and Flegal,
1997; Santos-Echeandia et al., 2009; Duan et al., 2019).
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Therefore, the release of metals from sediment can cause
water quality and ecosystem degradation (Lee et al., 2017;
Nagarajan et al., 2019; Li et al., 2020).

Coastal areas, especially the semi-enclosed bays, are particularly
at risk from metal contamination since the strong influence of
anthropogenic activities in these areas (Gao et al., 2014; Hossain
et al., 2020). The Zhanjiang bay (ZJB), located at the northwestern
South China Sea, is a typical semi-enclosed bay with a very narrow
entrance (< 2 km). It is also an important aquaculture area in China.
However, it has been increasingly contaminated by the industrial,
agricultural and domestic wastes. Industries discharges hazardous
contaminants like metals into ZJB, which may be consumed by
planktons, shellfishes or fishes, and finally magnified and
transferred to humans. Metal contamination is one of the key
environmental problems for ZJB. Zhang et al. (2018) reported the
total metal concentrations in the surface sediments of ZJB. A
combined study that addresses the seasonal variations and
mobility of metals in the sediments of ZJB is limited. In addition,
the influences of anthropogenic activities and environmental
changes on the spatial-seasonal variations of metals in sediments
of ZJB are not completely understood.

The main objectives of this study were to assess the spatial
and seasonal variations of metals (Cd, Cr, Cu, Ni, Pb, Zn, Fe and
Mn) in surface sediments of ZJB, to assess the potential mobility/
bioavailability of metals in different subregions of ZJB, to identify
possible sources of metals in ZJB, and to evaluate the
contamination status of metals in sediments of ZJB based on
different evaluation methods. The results of this study will
provide scientific basis for improving the environment of ZJB
and protection of aquatic flora and fauna.
2. MATERIALS AND METHODS

2.1. Study Area
Zhanjiang Bay is influenced by seasonally reversing monsoon
winds and has a dynamic environment. It has higher
precipitation in summer than other seasons. The water
temperature, DO concentration and chlorophyll a (Chl a)
concentration of water in ZJB also vary seasonally (Zhou et al.,
2020). The water of ZJB is mainly influenced by the freshwater
from Suixi river and seawater from South China Sea (Figure 1).
These environmental characteristics of ZJB may probably have
significant influences on the spatial-seasonal variations of metals
in the surface sediments of ZJB.

According to the environmental characteristics of ZJB, the
study area can be divided into three subregions: channel, coastal
bay and central bay (Figure 1). Suixi river has a strong influence
on the channel. Besides, large amounts of domestic sewage from
Zhanjiang city have been discharged to this area. There are many
factories along the coast of ZJB, especially the south coast of ZJB
(Figure 1). Baosteel Zhanjiang Iron Steel Co., Ltd. (Baosteel, an
iron and steel company) and Zhongke (Guangdong) Refining and
Chemical Co., Ltd (Zhongke, a refining and chemical company)
are two of the large enterprises locating at the south coast of ZJB
(Figure 1). Large amounts of industrial sewage have been
June 2022 | Volume 9 | Article 925567
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discharged into the coastal area of ZJB. The central bay is relatively
less influenced by river runoff and sewage input.

2.2. Sampling and Analysis
Bottom water and surface sediment samples were collected from
ZJB during two cruises in April (spring) and August (summer)
2017. A total of fourteen stations were selected for investigation
according to the environment of ZJB. The sampling stations Z1,
Z2, Z3, Z4 and Z5 were located in the channel, stations Z7, Z8,
Z9, Z10 and Z11 in the coastal bay, and stations Z6, Z12, Z13 and
Z14 in the central bay. The temperature of bottom water was
measured by a conductivity-temperature-depth meter in situ.
Bottom water was collected by a plexiglass water sampler for the
measurements of DO and Chl a. The depths of the collected
bottom water samples ranged from 3 to 18 m. The bottom water
samples for DO analysis were collected first. DO was determined
by the Winkler method. Water samples for Chl a analysis were
filtered by glass-fiber filters immediately after collection. The
filter was extracted with 90% acetone in laboratory. The extract
solution was measured for Chl a concentration using a Turner
fluorometer. A stainless steel grab sampler was used to collect
sediment. The surface sediment (0-2 cm) was collected using a
plastic spatula at each station, and packed in polyethylene bags.
Then the samples were kept on ice in a cooler and immediately
transported to the laboratory. In laboratory, the samples were
kept frozen at -20°C until further analysis.

A portion of each sediment sample was first pretreated with
30% H2O2 to remove organic matter and then with 1 M HCl to
remove carbonates. The pretreated samples were washed to
neutral with deionized water. Then, the solids were dispersed
with 0.05 M (NaPO3)6 and analyzed for grain size using a
Malvern Masterizer 2000 laser diffractometer (Malvern
Instruments, UK). The percentages of the clay (< 4 mm), silt
(4 – 63 mm) and sand (> 63 mm) fractions were determined. For
Frontiers in Marine Science | www.frontiersin.org 3
the analysis of TOC and metal concentrations, sediment
samples were freeze-dried and grounded, then passed through
a mesh sieve (150 mm in pore size). They were stored in cleaned
polyethylene bags until further analysis. For the analysis of
TOC, the freeze-dried and grounded sediment samples were
treated with 1M HCl to remove carbonates. Then they were
washed to neutral with deionized water and dried at 60°C.
Concentrations of TOC were determined using an elemental
analyzer (Flash EA 1112 HT, Thermo Fisher Scientific, USA).
Replicate analysis of one sample (n = 5) gave a relative standard
deviation less than 0.8% for TOC.

For the analysis of total metal concentrations, the sediment
samples were freeze-dried and grounded. Then, they were
digested with HNO3-HCl-HF (3:1:2) using microwave high-
pressure digestion (Multiwave PRO 41HVT56, Austria). The
digestion was diluted and determined by inductively coupled
plasma mass spectrometry (ICP-MS, Agilent 7500cx, USA) for
metals (Cd, Cr, Cu, Ni, Pb, Zn, Fe and Mn). The fractionation of
metals in the sediment was determined according to the method
reported by Rauret et al. (1999), which has been successfully
applied in many studies (Zhuang and Gao, 2014; Akhbarizadeh
et al., 2017; Anandkumar et al., 2022). Cd, Cr, Cu, Ni, Pb and Zn
associated with four operationally defined geochemical fractions
(acid soluble, reducible, oxidizable and residual) were identified
by this method. For the acid soluble fraction, 0.5 g sediment was
extracted with 0.11 M acetic acid (Step 1). The residual of Step 1
was shaken with 0.5 M hydroxylamine hydrochloride for 16 h to
extract the reducible fraction (Step 2). The residual of Step 2 was
digested with 8.8 M hydrogen peroxide and then shaken with 1
M ammonium acetate for 16 h to extract the oxidizable fraction.
The detailed sequential extraction protocol has been described by
Gao et al. (2010). The metal concentration of the extraction
solution for each step was determined by ICP-MS (Agilent
7500cx, USA). The residual fraction was calculated by the
FIGURE 1 | Sampling stations in the Zhanjiang Bay. The Zhanjiang bay is divided into three subregions: channel, coastal bay and central bay. Zhongke: Zhongke
(Guangdong) Refining and Chemical Co., Ltd. Baosteel: Baosteel Zhanjiang Iron Steel Co., Ltd.
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difference between the total concentrations of metals and the
sums of the acid soluble, reducible and oxidizable fractions.

For the measurement of metals, each sample was analyzed at
least in duplicate. The precision of the analysis was <10%.
Procedural blanks were analyzed with each batch of samples.
Certified reference material for coastal sediment (GBW07314,
the Chinese national reference material) was analyzed to control
metal analytical quality. The determined values for all metals
were consistent with the reference values (Table S1). All plastic
and glassware were soaked for at least 2 days in 10% HNO3,
followed by soaking and rinsing with de-ionized water.

2.3. Assessment Methods of Metal
Contamination
Several methods have been used to evaluate the contamination
status, potential risk, enrichment and sources of metals in surface
sediments of ZJB, including comparison with related sediment
quality guidelines, enrichment factor analysis, contamination
factor analysis, pollution load index, and potential risk
assessment based on geochemical compositions of metals.

The National Standard of China for Marine Sediment Quality
(MSQ) (SEPA, 2002) can be used to assess the potential risk of
metals in sediments (Gao et al., 2014). This standard classifies
marine sediments into three classes based on the function and
protection targets of the area (SEPA, 2002). Enrichment factor
(EF) is an important tool to assess metal enrichment. It can be
used to determine the anthropogenic influence and the
contamination status of sediments. The following equation was
used to estimate the EF of metals in sediments using Fe as a
normalizer (Ergin et al., 1991; Mucha et al., 2003; Keskin, 2012;
Shibini Mol and Sujatha, 2020).

EF = (Ms/Ns)/(Mb/Nb)
where Ms and Ms represent metal concentration of sample and
background concentration respectively, and Ns and Nb are the
metal concentration used for normalization in the sample and
the background respectively. The metal concentration of China
Shelf Sea sediment (Zhao et al., 1995) was used as the
background concentration in this study. The EF is classified
into many groups to denote the degree of enrichment factor
(Chen et al., 2007). EF ≤ 1 denotes no enrichment; 1< EF ≤ 3
denotes minor enrichment; 3< EF ≤ 5 denotes moderate
enrichment; 5< EF ≤ 10 denotes moderately severe enrichment;
10 < EF ≤ 25 denotes severe enrichment; 25 < EF ≤ 50 denotes
very severe enrichment; and EF > 50 denotes extremely
severe enrichment.

Contamination factor (CF) can be used to assess
contamination level (Pekey et al., 2004). The following
equation was used to estimate the CF of metals (Shibini Mol
and Sujatha, 2020).

CF = Ms/Mb

where Ms and Mb represent metal concentration of sample and
background concentration. The metal concentration of Chin
Shelf Sea sediment (Zhao et al., 1995) was used as the
background concentration in this study. CF ≤ 1 denotes low
contamination; 1< CF ≤3 denotes moderate contamination; 3 <
CF ≤ 6 denotes considerable contamination; and CF > 6 denotes
Frontiers in Marine Science | www.frontiersin.org 4
high contamination. Pollution load index (PLI) can be used to
assess the contamination extent of metals in surface sediments of
ZJB. It can provide an overall indication of metal pollution
contamination (Tomlinson et al., 1980). The following
equation was used to calculate PLI.

PLI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF1CF2CF3 ⋯ ⋯CFn

n
p

where n is the number of studied metals and the CF is the
contamination factor of the metal calculated as above. PLI
provides a comparative mean for assessing a site quality. PLI <
1 denotes uncontaminated area; PLI = 1 denotes baseline level of
pollutants; and PLI > 1 denotes deterioration of site quality
(Tomlinson et al., 1980).

The former assessment methods of sediment metal
contamination are based on the total concentrations of metals.
In addition to the total concentrations, the geochemical
composition of metals is equally important to determine their
potential toxicity and threat to ecosystems (Sahuquillo et al.,
2003; Gao et al., 2016). According to the study of Perin et al.
(1985), the acid soluble fraction (F1) of metal with no more than
1% of its total concentration is considered to have no risk to the
environment; the percentage of metal in this fraction falling in
the range of 1-10% indicates a low risk to the environment; its
falling in the range of 10-30% indicates a medium risk to the
environment; its falling in the range of 30-50% indicates a high
risk to the environment; and the percentage higher than 50%
indicates a very high risk to the environment.
3. RESULTS AND DISCUSSION

3.1. General Characteristics of the
Surface Sediment and Bottom Water
in Zhanjiang Bay
The surface sediments of ZJB were mainly composed of silt
fraction (average of 60.0% and 63.3% in spring and summer,
respectively); the clay and sand fractions were generally lesser
than 40% (Table 1). Based on the environmental characteristics,
the ZJB was divided into three subregions – channel, coastal bay
and central bay (Section 2.1; Figure 1). In spring, the channel
had relatively fine sediments (average offine (clay + silt) fraction:
46.1%) compared with the coastal bay (33.8%) and central bay
(38.3%). Similar distribution pattern was also found in summer.
The reason is that the flow of Suixi river is small. The fine
particles from Suixi river are mainly settled at the channel of ZJB
(Lu et al., 2020). Besides, the channel has large-scale, cage-based
mariculture, which can weaken the hydrodynamic conditions
and contribute to the settlement of fine particles (Cai et al., 2006;
Ke et al., 2014; Pondell and Canuel, 2017; Pan et al., 2019).
EBCBS (1999) also indicated that the channel of ZJB had finer
sediments compared with the other regions of ZJB. The TOC
content in surface sediments of ZJB ranged from 0.10% to 1.46%
(average: 0.74%) in spring and from 0.15% to 1.04% (average:
0.60%) in summer (Table 1). The decreased average TOC
content in summer indicates organic matter degradation in
June 2022 | Volume 9 | Article 925567
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this season. Higher TOC content was observed at the channel
compared with those of the other two subregions, indicating the
strong influences of river input and/or anthropogenic activities
(Lu et al., 2020).

The temperature of bottom water in ZJB ranged from
24.01 to 24.51°C (average: 24.23 °C) in spring and from 29.31
to 31.01 °C (average: 30.20 °C) in summer (Table 1).
Significant increase of temperature was found in summer
compared with that in spring. The Chl a concentration of
bottom water in ZJB ranged from 0.47 to 3.50 mg/L (average:
1.39 mg/L) in spring and from 4.34 to 37.17 mg/L (average:
11.54 mg/L) in summer (Table 1). Significant increase of Chl a
was found in summer compared with that in spring. This
indicates that the supply of organic matter in summer
increased compared with that in spring. The DO of bottom
water in ZJB ranged from 6.32 to 10.48 mg/L (average: 7.15
mg/L) in spring and from 4.07 to 7.57 mg/L (average: 5.99
mg/L) in summer (Table 1). This indicates an aerobic
environment of the bottom water in ZJB in both spring and
summer. In channel, the average DO of bottom water
decreased obviously in summer compared with that in
spring (Table 1). Increased water temperature and organic
matter decomposition may contribute to the decrease of DO
in bottom water of this area. The seasonal variations of
bottom water environment may have significant influences
on the concentrations of metals in surface sediments of ZJB.

3.2. Spatial and Seasonal Variations of
Total Metal Concentrations in Surface
Sediments of Zhanjiang Bay
Total metal concentrations in sediments collected from ZJB in
spring and summer are summarized in Table 2 and Figures 2,
S1. The concentration range for each studied metal in the surface
sediments of ZJB was 0.023 to 0.464 mg/g for Cd, 1.67 to 100.71
mg/g for Cr, 1.86 to 37.36 mg/g for Cu, 3.88 to 30.49 mg/g for Ni,
4.72 to 70.10 mg/g for Pb, 8.38 to 161.18 mg/g for Zn, 7.99 to 45.73
mg/g for Fe, and 125.1 to 584.5 mg/g for Mn during the
Frontiers in Marine Science | www.frontiersin.org 5
investigation period. In comparison with the previous work of
ZJB, the concentrations of the studied metals in this study were
generally comparable with those reported by Zhang et al. (2018)
(Table 2). Table 2 also shows the metal values of other coastal
areas in China. The average concentrations of the studied metals
in this study were comparable to the values reported for the
surface sediments of the Taiwan Strait (Gao et al., 2016), Xiamen
bay (Lin et al., 2014), and Laizhou Bay (Zhuang and Gao, 2014)
(Table 2). The metal concentrations in this study were
apparently lower than the values reported for the Jinzhou Bay
(Li et al., 2012), which is one of the most heavily polluted coastal
region in China (Gao et al., 2014; Gao et al., 2016).

The distribution patterns of studied metals were generally
similar with relatively high concentrations at the channel and
coastal bay, and relatively low concentrations in the central bay
(Figures 2, S1). Spatial distribution is a useful tool for
determining hotspot area with high metal concentrations
(Hossain et al., 2020). The high concentrations of metals at the
north channel may probably be resulted by the input of Suixi
river and/or the discharge of domestic sewage from coastal area.
The high concentrations of metals at the south channel (station
Z5) may probably be related to the construction of the Donghai
Dam. Previous studies indicated that the construction of the
Donghai Dam could lead to long residence time of water near the
Donghai Dam (Li, 2008; Zhou et al., 2020), which is conducive to
the settlement of fine particles (Lu et al., 2020; Anandkumar
et al., 2022). Fine grained sediments are conducive to adsorb
more metals (Salomons and Förstner, 1984). Therefore, high
metal concentrations can be found in the south channel of ZJB
(Figures 2, 3; Lu et al., 2020). Besides, point sources of metals
may also contribute to the high concentrations of metals in this
area. More research should be carried out to find the possible
sources of metals in the south channel of ZJB. Chemical
manufacturing units can act as point sources of metal
contamination. Many factories are located on the south coast
of ZJB (Figure 1). The high concentrations of almost all studied
metals at the south coast of ZJB (station Z9) may probably
TABLE 1 | Average (minimum-maximum) of surface sediment and bottom water parameters in Zhanjiang bay in spring and summer.

Zhanjiang bay Channel Coastal bay Central bay

Sediment in spring
Clay (%) 18.9 (6.7-35.5) 22.4 (14.4-32.7) 18.5 (6.7-35.5) 15.1 (13.4-16.7)
Silt (%) 60.0 (24.6-76.5) 69.7 (55.2-76.5) 49.0 (24.6-70.2) 61.6 (49.5-67.5)
Sand (%) 21.1 (0.0-68.8) 7.81 (0-30.4) 32.4 (0.00-68.8) 23.4 (19.1-35.2)
TOC (%) 0.74 (0.10-1.46) 1.05 (0.64-1.46) 0.60 (0.10-1.07) 0.52 (0.36-0.86)
Water in spring
Temperature (°C) 24.23 (24.01-24.51) 24.20 (24.04-24.51) 24.26 (24.20-24.34) 24.25 (24.01-24.42)
Chl a (mg/L) 1.39 (0.47-3.50) 0.79 (0.47-1.50) 1.34 (0.85-1.69) 2.21 (1.21-3.50)
DO (mg/L) 7.15 (6.32-10.48) 7.59 (6.32-10.48) 6.88 (6.65-6.98) 6.88 (6.57-7.29)
Sediment in summer
Clay (%) 21.2 (0.0-32.2) 29.8 (26.3-32.2) 16.7 (5.4-25.0) 17.2 (11.5-21.0)
Silt (%) 63.4 (21.9-79.6) 68.0 (66.0-70.5) 54.7 (21.9-72.1) 71.6 (65.7-79.6)
Sand (%) 15.4 (1.4-72.8) 2.1 (1.5-3.2) 28.6 (4.8-72.8) 11.2 (1.4-18.9)
TOC (%) 0.60 (0.15-1.04) 0.77 (0.35-1.04) 0.50 (0.15-0.91) 0.50 (0.40-0.61)
Water in summer
Temperature (°C) 30.20 (29.31-31.01) 30.42 (29.68-31.01) 29.83 (29.31-30.04) 30.39 (29.87-30.69)
Chl a (mg/L) 11.54 (4.34-37.17) 6.33 (4.34-11.32) 9.29 (7.78-12.39) 20.31 (12.71-37.17)
DO (mg/L) 5.99 (4.07-7.57) 5.14 (4.07-6.10) 6.51 (5.94-7.57) 6.41 (5.57-7.20)
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indicate the influence of industrial wastewater from
coastal factories.

Table 3 showed the average total concentrations of metals in
different subregions. In spring, the average total concentrations
of Cd, Cr, Cu, Ni, Pb, Zn and Fe in different subregions followed
the order of channel > coastal bay > central bay, while for Mn,
the order is coastal bay > channel > central bay. This indicates
that in spring the main source of Cd, Cr, Cu, Ni, Pb, Zn and Fe in
surface sediments of ZJB was probably the input of Suixi river,
while for Mn the main source was probably the industrial
wastewater from south coast. In summer, the average total
concentrations of Cd, Cr, and Cu in different subregions
followed the order of channel > coastal bay > central bay; for
Ni, Pb and Fe, the order is channel > central bay > coastal bay; for
Zn, the order is coastal bay > channel > central bay; and for Mn,
the order is coastal bay > central bay > channel (Table 3). The
distribution pattern of Cd, Cr and Cu in summer was similar
with that in spring, while the distribution pattern of Ni, Pb, Fe,
Zn and Mn showed some differences compared with that in
spring. For Ni, Pb and Fe, the average total concentrations in
central bay were higher than those in coastal bay and lower than
those in channel. This distribution pattern suggests that the
central bay may probably be influenced by river runoff in
summer. High rainfall in summer could cause high river
runoff, resulting in terrestrial materials transporting to a far
distance from Suixi river estuary. This phenomenon has also
been found in the study of Zhou et al. (2020). For Zn, the average
Frontiers in Marine Science | www.frontiersin.org 6
total concentration in coastal area was higher than that in
channel and central bay. This indicates that the main source of
Zn in summer was industrial waste from coastal factories, which
was different from that in spring. For Mn, the average total
concentration in central area was higher than that in channel and
lower than that in coastal bay. This indicates that industrial waste
water can also be transported to the central bay from the coastal
bay in summer. The dynamic environment of ZJB between
spring and summer (e.g. increased river runoff in summer)
contributed to the spatial variations of Ni, Pb, Zn, Fe and Mn
in these two seasons. In spring, due to the low rainfall in this
season, the Suixi river had a small runoff and the surface runoff
was also weak. The influence from the Suixi river was mainly
trapped in the channel, resulting in relatively high metal
concentrations in this area, and the pollutants from coastal
area cannot be transported far away from coast. While in
summer, increased rainfall resulted in increased terrestrial
input (Zhou et al., 2020), which may bring pollutants to the
central ZJB through river input and/or coastal transportation.

In addition to the variations of spatial distribution pattern of
some metals, the average total concentrations of the studied
metals in different subregions also showed variations (Table 3).
For the channel, all the studied metals showed decreasement in
summer compared with those in spring, with the maximum
decrease of 32.4% for Zn. Similar seasonal variations of metals
were also found in the surface sediment of Changjiang Estuary
(Duan et al., 2019). Though increased rainfall in summer
TABLE 2 | Metal concentrations in the surface sediments of ZJB and other coastal areas of China. Related sediment quality guidelines are also shown for comparison
purpose.

Location Sampling date Cd Cr Cu Ni Pb Zn Fe Mn References
mg/g mg/g mg/g mg/g mg/g mg/g mg/g mg/g

Zhanjiang bay Apr. 2017 Range 0.023-
0.339

1.67-
100.71

1.86-
37.36

3.88-
30.49

8.50-
62.09

8.38-
161.18

7.99-
45.73

125.1-
584.5

This study

Mean 0.175 59.56 19.03 17.67 31.55 70.18 31.23 304.5
Aug. 2017 Range 0.039-

0.464
12.67-
98.88

2.19-
34.20

4.14-
28.25

4.72-
70.10

17.04-
139.60

11.61-
44.36

135.5-
438.3

Mean 0.171 56.94 15.18 16.12 25.85 65.64 29.12 246.6
Apr. and Aug.
2017

Range 0.023-
0.464

1.67-
100.71

1.86-
37.36

3.88-
30.49

4.72-
70.10

8.38-
161.18

7.99-
45.73

125.1-
584.5

Mean 0.173 58.25 17.11 16.89 28.70 67.91 30.18 275.5
Zhanjiang bay Jan. 2014 Mean 0.15 63.83 18.74 22.43 43.89 73.6 38.28 420 Zhang et al. (2018)
Taiwan Strait,
China

May, 2007 Range 0.067-
0.27

9.9-80.6 1.3-33.8 4.8-44.7 9.8-39.6 6.9-108 naa na Gao et al. (2016)

Mean 0.16 50.9 17.5 26.4 24.0 68.1 na na
Xiamen Bay,
China

Oct.-Nov. 2011 Range 0.022-
1.30

17.5-93.9 5.25-
69.2

na 20.1-
67.5

17.7-196 na na Lin et al. (2014)

Mean 0.18 53.5 23.4 na 40.2 107 na na
Laizhou Bay,
China

Oct. 2011 Range 0.09-0.38 32.4-90.0 2.9-28.7 14.1-
47.1

11.4-
34.0

12.8-88.6 na na Zhuang and Gao
(2014)

Mean 0.22 56.7 12.0 25.9 19.4 41.5 na na
Jinzhou Bay,
China

Oct. 2009 Range 7.9-105 na 24.5-327 26.3-86 29.2-523 168-2506 na na Li et al. (2012)

Mean 26.8 na 74.1 43.5 124.0 689.4 na na
China Shelf Sea 0.065 60 15 24 20 65 31.0 530 Zhao et al. (1995)
MSQ Grade I b ≤0.5 ≤80 ≤35 naa ≤60 ≤150 na na SEPA (2002)
MSQ Grade II b ≤1.5 ≤150 ≤100 na ≤130 ≤350 na na
MSQ Grade III b ≤5 ≤270 ≤200 na ≤250 ≤600 na na
June 2
022 | Volum
ana, not available.
bMSQ Grade I-III, National Standard of China for Marine Sediment Quality GB 18668-2002 Grade I-III.
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brought terrigenous pollutants to the surface sediment of
channel bay, seasonal variat ions of environmental
characteristics promoted metal release from sediment (Table 1,
Section 3.1; Duan et al., 2019). The reduced Fe, Mn and TOC
concentration in surface sediment, increased Chl a concentration
in bottom water and the aerobic environment of bottom water in
summer in the channel may probably indicate that the increase
in organic matter degradation resulted in some Fe andMn (hydr)
oxides being reduced and released into the water (Table 1,
Section 3.1; Duan et al., 2019). The decrease of other studied
metals in channel may probably be related to organic matter
degradation and Fe and Mn (hydr)oxides reduction processes.
High temperature in summer enhanced bacterial activities,
which may also contribute to the release of metals in summer
(Table 1; Duan et al., 2019).

However, in the central bay, Cr, Ni and Zn showed some
increases in summer compared with those in spring. These
increases of metals in the central bay may be mainly due to the
increased discharge of river input (Zhou et al., 2020) and/or
industrial sewage from coastal areas in summer. In the coastal
bay, the total concentrations of Cu, Ni, Pb, Fe and Mn decreased
and Cd, Cr and Zn increased in summer compared with those
Frontiers in Marine Science | www.frontiersin.org 7
corresponding concentrations in spring. These metals’ seasonal
variations in the coastal area may be the comprehensive impact
of environmental changes (the change of temperature, DO and/
or organic matter degradation) and increased terrigenous input,
with the former five metals mainly influenced by environmental
changes and the latter three metals mainly influenced by
increased terrigenous input.

Correlation analysis was made based on the spring and
summer data. Most of the studied metals showed significant
positive correlations with each other (Table 4), indicating their
similar sources and/or behaviors. Besides, almost all the studied
metals showed significant positive correlations with TOC
content, clay fraction and silt fraction, and showed significant
negative correlations with sand fraction. This indicates that
sediment grain size and TOC content both had significant
influences on the distribution of metals in the surface
sediments of ZJB, which has also been found in other areas
such as the coastal Bohai Bay (Gao and Chen, 2012) and the
mouth of São Francisco Channel (Freitas et al., 2019). Fine-
grained sediments (clay + silt) have a larger specific surface area
than coarser fraction of sediments (sand), providing them with
more binding sites for the adsorption of organic matter and
FIGURE 2 | The distribution of total metal concentrations for Cd (A), Cr (B), Cu (C), Ni (D), Pb (E), Zn (F), Fe (G) and Mn (H) in surface sediments of
Zhanjiang bay in spring.
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metals (Salomons and Förstner, 1984; Keil et al., 1994; Mayer,
1994). Organic matter is also an important mechanism of metals
complexation in sediment (Freitas et al., 2019). The high
concentrations of studied metals in the channel and coastal
Frontiers in Marine Science | www.frontiersin.org 8
sediments of Zhanjiang bay were also related to the grain size
compositions and TOC contents of sediments in these areas.
Under oxidizing conditions, Fe and Mn tend to precipitate in the
forms of oxides/hydroxides (Salomons and Förstner, 1984;
A B

D

E F

C

FIGURE 3 | Distributions of Cd (A), Cr (B), Cu (C), Ni (D), Pb (E) and Zn (F) in different geochemical fractions in the surface sediments of Zhanjiang bay in spring.
TABLE 3 | The average concentrations of total metals in different subregions of Zhanjiang bay.

Cd Cr Cu Ni Pb Zn Fe Mn
mg/g mg/g mg/g mg/g mg/g mg/g mg/g mg/g

Apr. 2017 Channel 0.267 78.74 29.31 22.17 41.39 90.74 38.36 279.1
Coastal bay 0.127 51.49 14.74 16.41 27.66 71.71 28.21 382.5
Central bay 0.120 45.67 11.54 13.64 24.11 47.72 26.11 238.6

Aug. 2017 Channel 0.245 67.59 22.68 18.98 32.23 61.32 35.27 232.4
Coastal bay 0.144 53.44 11.45 14.44 21.63 82.28 25.40 269.5
Central bay 0.112 47.98 10.47 14.63 23.15 54.42 26.07 235.6
June 2022 | Volu
me 9 | Article 9
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Freitas et al., 2019). In this study, significant positive correlations
between Fe, Mn and other studied trace metals were found
(Table 4). This suggests that metals in surface sediment of ZJB
were related to Fe and Mn oxides and hydroxides (Freitas
et al., 2019).

Principal component analysis (PCA) was used to identify
principal components from the studied metals and related
environmental parameters in surface sediments of ZJB (Table 5).
Based on the results of PCA, two principal components (PC1 and
PC2) were identified which accounted for 84.6% of the total data
variance. PC1, accounting for 71.6% of the total data variance, had
high positive loadings for TOC, Clay, silt and all studied metals.
Considering the spatial distributions of these parameters (Table 1
and Figures 2, S1) and the aforementioned discussion, we think that
PC1 mainly represented the sources of river input and/or domestic
sewage from Zhanjiang city. PC2, accounting for 12.9% of the total
data variance, had high positive loadings for Mn, Zn and sand.
Considering their high concentrations in the coastal bay (Tables 1, 3),
we think that PC1 represented the sources from coastal region.

3.3. Geochemical Compositions of Metals
in Surface Sediments of Zhanjiang Bay
The geochemical compositions of Fe and Mn were not
determined in sediments of ZJB. The average values of metal
fractions in surface sediments of ZJB are summarized in Table
S2. Among the studied metals, Pb and Zn were mainly associated
Frontiers in Marine Science | www.frontiersin.org 9
with non-residual fractions (acid soluble fraction, reducible
fraction and oxidizable fraction), and Cd, Cr, Cu and Ni were
mainly associated with the residual fraction (Table S2).

The acid soluble fraction (F1) of metals in sediments
(exchangeable and bound to carbonates components) is in
equilibrium with metals dissolved in water. It is labile, highly
toxic and is the most bioavailable fraction. In the surface
sediments of ZJB, the mean proportion of metals in F1 was Cd
24.0%, Cr 0.4%, Cu 7.9%, Ni 8.5%, Pb 5.9%, Zn 14.3% in spring,
and Cd 19.4%, Cr 0.6%, Cu 5.8%, Ni 6.8%, Pb 6.5%, Zn 14.8% in
summer. Relatively high proportions of Cd and Zn were
associated with F1, indicating their high risk to the
environment of ZJB. Low proportions of Cr, Cu, Ni and Pb
were associated with F1. This indicates that these metals had low
risk to the environment of ZJB.

The distribution of metal fractions is presented in
Figures 3, S2. In spring, the average percentage of Zn in
F1 was 21.8% at the channel, which was higher than that in
the coastal bay (average: 11.7%) and the central bay (average:
7.6%). The acid soluble fraction has the greatest tendency to
move from sediment to overlying water (Wang et al., 2011).
This indicates that the channel was subject to more
anthropogenic inputs of Zn compared with the coastal and
central bay. Similar phenomenon was found in summer. In
spring, a considerable fraction of Cd in F1 was observed at
the coast of ZJB (average: 30.0%), which was higher than that
in the channel (average: 20.4%) and the central bay (average:
20.9%). This suggests that the coastal bay was subject to
more anthropogenic inputs of Cd compared with the channel
and central bay. While in summer, relatively high percentage
of Cd in F1 was observed at the channel. This indicates
the main sources of acid soluble fraction of Cd varied
with seasons.

Reducible fraction (F2) of metal is bound to amorphous Fe
and Mn oxides and hydroxides (Rauret et al., 1999; Nemati et al.,
2011). This fraction can become dissolved under reducing
environment (Morillo et al., 2004). Among the studied metals,
Pb had the highest percentage in this fraction (average of 47.4%
in spring and summer) in the surface sediments of ZJB,
indicating its potential risk to the environment under reducing
conditions. Other studied metals had low proportions in F2. The
average proportion in this fraction for both seasons can be
summarized as: Pb (49.4%) > Zn (26.6%) > Cu (8.7%) > Ni
(8.5%) > Cd (4.4%) > Cr (2.8%) in spring and Pb (45.2%) > Zn
TABLE 4 | Pearson correlation analysis for total concentrations of metals and related parameters (n = 28).

Cr Cu Ni Pb Zn Fe Mn Clay Silt Sand TOC

Cd 0.844a 0.888a 0.829a 0.862a 0.600b 0.785a 0.394c 0.720a 0.526b -0.662a 0.759a

Cr 0.907a 0.964a 0.783a 0.721a 0.950a 0.571b 0.684a 0.638a -0.743a 0.867a

Cu 0.906a 0.777a 0.636a 0.857a 0.453c 0.710a 0.608b -0.716a 0.924a

Ni 0.809a 0.754a 0.903a 0.652a 0.711a 0.628b -0.743a 0.885a

Pb 0.505b 0.788a 0.557b 0.664a 0.460c -0.595b 0.733a

Zn 0.657a 0.695a 0.458c 0.180 -0.331 0.520b

Fe 0.563b 0.691a 0.612b -0.725a 0.821a

Mn 0.292 0.039 -0.151 0.495b
Ju
ne 2022 | Volu
me 9 | Article 9
a P < 0.001; b 0.001< P < 0.01; c 0.01 < P < 0.05.
TABLE 5 | Loadings of experimental variables on significant principal
components for the data from Zhanjiang bay.

Parameter PC1 PC2

Cd 0.882 0.001
Cr 0.972 0.081
Cu 0.936 -0.013
Ni 0.975 0.120
Pb 0.850 0.101
Zn 0.703 0.488
Fe 0.972 0.132
Mn 0.607 0.648
TOC 0.896 -0.059
Clay 0.821 -0.238
Silt 0.644 -0.677
Sand -0.789 0.572
Percentage of variances 71.6% 12.9%
Cumulative variances 71.6% 84.6%
Bold values indicate strong loadings.
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(16.4%) > Ni (3.9%) > Cd (3.8%) > Cu (3.4%) > Cr (2.5%)
in summer.

The oxidizable fraction (F3) of metal is bound to organic
matter and sulfides components (Rauret et al., 1999; Nemati
et al., 2011). Cu in this fraction was generally higher in surface
sediments of ZJB, with an average proportion of 23.0% in
spring and 32.8% in summer. The presence of other metals in
this fraction was generally low in both seasons. The average
proportion of metals in this fraction can be summarized as
follows: Cu (23.0%) > Zn (13.1%) > Ni (9.8%) > Cr (5.4%) >
Cd (5.3%) > Pb (5.1%) (spring) and Cu (32.8%) > Zn (15.2%)
> Pb (9.9%) > Ni (8.4%) > Cr (4.5%) (summer). Due to
contamination in the operation process, Cd in oxidizable
fraction in summer was not available. Related parameters
(Cd in residual and bioavailable fraction in summer) were
also not available.

Metals in the residual fraction (F4) are associated with silicate
mineral lattices (Rauret et al., 1999; Nemati et al., 2011). A major
proportion of Cr (average of 91.4% and 92.4% in spring and
summer, respectively) and Ni (average of 73.2% and 81.0% in
spring and summer, respectively) were associated with this
fraction, indicating their less mobility and bioavailability in the
surface sediments of ZJB. The average proportion of studied
metals in residual fraction was summarized as follows: Cr
(91.4%) > Ni (73.2%) > Cd (66.3%) > Cu (60.4%) > Zn
(46.0%) > Pb (39.6%) (spring) and Cr (92.4%) > Ni (81.0%) >
Cu (58.0%) > Zn (53.5%) > Pb (38.4%) (summer).
Frontiers in Marine Science | www.frontiersin.org 10
The bioavailable fraction (BF) of metals is the summing
results of the acid soluble, reducible and oxidizable fraction.
The residual fraction is the non-bioavailable fraction. Metals
associated with BF are bounded through weak bonds on
sediments and are readily available to aquatic biota (Forstner,
1989; Pempkowiase et al., 1999). The concentration of metals in
the BF is a serious environmental concern (Sundaray
et al., 2011).

The average concentrations of bioavailable metals in different
subregions are shown in Figures 4A, B. All the studied metals in
BF had the highest concentrations in the channel sediments,
suggesting that terrestrial input and/or domestic sewage may be
their main sources. The percentage of the metals in BF decreased
in the order of Pb (60.4%) > Zn (54.0%) > Cu (39.6%) > Cd
(33.7%) > Ni (26.8%) > Cr (8.6%) in spring and Pb (61.6%) > Zn
(46.5%) > Cu (42.0%) > Ni (19.0%) > Cr (7.6%) in summer
(Table S2). This indicates that Cr and Ni were the least
bioavailable studied metals in the sediments of ZJB. High
percentages of Pb and Zn recorded in the BF indicate their
greater mobility in the sediments of ZJB, which may be mainly
from shipping activities (ship repair or painting), industrial
effluent or domestic sewage.

Seasonal changes on bioavailability of metals were observed in
the surface sediments of ZJB. The average concentrations of
bioavailable fractions for all studied metals (except for Cd)
decreased in summer compared with those in spring, with the
maximum decrease of 52% for bioavailable Zn (Figures 4A, B).
A B

DC

FIGURE 4 | Average concentrations of bioavailable (A, B) and reducible (C, D) fraction of metals in different subregions of Zhanjiang bay.
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These changes indicate the release of bioavailable metals in
summer, which were able to increase ecological risks. The
concentrations of reducible fraction (bound to Fe/Mn
oxyhydroxides components) for all studied metals (except for
Cd) decreased in summer compared with those in spring
(Figures 4C, D). For example, the average concentration of
reducible Zn in channel was 27.19 mg/g in spring and 12.21 mg/g
in summer. The seasonal variations of metals in this fraction may
indicate the influence of relatively low DO in summer (Table 1).
Decreased DO concentration in summer can promote the
Frontiers in Marine Science | www.frontiersin.org 11
reduction of Fe and Mn oxides and hydroxides and the release
of related metals (Morillo et al., 2004; Duan et al., 2019).
3.4. Assessment of Contamination Status
of Metals in Surface Sediments of
Zhanjiang Bay
The average total concentrations of Cd, Cr, Cu, Pb and Zn in the
surface sediments of ZJB in both seasons were all within the
range of MSQ Grade I (Table 2), suggesting that the surface
A B

D

E F

G

C

FIGURE 5 | Distributions of enrichment factor (EF) for Cd (A), Cr (B), Cu (C), Ni (D), Pb (E), Zn (F) and Mn (G) in surface sediments of Zhanjiang bay.
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sediments of ZJB were generally not contaminated by
these metals.

According to the calculated EF values (Figure 5), Cr, Ni and
Mn in the sediment of ZJB (average of 0.93, 0.70 and 0.58,
respectively) generally showed no enrichment in both spring and
summer; Cu showed minor enrichment in spring (average: 1.12);
and Cd, Pb and Zn showed minor enrichment in both spring and
summer. Overall, the calculated average EF values were in the
descending order of Cd (2.47) > Pb (1.56) > Cu (1.12) > Zn (1.04)
> Cr (0.90) > Ni (0.71) > Mn (0.62) in spring and Cd (2.61) > Pb
(1.33) > Zn (1.05) > Cu (0.97) > Cr (0.96) > Ni (0.70) > Mn (0.54)
Frontiers in Marine Science | www.frontiersin.org 12
in summer. Cr, Ni and Mn in the sediment of ZJB originated
mainly from the natural input. Cd, Cu, Pb and Zn were
influenced by anthropogenic activities to some extent.

The average CF values of the studied metals decreased in the
order of Cd (2.69) > Pb (1.58) > Cu (1.27) > Zn (1.08) > Fe (1.01) >
Cr (0.99) > Ni (0.74) > Mn (0.57) in spring and Cd (2.63) > Pb
(1.29) > Zn (1.01) = Cu (1.01) > Cr (0.95) > Fe (0.94) > Ni (0.67) >
Mn (0.47) in summer (Figure 6). The channel sediments of ZJB
were considerably contaminated by Cd during both seasons
(average CF of 4.10 in spring and 3.76 in summer) (Figure 6).
The coastal and central bay sediments are moderately contaminated
A B

D

E F

G H

C

FIGURE 6 | Distributions of contamination factor (CF) for Cd (A), Cr (B), Cu (C), Ni (D), Pb (E), Zn (F), Fe (G) and Mn (H) in surface sediments of Zhanjiang bay.
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by Cd. The three subregions of ZJB were moderately contaminated
by Pb. For Cu, only the channel sediments showed moderately
contaminated by this metal. For Zn, the station (Z9) near the
Zhongke (Guangdong) Refining and Chemical Co., Ltd recorded
the highest CF values in both spring and summer (2.48 in spring
and 2.15 in summer) (Figures 1, 6). This indicates that station Z9
was moderately contaminated by Zn, which may be probably
sourced from the sewage of Zhongke (Guangdong) Refining and
Chemical Co., Ltd. Other studied metals generally had low
contamination to the surface sediments of ZJB (Figure 6).

The result of the hierarchical cluster analysis of the sampling
stations based on the calculated CF in the surface sediment of
ZJB in spring and summer is shown in Figure 7. Three main
different clusters could be observed. Cluster 1 involved several
stations (Z1, Z6, Z7, Z8, Z11, Z12, Z14) which were less
contaminated. Cluster 2 involved several stations (Z2, Z3, Z4,
Z9, Z10, Z13) which were generally contaminated. Cluster 3
involved one station (Z5) near the Donghai Dam which was
moderately contaminated according to the calculated CF.

The calculated PLI values for metals in the surface sediment
of ZJB are summarized in Figure 8. PLI ranged from 0.17 to 1.83
in spring and from 0.33 to 1.88 in summer. The average PLI
values in the channel, coastal and central ZJB were 1.28, 0.93 and
0.81, respectively (spring and summer). This indicates that the
channel of ZJB was contaminated by the studied metals. Besides,
the two stations locating at the south coast of ZJB also had PLI
values larger than 1, indicating the deterioration of sediment
quality in this area.

The risk of metals in surface sediments of ZJB was evaluated
based on the percentage of acid soluble fraction (F1) of metals
(Section 2.3). The percentages of Cd in F1 in the channel and
FIGURE 7 | Hierarchical dendrogram in terms of the sampling stations based on the
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coastal bay and the percentages of Zn in F1 in the channel were
generally in the range of 30-50% (Figures 3, S2), indicating the
high risk of Cd and Zn to the environment in these subregions of
ZJB. The percentages of Cd in F1 in the central bay and the
percentages of Zn in F1 in the coastal and central bay were
generally in the range of 10-30% (Figures 3, S2), indicating their
medium risk to the environment in these subregions. Cu, Ni, Pb
and Cr in the surface sediments of Zhanjiang bay generally had
low risk or no risk to the environment based on their percentages
in F1 (Figures 3, S2).

The results of EF and CF, which were calculated based on
total metal concentrations, also indicated the contamination of
Cd and Zn in surface sediments of ZJB (Section 3.5.1 and 3.5.2).
Combined the assessment results of EF, CF and the percentages
of acid soluble fraction, we concluded that Cd and Zn in the
surface sediments of Zhanjiang bay were generally contaminated
and they had medium to high risk to the environment.
4. CONCLUSIONS

Total concentrations and geochemical compositions of metals in
surface sediments of Zhanjiang bay were studied. The total
concentrations of metals were generally higher in the channel
and coastal sediments of Zhanjiang bay. River discharge,
domestic sewage, industr ia l wastewater , grain size
compositions and TOC contents of sediments contributed
much to the high concentrations of metals in these subregions
of Zhanjiang bay. The spatial distribution pattern of some
studied metals (Ni, Pb, Fe, Zn and Mn) showed seasonal
variations. The dynamic environment of Zhanjiang bay
data of contaminant factor in spring and summer.
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FIGURE 8 | Distributions of pollution load index (PLI) for metals in surface sediments of Zhanjiang bay.
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between spring and summer contributed to the spatial variations
of these metals. In the channel, all the studied metals showed
decreased concentrations in summer compared with those in
spring, indicating the release of metals from sediments. Organic
matter degradation and Fe and Mn (hydr)oxides reduction
processes contributed to that phenomenon.

Relatively high proportions of Cd and Zn were associated
with the acid soluble fraction (average of 21.7% and 14.6%,
respectively), indicating their high risk to the environment of
Zhanjiang bay. The concentrations of reducible and bioavailable
fractions of metals generally decreased in summer compared
with those in spring. These changes may probably suggest the
release of bioavailable metals in summer, which could be able to
increase ecological risks. More research should be conducted to
confirm this conclusion. Based on the assessment results of
enrichment factor, contamination factor and the percentages
of acid soluble fraction, Cd and Zn in the surface sediments of
Zhanjiang bay were generally contaminated and they had
medium to high risk to the environment. The pollution load
index indicated the deterioration of sediment quality in the
channel and the south coast of Zhanjiang bay. More attention
should be paid on these contaminated areas in Zhanjiang bay.
Some bioremediation techniques like using aquatic plants to
remove the contaminated metals can be used to reduce the
contamination of Zhanjiang bay.
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