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The surface gravity wave equation is expanded to the fourth-order wave steepness on
slowly varying topography, obtaining a topographic modified nonlinear Schrödinger
(TMNLS) equation. When the time scale is longer than e-3 times of the dominant wave
period or the space scale is larger than e-3 times the dominant wavelength, the second
water depth derivative and the square of the first water depth derivative affect the first-
order wave amplitude. The instability area for a uniform Stokes wave train by small
perturbations is the entire wavenumber space, except for a specific stability curve on
infinite and slowly varying depth. The depth variation terms affect the growth rate of
uniform Stokes wave train on the order of 0.01. The stability curve shows more sensitive to
the depth variation in x direction than that in y direction. The increment of the value for
depth variation in x direction contributes the stable wave number of perturbation to
approach or parallel to y axis. The increment of the value for depth variation in y direction
helps the stable wave number of perturbation to approach or parallel to x axis.

Keywords: TMNLS, varying topography, instability analysis, nonlinear Schrödinger equation (NLS), narrow
bandrange wave packet
INTRODUCTION

The interactions among wave packets with narrowband range frequencies and wavelengths received
considerable attention. Benjamin and Feir (1967) theoretically proved that wave packets were
unstable when kh is larger than 1.363, where k is the dominant wavenumber, and h is the water
depth. Whitham (1967) identified and explained the Benjamin–Feir instability by theoretical
analysis. Benney and Roskes (1969) complemented Whitham’s theory. With a pair of nonlinear
conservation equations introduced by Whitham, Lighthill (1967) analyzed the nonlinear wave
evolution process after the initial stable stage of a single wave packet. Chu and Mei (1971) added the
modulation rate term to Whitham’s equation for long-term wave packet evolution processes to
interpret the high-order dispersion effect.

The wave packet evolution process can be studied by the cubic nonlinear Schrödinger (NLS)
equation [Zakharov (1968); Benney and Roskes (1969)], which is equal to the conservation equation
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proposed by Chu and Mei (Hasimoto and Ono, 1972). Zakharov
and Shabat (Davey, 1972) solved the analytical NLS solution.
Hasimoto and Ono (Zakharov and Shabat, 1972) obtained a one-
dimensional NLS for the wave packet envelope from multiple
scale expansions for finite depth. Davey and Stewartson (1974)
investigated the transformation of slowly varying wave packets
in a three-dimensional finite depth, concluding that the
wave packet envelope is confined to two nonlinear partial
differential equations, similar to NLS in form. Lo and Mei
(1985) highlighted the simulation value with NLS ’s
preferably approached measured value if e < 0.1, while the
departure between the simulation and measured values was
larger when e > 0.1. Martin (Martin H. Yuen, 1980) found that
the simulated wave energy with NLS does not satisfy the
conservation law due to energy attenuation. Besides the
confined condition of small wave steepness, NLS showed
Benjamin–Feir instability in an unbounded region by two-
dimensional sideband perturbation, resulting in leaking energy
from low wavenumber components to high wavenumber
components (Dysthe, 1979).

The NLS has been modified to overcome these defects above.
By expanding the equation to the fourth order on finite depth,
Dysthe (1979) established the modified nonlinear Schrödinger
equation (MNLS) to improve wave packets’ instability
properties. Lo and Mei (1987) numerically solved and
transformed MNLS in moving coordinates, showing poor long-
time wave packet evolution reproducibility on infinite depth and
asymmetry of sideband perturbation evolution. By considering
that the wave spectrum in a realistic ocean is not narrowband,
Trulsen and Dysthe (1996) developed a broader band modified
nonlinear Schrödinger equation (BMNLS) by extending the
bandwidth to the e

1
2 order. It showed the same precision as

MNLS in nonlinear terms but higher precision in linear
dispersive terms than MNLS. In deep water, to compute the
dispersive relation efficiently using the pseudo-spectrum method
and keep the simple structure of the Dysthe equation, Trulsen
et al. (2000) used cubic nonlinear terms to modify linear
dispersive relations, improving wave packets’ instability
property by comparing the result with that from the Stokes
wave analytic solution of Mclean (McLean, 1982), ensuring the
boundness of Benjamin–Feir instability and stopping the wave
energy leaking to high wavenumber components. Craig et al.
(2012) proposed that NLS is not a Hamilton partial differential
equation but an approximation to the Euler equation. Craig et al.
(Craig et al., 2010; Craig et al., 2011) adopted Hamilton’s method
to solve the nonlinear wave modulation process and provided a
Hamilton structure of the Dysthe equation (Dysthe, 1979) to
describe the gravity wave evolution process on finite and infinite
depth. Craig et al. (2012) developed the Hamilton method by
introducing the Hamilton pair to the equations proposed by
Trulsen et al. (Trulsen and Dysthe, 1996; Trulsen et al., 2000).
The equations developed using this method were compatible
with water wave equations. Zhang and Li (2012) modified the
pseudo-spectrum method by splitting the technique to make the
MNLS equation suitable for nonperiodic boundary conditions.
The method can efficiently solve nonlinear wave equations
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through numerical examples by nonlinear parabolic and
MNLS equations.

The topography under nature waters is complicated and a
crucial factor affecting the propagation process of surface
gravity waves in coastal areas. Mei (2005) solved the weakly
nonlinear narrowband wave packet equation on a finite flat
bottom, indicating the effect of a three-order nonlinearity on
the first-order wave height when the time scale is longer than e-
2 of the dominant wave period or space scale is larger than e-2 of
the dominant wave length. Brinch-Nielsen and Jonsson (1986)
extended the nonlinear Schrödinger equation to the fourth
order in three dimensions on an arbitrary constant depth,
concluding that water depth can affect the applicability of
wave instability expressions in deep water. Mild slope
equations (Berkhoff, 1972; Lozano and Meyer, 1976) and
their extensions (Kirby, 1986; Chamberlain and Porter, 1995;
Miles and Chamberlain, 1998; Agnon and Pelinovsky, 2001) are
powerful tools, aiming either at steeper slopes on large length
scales or shorter irregularities, primarily used for calculating
wave fields on the background of ocean engineering. According
to Yue and Mei (1980), restricting ∇hh to O (e2), Kirby (Kirby
and Dalrymple, 1983) introduced two variable x scales and one
variable y scale. A parabolic equation with time independence
was developed, avoiding the caustics and irregular focusing
on the ray approximation while precluding wave instability
analysis (Kirby and Dalrymple, 1983). Xiao and Lo (Xiao and
Lo 2004) introduced the first-order depth variation terms
to NLS by expanding the equation to the third-order to allow
Dw
w = Dk

k = O(e
2
3 ) and depth variation Dh

h = O(e
4
3 ). No stable

region exists for a uniform Stokes wave on varying bottoms,
and a higher order instability beyond the Benjamin-Feir type is
introduced by depth variation (Xiao and Lo 2004). Combined
with experimental results and numerical analysis, Li et al. (Li
et al., 2021; Li et al., 2021) found additional wave packets
propagating freely and arising at first and second orders in wave
steepness in a Stokes expansion as the wave packet travels over
a sudden depth transition area. Free and bound waves
coexisting with different phases at the second-order wave
steepness indicated that the combination of the local
transient peak and the magnitude of the linear free waves
explained the rogue waves observed after a sudden depth
transition. Zhang and Benoit (2021) proposed that the wave-
bottom interaction in coastal areas forms rogue waves and
increases the possibility of big waves occurring.

Neither MNLS nor BMNLS can describe the wave packet
evolution process on varying bottoms. Considering the extensive
application of NLS, the wave evolution process and its instability
features in realistic situations can be evaluated by improving NLS
to the fourth order for variable depths. Based on a mathematical
technique introduced by Mei (Chu and Mei, 1970) and a
boundary condition adopted by Kirby (Kirby and Dalrymple,
1983), the narrowband wave packet evolution equation was
expanded to the fourth-order wave steepness. A topographic
modified nonlinear Schrödinger (TMNLS) equation is obtained
and investigated for the instability of a uniform Stokes
wave train.
June 2022 | Volume 9 | Article 928096

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Zhang et al. Analysis for TMNLS Equation
EVOLUTION EQUATION FOR
NARROWBAND WAVE PACKETS
ON THE FINITE DEPTH

We assign (x, y, z) as spatial coordinates with z pointing vertically
upward and assume that the water depth h (x, y) is slowly varying
and finite at p

10 < kh < p . In the irrotational current field of
inviscid and incompressible fluids, velocity potential Ф (x, y, z, t)
and free surface displacement ς (x, y, t) describe surface
wave propagation.

Pa is the local atmospheric pressure, and the equations to
describe waves are as follows.

Laplace equation:

DF = 0 (1)

Kinematic boundary condition on the bottom:

∂F
∂ x

∂ h
∂ x + 

∂F
∂ y

∂ h
∂ y = − ∂F

∂ z z = −hð Þ (2)

Dynamic boundary condition on the surface:

− pa
r = gς + ∂F

∂ t +
1
2 ∇Fj j2 z = ςð Þ (3)

Kinematic boundary condition on the surface:

∂ ς
∂ t + 

∂F
∂ x

∂ ς
∂ x + 

∂F
∂ y

∂ ς
∂ y =

∂F
∂ z z = ςð Þ (4)

We act the operator ∂
∂ t + u! ·∇ on two sides of Equation (3). pa

is a constant. Equation (3) can be given as

∂2 F
∂ t2 + g ∂F

∂ z + ∂
∂ t u!�� ��2� �

+ 1
2 u! ·∇ uj j2¼ 0 z = ςð Þ (5)

The variable of Equation (5) is expanded into the Taylor series
about (z = 0) to the fourth order, yielding

∂2 F
∂ t2 + g ∂F

∂ z

h i
z=0

+ς ∂
∂ z

∂2 F
∂ t2 + g ∂F

∂ z

� �h i
z=0

+ ∂
∂ t u!�� ��2� �h i

z=0

+ ς2

2
∂2

∂ z2
∂2 F
∂ t2 + g ∂F

∂ z

� �h i
z=0

+ς ∂2

∂ t ∂ z u!�� ��2� �h i
z=0

+ 1
2 u! ·∇ u!�� ��2� �h i

z=0

+ 1
6 ς

3 ∂3

∂ z3
∂2 F
∂ t2

� �
jz=0 + 1

6 gς
3 ∂3

∂ z3
∂F
∂ z

� �jz=0
+ 1

2 ς
2 ∂2

∂ z2

∂ u!�� ��2� �
∂ t

0
@

1
Ajz=0 + 1

2 ς
∂
∂ z u! ·∇ u!�� ��2� �� �

jz=0 = 0

(6)

Incorporating pa into Ф in Equation (3) yields

gς + ∂F
∂ t +

1
2 ∇Fj j2  ¼ 0 z = ςð Þ (7)

The variable of Equation (7) is expanded into the Taylor series
about (z = 0) to the fourth order, yielding

−gς = ∂F
∂ t

� �
z=0+ς

∂2 F
∂ z ∂ t

h i
z=0

+ 1
2 u!�� ��2h i

z=0
+ ς2

2
∂2

∂ z2
∂F
∂ t

� �h i
z=0

+ ς
2

∂
∂ z u!�� ��2� �h i

z=0
+ ς3

6
∂3

∂ z3
∂F
∂ t

� �h i
z=0

+ ς2

4
∂2

∂ z2 u!�� ��2� �h i
z=0

(8)
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Thus Equations (6) and (8) are the (ka)4 order. k is the
dominant wavenumber, and a is the dominant wave’s amplitude.
It is supposed that ka=e≪1.

It is supposed that the dominant wave direction is along the x-
axis, and the wave packet is slowly modulated. The multiscale
variables are

x, x1 = ex, x2 = e2x,…::,

   y1 = ey, y2 = e2y,…::,

t, t1 = et, t2 = e2t,…::,

(9)

We expand the velocity potential and wave displacement into a
perturbation series

F = o
∞

n=1
enfn ς = o

∞

n=1
enςn (10)

Where

fn = fn x, x1, x2,…; y1, y2,…; z; t, t1, t2,…ð Þ             
ςn = ςn x, x1, x2,…; y1, y2,…; t, t1, t2,…ð Þ  

(10� 1)

∂

∂ x
! ∂

∂ x
+ e

∂

∂ x1
+ e2

∂

∂ x2
+… + en

∂

∂ xn
+… (10� 2)

∂

∂ y
! e

∂

∂ y1
+ e2

∂

∂ y2
+… + en

∂

∂ yn
+… (10� 3)

The variable of Laplace Equation (1) is expanded into a
perturbation series to the fourth order, yielding

∂2 fn
∂ x2

+
∂2 fn
∂ z2

= Fn, n = 1, 2, 3, 4ð Þ (11)

(F1 = 0, F2 = −2 ∂2 f1
∂ x ∂ x1

, F3 = − ∂2 f1
∂ x21

+ ∂2 f1
∂ y21

+ 2 ∂2 f1
∂ x ∂ x2

+ 2 ∂2 f2
∂ x ∂ x1

� �
,

F4 = − ∂2 f2
∂ x21

+ ∂2 f2
∂ y21

+ 2 ∂2 f2
∂ x ∂ x2

+ 2 ∂2 f3
∂ x ∂ x1

+ 2 ∂2 f1
∂ x1 ∂ x2

+ 2 ∂2 f1
∂ x ∂ x3

+ 2 ∂2 f1
∂ y1 ∂ y2

� �
)

(11� 1)

The variable of Equation (6) is expanded into a perturbation
series to the fourth order, yielding

Gfn = Gn   z = 0ð Þ,G = g
∂

∂ z
+

∂2

∂ t2
(12)

G1¼ 0, G2 = −½2 ∂2 f1
∂ t ∂ t1

+ ς1
∂3 f1
∂ z ∂ t2

+ g
∂2 f1
∂ z2

	 


+ 2
∂ f1
∂ x

∂2 f1
∂ x ∂ t

+
∂ f1
∂ z

∂2 f1
∂ z ∂ t

� �
� (12� 1)
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G3 = −f2 ∂2 f2
∂ t ∂ t1

+ 2 ∂2 f1
∂ t ∂ t2

+ ∂2 f1
∂ t21

+

ς2
∂
∂ z

∂2

∂ t2 + g ∂
∂ z

� �
f1 + ς1

∂
∂ z

∂2

∂ t2 + g ∂
∂ z

� �
f2

+ς1 2 ∂3 f1
∂ z ∂ t ∂ t1

+ 2 ∂
∂ z

∂ f1
∂ x

∂2 f1
∂ x ∂ t +

∂ f1
∂ z

∂2 f1
∂ z ∂ t

h i� �
+ ς21

2
∂2

∂ z2
∂2

∂ t2 + g ∂
∂ z

� �
f1

+2½∂ f1∂ x
∂2 f2
∂ x ∂ t +

∂2 f1
∂ x ∂ t

∂ f2
∂ x + ∂ f1

∂ z
∂2 f2
∂ z ∂ t +

∂ f2
∂ z

∂2 f1
∂ z ∂ t +

∂ f1
∂ x

∂2 f1
∂ x1 ∂ t

+ ∂ f1
∂ x

∂2 f1
∂ x ∂ t1

+ ∂2 f1
∂ x ∂ t

∂ f1
∂ x1

+ ∂ f1
∂ z

∂2 f1
∂ z ∂ t1

� + 1
2 f1ð Þx ∂

∂ x + f1ð Þz ∂
∂ z

� � ∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h i
g

(12� 2)
G4 = − 2 ∂2 f3
∂ t ∂ t1

+ 2 ∂2 f2
∂ t ∂ t2

+ 2 ∂2 f1
∂ t ∂ t3

+ ∂2 f2
∂ t21

+ 2 ∂2 f1
∂ t1 ∂ t2

n
+2 ∂ f1

∂ x
∂2 f3
∂ x ∂ t +

∂2 f2
∂ x1 ∂ t

+ ∂2 f1
∂ x2 ∂ t

+ ∂2 f2
∂ x ∂ t1

+ ∂2 f1
∂ x1 ∂ t1

+ ∂2 f1
∂ x ∂ t2

� �n
+ ∂ f2

∂ x + ∂ f1
∂ x1

� �
∂2 f2
∂ x ∂ t +

∂2 f1
∂ x1 ∂ t

� �
+ ∂ f3

∂ x + ∂ f2
∂ x1

+ ∂ f1
∂ x2

� �
∂2 f1
∂ x ∂ t +

∂ f1
∂ y1

∂2 f1
∂ y1 ∂ t

+ ∂ f1
∂ z

∂2 f3
∂ z ∂ t +

∂2 f2
∂ z ∂ t1

+ ∂2 f1
∂ z ∂ t2

� �
+ ∂ f2

∂ z
∂2 f2
∂ z ∂ t +

∂2 f1
∂ z ∂ t1

� �
+ ∂ f3

∂ z
∂2 f1
∂ z ∂ t +

∂2 f1
∂ x ∂ t1

∂ f2
∂ x + ∂ f1

∂ x1

� �
g

+ ∂ f1
∂ x

∂
∂ x

∂ f1
∂ x

∂ f1
∂ x1

+ ∂ f1
∂ x

∂ f2
∂ x + ∂ f1

∂ z
∂ f2
∂ z

h i
+ 1

2
∂

∂ x1
∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h in o
+ 1

2
∂ f2
∂ x + ∂ f1

∂ x1

� �
∂
∂ x

∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h i
+ ∂ f1

∂ z
∂
∂ z

∂ f1
∂ x

∂ f2
∂ x + ∂ f1

∂ x
∂ f1
∂ x1

+ ∂ f1
∂ z

∂ f2
∂ z

� �
+ 1

2
∂ f2
∂ z

∂
∂ z

∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h i
+ς1½ ∂∂ z ∂2 f3

∂ t2 + 2 ∂2 f2
∂ t ∂ t1

+ 2 ∂2 f1
∂ t ∂ t2

+ ∂2 f1
∂ t21

� �
+ g ∂2 f3

∂ z2

+2 ∂
∂ z ½∂ f1∂ x

∂
∂ t

∂ f2
∂ x + ∂ f1

∂ x1

� �
+ ∂ f2

∂ x + ∂ f1
∂ x1

� �
∂
∂ t

∂ f1
∂ x

� �
+ ∂ f1

∂ z
∂
∂ t

∂ f2
∂ z

� �
+ ∂ f2

∂ z
∂
∂ t

∂ f1
∂ z

� �
+ ∂ f1

∂ x
∂
∂ t1

∂ f1
∂ x

� �
+ ∂ f1

∂ z
∂
∂ t1

∂ f1
∂ z

� �
�

+ 1
2

∂
∂ z f∂ f1∂ x ½ ∂∂ x ∂ f1

∂ x

� �2
+ ∂ f1

∂ z

� �2� �
� + ∂ f1

∂ z ½ ∂∂ z ∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2� �
�g�

+ς2f ∂
∂ z (

∂2 f2
∂ t2 + 2 ∂2 f1

∂ t ∂ t1
Þ + g ∂2 f2

∂ z2 + 2 ∂
∂ z ½∂ f1∂ x

∂
∂ t (

∂ f1
∂ x Þ + ∂ f1

∂ z
∂
∂ t (

∂ f1
∂ z Þ�g

+ς3
∂
∂ z

∂2 f1
∂ t2

� �
+ g ∂2 f1

∂ z2

h i
+ς21½12 ∂2

∂ z2 (
∂2 f2
∂ t2 + 2 ∂2 f1

∂ t ∂ t1
Þ + g

2
∂3 f2
∂ z3 + ∂2

∂ z2 ½∂ f1∂ x
∂
∂ t (

∂ f1
∂ x Þ + ∂ f1

∂ z
∂
∂ t (

∂ f1
∂ z Þ��

+ς1ς2
∂2

∂ z2
∂2 f1
∂ t2

� �
+ g ∂3 f1

∂ z3

h i
+ 1

6 ς
3
1

∂3

∂ z3
∂2 f1
∂ t2

� �
+ g ∂4 f1

∂ z4

h i
g

(12� 3)
The variable of boundary condition (8) is expanded into a
perturbation series to the fourth order, yielding

−gςn = Hn z = 0ð Þ (13)
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H1 =
∂ f1
∂ t

,H2

=
∂ f2
∂ t

+
∂ f1
∂ t1

+ ς1
∂2 f1
∂ z ∂ t

+
1
2

∂ f1
∂ x

	 
2

+
∂ f1
∂ z

	 
2� �
(13� 1)

H3 =
∂ f3
∂ t + ∂ f2

∂ t1
+ ∂ f1

∂ t2
+ ς1

∂2 f2
∂ z ∂ t +

∂2 f1
∂ z ∂ t1

h i
+ ς2

∂2 f1
∂ z ∂ t

+ 1
2 2 ∂ f1

∂ x
∂ f2
∂ x + 2 ∂ f1

∂ x
∂ f1
∂ x1

+ 2 ∂ f1
∂ z

∂ f2
∂ z

h i
+

ς21
2

∂2

∂ z2
∂ f1
∂ t

� �
+ ς1

2
∂
∂ z

∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h i (13� 2)

H4 =
∂ f4
∂ t + ∂ f3

∂ t1
+ ∂ f2

∂ t2
+ ∂ f1

∂ t3
+ ς3

∂2 f1
∂ z ∂ t + ς2

∂
∂ z

∂ f2
∂ t + ∂ f1

∂ t1

� �h i
+ς1

∂
∂ z

∂ f3
∂ t + ∂ f2

∂ t1
+ ∂ f1

∂ t2

� �h i
+ ς1ς2

∂2

∂ z2
∂ f1
∂ t

� �
+ ς21

2
∂2

∂ z2
∂ f2
∂ t + ∂ f1

∂ t1

� �
+ ς31

6
∂3

∂ z3
∂ f1
∂ t

� �
+ 1

2
∂ f2
∂ x

� �2
+ ∂ f1

∂ x1

� �2
+ ∂ f1

∂ y1

� �2
+ ∂ f2

∂ z

� �2h i
+ ∂ f2

∂ x
∂ f1
∂ x1

+ ∂ f1
∂ x ( ∂ f3∂ x + ∂ f2

∂ x1
+ ∂ f1

∂ x2
Þ + ∂ f1

∂ z
∂ f3
∂ z + ς2

2
∂
∂ z ½ ∂ f1

∂ x

� �2
+ ∂ f1

∂ z

� �2�

+ς1
∂
∂ z

∂ f1
∂ x

∂ f2
∂ x + ∂ f1

∂ x1

� �
+ ∂ f1

∂ z
∂ f2
∂ z

h i
+ ς21

4
∂2

∂ z2
∂ f1
∂ x

� �2
+ ∂ f1

∂ z

� �2h i
(13� 3)

fn, Fn, and Gn are expanded as

fn, Fn,Gnf g = o
n

m=−n
eim kx−wtð Þ fnm, Fnm,Gnmf g
h i

(14)

fn-m = (fn, m)*, ()*, and c.c. are complex conjugate numbers.
According to the boundary condition introduced by Kirby

(Kirby and Dalrymple, 1983), depth h is modulated at the x and y
directions as

∂ h
∂ x

= e2
∂ h
∂ x2

+ e3
∂ h
∂ x3

+…,
∂ h
∂ y

= e
∂ h
∂ y1

+ e2
∂ h
∂ y2

+… (15)

The variable of the bottom boundary condition (2) is expanded
into a perturbation series to the fourth order, yielding

∂ fn
∂ z jz=−h = Bn n = 1, 2, 3, 4ð Þ (16)

B1 = B2 = 0,B3 = −
∂ f1
∂ x

jz=−h
∂ h
∂ x2

−
∂ f1
∂ y1

jz=−h
∂ h
∂ y1

(16� 1)

B4 =
∂ f4
∂ z jz=−h = − ∂ f2

∂ x + ∂ f1
∂ x1

� �
jz=−h ∂ h

∂ x2
− ∂ f1

∂ x jz=−h ∂ h
∂ x3

− ∂ f1
∂ y2

+ ∂ f2
∂ y1

� �
jz=−h ∂ h

∂ y1
− ∂ f1

∂ y1
jz=−h ∂ h

∂ y2
  

(16� 2)

Equations (11), (12), (13), (14), and the bottom boundary
condition (16) constitute definition conditions.
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The free surface’s leading-order displacement is

ς =
1
2

Aei kx−wtð Þ + *
� �

(16� 3)

A is the free surface leading-order displacement amplitude.
Under third and fourth-order definition conditions, the first-
order wave height’s dimensionless equation are

∂A
∂ t + C0

g
∂A
∂ x −

iC0
g

2
∂2 A
∂ y2 −

i
2
∂C0

g

∂ y
∂A
∂ y −

i
2

∂2 w
∂ k2

� �0
∂2 A
∂ x2

+ 1
16sh4kh 8 + ch4kh − 2th2kh

� �
iA2A*

+½12
∂C0

g

∂ x + i
4 K2

∂2 h
∂ y2 −

i
4 K3(

∂ h
∂ yÞ2 − 1

2ch2kh i(
∂ f10
∂ t − 2ch2kh ∂ f10

∂ x Þ�A = 0

(17)

∂A
∂ t + C0

g + iN3
∂ h
∂ x +

1
16 N6

∂2 h
∂ y2 +

1
8 N9

∂ h
∂ y

� �2
+ ∂ f10

∂ x + N7
∂ f10
∂ t

� �
∂A
∂ x

−
iC0

g

2
∂2 A
∂ y2 +

∂ f10
∂ y − i

2
∂C0

g

∂ y

� �
∂A
∂ y −

i
2

∂2 w
∂ k2

� �0
∂2 A
∂ x2 +

1
8 N1

∂3 A
∂ x ∂ y2 −

1
6

∂3 w
∂ k3

� �0
∂3 A
∂ x3

+N2
∂ h
∂ y

∂2 A
∂ x ∂ y +

1
16sh4kh 8 + ch4kh − 2th2kh

� �
iA2A* + N4A

2 ∂A*
∂ x + N5AA*

∂A
∂ x

+½12
∂C0

g

∂ x + i
4 K2

∂2 h
∂ y2 −

i
4 K3

∂ h
∂ y

� �2
− 1

2ch2kh i
∂ f10
∂ t − 2ch2kh ∂ f10

∂ x

� �
− kh

sh2kh +
khshkh
chkh

� � ∂2 f10
∂ x2 + 1

2
∂2 f10
∂ y2 − N8

∂2 f10
∂ x ∂ t −

sh2kh
ch2kh

∂2 f10
∂ t2 �A = 0

(18)

The coefficients in Equations (17) and (18) are

C0
g =

1
2

1 +
2kh
sh2kh

	 


∂2 w
∂ k2

	 
0
= −

1
4

4
ch2kh

+
4

sh22kh

	 

k2h2 −

2kh
shkhchkh

+ 1

� �

∂3 w
∂ k3

	 
0
= −6

kh
8sh2kh

+
k2h2

4sh2kh
−

1
16

−
3k2h2

4sh22kh
−

k3h3

2sh32kh
−

k3h3

6sh2kh
−
k3h3shkh
4ch3kh

	 


K1 =
sh2kh − 2khch2kh

sh22kh
,K2 =

1
sh2kh

+
2khch2kh
sh22kh

K3 =
1

ch2kh
−
4ch2kh
sh22kh

+
8ch22kh
sh32kh

+
1

shkhch3kh
−

4
sh2kh

	 

kh

∂C0
g

∂ x
= K1

∂ h
∂ x

,
∂C0

g

∂ y
= K1

∂ h
∂ y

N1 = 3 +
4k2h2

sh22kh
+
4k2h2

ch2kh
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N2 =
1

4sh2kh −
ch2kh
2sh2kh +

1
ch2kh +

3
2sh22kh −

ch2kh
2sh22kh

� �
kh

− ch2kh
4shkhch3kh +

shkh
ch3kh +

1
2shkhchkh +

ch2kh
sh32kh

� �
k2h2

N3 =
1

ch2khsh2kh −
1

2shkhchkh −
3ch2kh

4shkhch3kh −
ch2kh
sh32kh

� �
k2h2

+ 3
2sh22kh +

5
4ch2kh +

ch2kh
2sh22kh

� �
kh − 1

4sh2kh −
ch2kh
2sh2kh

N4 =
1
2 f12 − ch2kh

2sh2kh +
ch4kh
2sh4kh −

ch4kh
16sh4kh −

ch2kh
4sh2kh +

1
sh2kh −

3ch2kh
4sh4kh +

ch2kh
4sh4kh

− 1
2sh4kh +

1
8sh2khch2kh + ( 17

8sh3khchkh +
17

4shkhchkh −
7chkh
4sh3kh −

3ch2kh
2sh3khchkh

− chkhch2kh
8sh4kh + 1

2shkhch3kh +
ch2kh

2shkhchkh −
ch2kh

2sh5khchkh +

ch2kh
8sh3khch3kh −

ch2khch4kh
16sh5khchkh )khg

N5 =
1
2 f21ch2kh4sh4kh + 4 − 3ch2kh

4sh4khch2kh −
27

4sh2kh +
1

4ch2kh −

1
sh4kh −

ch4kh
8sh4kh +

1
4sh2khch2kh

+kh½ 1
ch2khsh2kh +

2ch2kh
4sh5khchkh −

9ch2kh
4sh5khchkh +

3ch2kh
8sh5khch3kh +

3
4sh3khchkh +

6chkh
sh3kh

+ 2chkh
shkh − ch2khch4kh

8sh5khchkh +
ch2kh

4sh3khch3kh +
3

2sh5khchkh −
3chkh
2sh5kh

+ 3ch2kh
8sh7khch3kh −

15ch2kh
8sh7khchkh −

3chkhch2kh
sh5kh + 3chkhch2kh

2sh7kh �g

N6 =
8

sh2khch2kh −
8ch2kh
sh32kh −

4
shkhchkh −

6ch2kh
shkhch3kh

� �
k2h2

+ 2
sh2kh −

1
sh2khch2kh −

4ch2kh
sh22kh

� �
kh − 2ch2kh

shkhchkh −
1

shkhchkh

N7 = (
1

2ch2khsh2kh
+

sh2kh
ch2khsh2kh

+
shkh
2ch3kh

Þkh − 3
4ch2kh

N8 = 1 −
1

4ch2kh
− (

kh
sh2kh

+
khshkh
chkh

Þ

N9 = − 4sh2kh−1
sh2kh + 2

ch2kh +
ch2khch2kh+sh2khch2kh

sh2khch2kh

+ 2shkh
ch3kh −

2
shkhchkh −

chkh
sh3kh +

1
shkhch3kh

� �
2kh

+ 1
sh2kh +

3
ch2kh +

1
sh2khch2kh +

2
shkhch3kh

1
sh2kh +

shkh
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� �� �
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f10 is the velocity potential of wave-induced current in equation
(17) and (18). Equation (17) indicates that the water depth’s
second derivative and the square of the water depth’s first
derivative affect the first-order wave amplitude when the time
scale is longer than e-2 times of the dominant wave period or the
space scale is larger than e-2 of the dominant wavelength.
Equation (18) is more complicated than Equation (17).
Equation (18) improves the coefficient of Equation (17) by
incorporating depth variation and wave-induced current terms.
In Equation (18), higher-order dispersive and nonlinear terms
are added. Equation (18) indicates that when the time scale is
longer than e-3 times of the dominant wave period or the space
scale is larger than e-3 times the dominant wavelength, the
second water depth derivative and the square of the water
depth’s first derivative affect the first-order wave amplitude.

When ∂A
∂ t , (

∂ h
∂ y )

2, ∂
2 h
∂ y2 ,−

i
2 (

∂2 w
∂ k2 )

0 ∂2 A
∂ x2 and

∂ f10
∂ t1

− 2ch2kh ∂ f10
∂ x1

are
neglected, Equation(17)is transformed to be
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C0
g
∂A
∂ x

−
iC0

g

2
∂2 A
∂ y2

−
i
2

∂C0
g

∂ y
∂A
∂ y

+
1
2

∂C0
g

∂ x
A

+
1

16sh4kh
8 + ch4kh − 2th2kh
� �

iA2A*

= 0 (19)

Equation (19) is the same as Equation (2.18) of reference (Kirby
and Dalrymple, 1983). It cannot analyze wave instability
properties because the equation is steady.

When kh limits to infinite, the coefficients of Equation (18)
are transformed to

− 1
6

∂3 w
∂ k3

� �0
= − 1

16 ,−
1
2

∂2 w
∂ k2

� �0
= 1

8 ,C
0
g =

1
2 ,

∂ lC0
g

∂ y =
∂C0

g

∂ x = 0,

N1 = 3,N2 = − 1
2 ,N3 = − 1

2 ,N4 = − 1
4 ,N5 =

3
2 ,N6 = −4,N7 = 0,N9 = 0

Omitting the terms about f10, except for ∂ f10
∂ x before A,

Equation (18) is transformed to

∂A
∂ t +

1
2 −

1
2 i

∂ h
∂ x −

1
4
∂2 h
∂ y2

� �
∂A
∂ x −

i
4
∂2 A
∂ y2 +

i
8
∂2 A
∂ x2 +

3
8

∂3 A
∂ x ∂ y2 −

1
16

∂3 A
∂ x3 −

1
2
∂ h
∂ y

∂2 A
∂ x ∂ y

+ 1
2 iA

2A* − 1
4 A

2 ∂A*
∂ x + 3

2 AA*
∂A
∂ x + iA ∂ f10

∂ x = 0

(20)

∇
2

f10 = 0  ð − h < z < 0Þ (21)

∂ f10
∂ z = 1

2
∂
∂ x Aj j2 (z = 0Þ (22)

∂ f10
∂ z = 0 z = −hð Þ (23)

In contrast with the MNLS (Trulsen and Dysthe, 1996),
Equation (20) is added by topography variation terms
of( − 1

2 i
∂ h
∂ x −

1
4
∂2 h
∂ y2 )

∂A
∂ x −

1
2
∂ h
∂ y

∂2 A
∂ x ∂ y . The first and second-order

water depth derivatives affect the first-order wave amplitude on
infinite depth. Equation (20) can be called a topographic
modified nonlinear Schrödinger equation (TMNLS).
INSTABILITY OF A UNIFORM STOKES
WAVE TRAIN

It is supposed that the Stoke wave solution is.A = a0e
− i
2a

2
0tIts

instability can be evaluated by assuming small perturbations in
amplitude and phase. m and l are the wavenumbers of small
perturbations in x and y direction.

A = a0a
0ei −1

2a
2
0tð Þ + a0e

i q 0−1
2a

2
0tð Þ = a0 a0 + 1 + iq 0� �

e−
i
2a

2
0t (24)

It is supposed that small perturbations have the plane wave
solution
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a0

q 0

f

0
BB@

1
CCA =

babq
bf

0
BB@

1
CCAei lx+my−Wtð Þ + c : c : (25)

According to Equation (20), the dispersion relation for
perturbation is

W =
1
2

1
8
l3 −

3
4
lm2 + 1 −

1
2
∂2 h
∂ y2

	 

l + 3a20l

� �
±
1
2

p + iqð Þ − 1
2
∂ h
∂ y

mli

(26)

q = 1
2 ½14 a40l2 + 1

4 l
2 − 1

2 m
2

� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �nn

−l2 ∂ h
∂ x

� �2�2 + 1
2 l

2 − m2 − 2a20 + 2 l2

K a20
� �2

∂ h
∂ x

� �2l2g1
2

− 1
2 ½14 a40l2 + 1
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2 − 1

2 m
2

� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �
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∂ x

� �2�g1
2

(26� 1)

p =
1
2q

1
2
l2 − m2 − 2a20 + 2

l2

K
a20

	 

∂ h
∂ x

l (26� 2)

K =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + l2

p
(26� 3)

Thus,

ImW = − 1
2
∂ h
∂ y ml ± 1

2
1
2 ½14 a40l2 + 1

4 l
2 − 1

2 m
2

� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �nn

−l2 ∂ h
∂ x

� �2�2 + 1
2 l

2 − m2 − 2a20 + 2 l2

K a20
� �2

∂ h
∂ x

� �2l2g1
2

− 1
2 ½14 a40l2 + 1

4 l
2 − 1

2 m
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� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �

− l2 ∂ h
∂ x

� �2�g1
2

(27)

As shown in Equation (26), ∂
2 h
∂ y2 influences the perturbation phase

without affecting the perturbation amplitude. Equation (27)
demonstrates that ∂ h

∂ y and ∂ h
∂ xaffect the small perturbation’s

amplitude. ImW is defined as growth rate of Stokes wave
disturbed by perturbation by Lo and Mei (1987). To ensure the
ungrowth of perturbations, ImW = 0, meaning

ImWj j = ∣ 12
∂ h
∂ y ml − 1

2
1
2 ½14 a40l2 + 1

4 l
2 − 1

2 m
2

� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �nn

−l2 ∂ h
∂ x

� �2�2 + 1
2 l

2 − m2 − 2a20 + 2 l2

K a20
� �2

∂ h
∂ x

� �2l2g1
2

− 1
2 ½14 a40l2 + 1

4 l
2 − 1

2 m
2

� �
1
4 l

2 − 1
2 m

2 − 2a20 + 2 l2

K a20
� �

− l2 ∂ h
∂ x

� �2�g1
2 ∣ = 0

(28)

A uniform Stokes wave disturbed by small perturbations is stable
only when Equation (28) is satisfied. Therefore, the small
perturbation’s instability area is the entire perturbation
wavenumber space, except for the curve satisfying Equation
(28). It is shown that there are solutions for ImW = 0 when
Equation (28) is satisfied.

When ∂ h
∂ x is a higher order of magnitude than ∂ h

∂ y , (
∂ h
∂ x )

2 is
neglected. Then,
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ImW = −
1
2
∂ h
∂ y

ml ±
1
2

−½1
4
a40l

2 +
1
4
l2 −

1
2
m2

	 

1
4
l2 −

1
2
m2 − 2a20 + 2

l2

K
a20

	 

�

� �1
2

(29)

The first depth derivative perpendicular to the dominant wave
packet imposes on the wave instability disturbed by small
perturbations when ∂ h

∂ xis a higher order of magnitude than ∂ h
∂ y .

Without regard to the bottom slope, ∂ h∂ x =
∂ h
∂ y = 0, then

ImW = ±
1
2

−½1
4
a40l

2 +
1
4
l2 −

1
2
m2

	 

1
4
l2 −

1
2
m2 − 2a20 + 2

l2

K
a20

	 

�

� �1
2

(30)

ImW must have a real root, then

1
4
a40l2 +

1
4
l2 −

1
2
m2

	 

1
4
l2 −

1
2
m2 − 2a20 + 2

l2

K
a20

	 

< 0 (31)

The left-hand of Inequality (31) is the same as the right-hand of
Equation (18) in reference (Trulsen and Dysthe, 1996) when kh
limits to infinite. Inequality (31) stands for the Stokes wave
instability area disturbed by the MNLS perturbation on a
flat bottom.

A uniform Stokes wave train is unstable disturbed by small
perturbations on infinite and slowly varying depth, except for the
curve satisfying Equation (28). Compared with the MNLS
perturbation analysis on the flat bottom when hx= hy = 0, the
small perturbation’s instability area is the entire wavenumber
space, except for the curve satisfying Equation (28) on a slowly
varying bottom.
DISCUSSIONS

According to the results of Mclean (McLean, 1982) and Trulsen
(Trulsen and Dysthe, 1996), we choose a0 = 0.0995 and a0 =
0.196 to plot the stability curves for ǀIm Wǀ and Im W = 0,
corresponding to e = 0.1 and e = 0.2. ǀIm Wǀ is the growth rate of
Stokes wave disturbed by perturbation and the curve of ImW = 0
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is the stable curve for Stokes wave. Figures 1–12 and Figures 1–
24 in the Supplementary Material show the curves of ǀImWǀ and
ImW = 0 for a0 = 0196, the value of ∂ h

∂ x and
∂ h
∂ y ranging from 0 to

0.3. Figure 25 to Figure 60 in the Supplementary Material show
the curves of ǀImWǀ and ImW = 0 for a0 = 0.0995, the value of ∂ h

∂ x
and ∂ h

∂ y varying from 0 to 0.3. To distinguish the influence of the
orders of bottom variation, the selected orders of ∂ h

∂ x and
∂ h
∂ y are

0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, and 0.3. In
Figures 1–15, hx and hy are ∂ h

∂ x and
∂ h
∂ y respectively. In Figures 1,

13–15, hx = hy = 0 stands for the MNLS perturbation wave
stability curve, neglecting the bottom slope and to compare with
other curves.

Figures 1–12 and Figures 1–6 in the Supplementary
Material indicate curves of ǀIm Wǀ and the corresponding
scatter diagrams of Im W = 0 with the invariable value of ∂ h

∂ x
and the variable value of ∂ h

∂ y from 0 to 0.3. The discussions are
as follows:

1. As Figures 1–12 shown, for a0 = 0.196 and the invariable
value of ∂ h

∂ x , the value of ǀIm Wǀ increases as the value of ∂ h
∂ y rises.

As the value of ∂ h
∂ y varying from 0 to 0.01, the value of ǀIm Wǀ is

maximum around the original point in wave number plane. As
the value of ∂ h

∂ y is 0.1, 0.2 and 0.3, there is no maximum value of
ǀIm Wǀ around the original point in wave number plane. As the
value of ∂ h

∂ x increasing from 0 to 0.001, the contours for ǀImWǀ are
similar. As ∂ h

∂ x = 0:01, the contours show obvious change by
comparing with that As

∂ h
∂ x = 0:001. There are no extra maximum value points of ǀIm

Wǀ beside that around the original point in wave number plane as
the value of ∂ h

∂ x varying from 0 to 0.001. It is indicated, on the
order of 0.01, ∂ h

∂ x begins to affect the curve of ǀIm Wǀ.
2. For a0 = 0.196 and ∂ h

∂ x = 0, the shape of curves of Im W = 0
are similar for the value of ∂ h

∂ y ranging from 0 to 0.001. The curve
is reduced to the MNLS equation instability curve as ∂ h

∂ y = 0. The
curve for Im W = 0 approaches to original point more closely
with larger value of ∂ h

∂ y .
FIGURE 1 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0.
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FIGURE 2 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0.
FIGURE 3 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:00001.
FIGURE 4 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂ ∂ h
∂ x = 0:00001.
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3 . A s ∂ h
∂ x = 0:00001, t h e c u r v e s o f Im W = 0

for ∂ h
∂ y = 0, 0:000001 and 0.00001 are not smooth lines, but

scatter groups. The curves for ∂ h
∂ x = 0:0001, 0.001, 0.01, 0.1, 0.2,

0.3 are extended in l axis. It is suggested that ∂ h
∂ x begins to

influence the shape of curve for ImW = 0 on the order of 0.00001.
4. As ∂ h

∂ x = 0:0001, the curve of Im W = 0 for ∂ h
∂ y = 0:0001 is

not a smooth curve, but is a scatter group. The scatter groups for
∂ h
∂ y = 0, 0:000001 and 0.00001 are in the upper left of the map.
The curves for ∂ h

∂ x = 0:001, 0.01, 0.2, 0.3 are extended along and
in l axis.

5. As ∂ h
∂ x = 0:001, the curve of ImW = 0 for ∂ h

∂ y = 0:001 is not a
smooth line, but a scatter group, partially around the line of
m = 1. The scatter groups for ∂ h

∂ y = 0, 0:000001, 0.00001 and
0.0001 are in the upper left of the map, partially distributed in m
axis. The curves for ∂ h

∂ x = 0:01, 0.1, 0.2, 0.3 are extended
continuously along and in l axis.
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6. As ∂ h
∂ x = 0:01, the curve of Im W = 0 for ∂ h

∂ y = 0:01 is not a
smooth line, but a scatter group, partially distributed around the
line of m = 1. The scatter groups for ∂ h

∂ y = 0, 0:000001, 0.00001,
0.0001 and 0.001 almostly distribute in m axis. The curves for
∂ h
∂ x = 0:1, 0.2, 0.3 are lifted from l axis.

7 . As ∂ h
∂ x = 0:1, the scatter groups of Im W = 0

for ∂ h
∂ y = 0:1, 0:2, 0:3 are partially in the lines of m = 1, m = 0.5

and m = 0.333, with others in m axis. The scatter groups
for ∂ h

∂ y = 0, 0:000001, 0.00001, 0.0001, 0.001 and 0.01 are in
m axis.

8. As ∂ h
∂ x = 0:2, the scatter groups of ImW = 0 for ∂ h

∂ y = 0:2, 0:3
are partially in the lines of m = 1 and m = 0.667, with others in m
axis.The scatter groups for ∂ h

∂ y = 0, 0:000001, 0.00001, 0.0001,
0.001, 0.01 and 0.1 are in m axis.

9. As ∂ h
∂ x = 0:3, the scatter groups of Im W =0 for ∂ h

∂ y = 0:3 are
partially in the line of m = 1, with others in m axis. The scatter
FIGURE 5 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:0001.
FIGURE 6 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:0001.
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groups for ∂ h
∂ y = 0, 0:000001, 0.00001, 0.0001, 0.001, 0.01, 0.1 and

0.2 are in m axis.
10. In conclusion, as the value of ∂ h

∂ x increases, the curve
of Im W = 0 approximates to m axis as ∂ h

∂ y <
∂ h
∂ x . The increment

of depth variation in x direction contributes the the Stokes wave
to be stable in or to parallel to y axis disturbed by small
perturbation for ∂ h

∂ y <
∂ h
∂ x . The curve of Im W = 0 is the broken

line composed by m = 1 and m axis for the value of ∂ h
∂ y =

∂ h
∂ x

from 0.01 to 0.1.
Figure 7 to Figure 24 in the Supplementary Material

indicate curves and the corresponding scatter diagrams for the
invariable value of ∂ h

∂ y and with the variable value of ∂ h
∂ x from 0 to

0.3.The discussions are as follows:
1. For a0 = 0.196 and the invariable value of ∂ h

∂ y , the value of
ǀImWǀ increases as the value of ∂ h

∂ x rises. As the value of
∂ h
∂ x is from

0 to 0.01, the value of ǀIm Wǀ is maximum around the original
Frontiers in Marine Science | www.frontiersin.org 10
point in wave number plane. As the values of ∂ h
∂ x are 0.1, 0.2 and

0.3, there are no maximum value of ǀIm Wǀ around the original
point in wave number plane. As the value of ∂ h

∂ y varying from 0 to
0.00001, the curve for Im W = 0 as ∂ h

∂ y = 0 are similar to that as
∂ h
∂ y = 0:000001. As ∂ h

∂ y = 0:0001, the curve for Im W = 0 show
obvious change as the contrast with that as ∂ h

∂ y = 0:00001. There
is no maximum value points of ǀIm Wǀ in wave number plane as
the value of ∂ h

∂ y = 0:1. It is indicated, on the order of 0.01, ∂ h
∂ y

begins to affect the curve of ǀIm Wǀ.
2. The shape of curves for Im W = 0 as ∂ h

∂ y = 0 are similar to
that as ∂ h

∂ y = 0:00001. The curve is reduced to the MNLS equation
instability curve as ∂ h

∂ x = 0. The curves for ∂ h
∂ x = 0:01, 0:1, 0:2

 and 0:3 are in m axis.
3. As ∂ h

∂ y = 0:0001, the scatter groups of Im W =0
for ∂ h

∂ x = 0:0001, 0.001 and 0.01 are on the bottom right relative
to that as ∂ h

∂ y = 0:00001. The scatter groups of Im W = 0 for ∂ h
∂ x =
FIGURE 7 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:001.
FIGURE 8 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:001.
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0:00001 begin to be a smooth line with some scatters distributing
along the line. The curves for ∂ h

∂ x = 0:01, 0:1, 0:2, 0:3 are in m axis.
It is suggested that, ∂ h

∂ y begins to influence the shape of the curve
of Im W =0 on the order of 0.0001.

4. As ∂ h
∂ y = 0:001, the scatter groups of Im W = 0 for

∂ h
∂ x = 0:0001, 0:001 and 0:01 are on the bottom right
slightly compared with that as ∂ h

∂ y = 0:0001. Partial points
for ∂ h

∂ x = 0:001 are in the line of m = 1. The scatter groups of
Im W = 0 for ∂ h

∂ x = 0:00001, 0:0001 form smooth curves. The
curves for ∂ h

∂ x = 0:01, 0:1, 0:2 and 0:3 are in m axis. Part of
scatters for

∂ h
∂ x = 0:01 are outside of m axis.
5. As ∂ h

∂ y = 0:01, the scatter groups of Im W = 0 for ∂ h
∂ x = 0:01

distribute along l axis. The smooth lines of Im W = 0 for
∂ h
∂ x = 0:0001, 0:001 extend along and in l axis. The scatter
groups for
Frontiers in Marine Science | www.frontiersin.org 11
∂ h
∂ x = 0:001 form smooth curves. The curves for ∂ h

∂ x = 0:01, 0:1
and 0:3 are in m axis. Part of scatters for ∂ h

∂ x = 0:01 are outside
of m axis.

6. As ∂ h
∂ y = 0:1, the scatter groups of Im W = 0 for ∂ h

∂ x = 0:01
form smooth curves. The curves for ∂ h

∂ x = 0:2 and 0.3 are in m
axis. Scatters for ∂ h

∂ x = 0:1 form a smooth line compose by m = 1
and m axis.

7. As ∂ h
∂ y = 0:2, part of the curves of ImW =0 for ∂ h

∂ x = 0:2 and
0.1 are approximate to the line of m = 1 and m = 0.5 with part of
which are in m axis. The scatters for ∂ h

∂ x = 0:3 are in m axis.
8. As ∂ h

∂ y = 0:3, curves of Im W = 0 for ∂ h
∂ x = 0:1, 0:2 and0:3

are broken lines, partially in the lines of m = 0.333, m = 0.667 and
m = 1, others in m axis.

n summary, as the value of ∂ h
∂ y increases, the curve of ImW = 0

approximates to l axis for ∂ h
∂ x <

∂ h
∂ y . The increment of depth

variation in y direction helps the Stokes wave to be stable in or to
FIGURE 9 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:01.
FIGURE 10 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:01.
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FIGURE 11 | Curves of ǀIm Wǀ and Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0.1.
FIGURE 12 | The magnified curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x = 0:1.
FIGURE 13 | Curves of Im W = 0 for a0 = 0.0995 and a0 = 0.196 as ∂h
∂ x = 0.
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parallel to l axis for ∂ h
∂ x <

∂ h
∂ y . The curve of Im W = 0 is a broken

line comblined with m = 1 and m axis for the value of ∂ h
∂ y =

∂ h
∂ x

from 0.01 to 0.1.
For a0 = 0.0995, Figure 25 to Figure 60 in supplementary

material indicate curves of ǀIm Wǀ and corresponding scatter
diagrams of ImW = 0 for the value of ∂ h

∂ x and the value of
∂ h
∂ y both

varying from 0 to 0.3. It is indicated that ∂ h
∂ x begins to influence

the shape of curve for Im W = 0 on the order of 0.000001 and to
affect the value of ǀIm Wǀ on the order of 0.01. It is shown ∂ h

∂ y
begins to influence the shape of curve for Im W = 0 on the order
of 0.00001 and affect the value of ǀIm Wǀ on the order of 0.01.
They show similar properties to the curves and corresponding
scatter diagrams for a0 = 0.196, with little value of ǀIm Wǀ than
that for a0 = 0.196.

It is concluded the curve for Im W = 0 is more sensitive to
depth variation terms than the curve of ǀIm Wǀ. The curve for Im
W = 0 is more sensitive to depth variation terms as a0 = 0.0995
than that as a0 = 0.196. The curve for Im W = 0 is more sensitive
to ∂ h

∂ x than that to ∂ h
∂ y .

Scatter maps of Im W = 0 for a0 = 0.0995, a0 = 0.196
and ∂ h

∂ x = 0 are indicated in Figure 13. The values of a0 and ∂ h
∂ y
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determine the characteristics of curves of Im W = 0. The value
of a0 determines the intercept in l axis, with larger intercept for
a0 = 0.196 than for a0 = 0.0995. The value of ∂ h

∂ y changes the
amplitude of curve, with little amplitude for larger value of ∂ h

∂ y .
Figures 14, 15 show the curves of Im W = 0 as a0 = 0.196 and

a0 = 0.0995 for the value of ∂ h
∂ x =

∂ h
∂ y varying from 0 to 0.05. The

scatters of Im W = 0 form smooth curves for ∂ h
∂ x =

∂ h
∂ y = 0. The

scatters gather to be groups for ∂ h
∂ x =

∂ h
∂ y ≠ 0. A broken line is

formed as ∂ h
∂ x =

∂ h
∂ y = 0:05, in the line of m = 1 and m axis.
CONCLUSIONS

On a finite slowly varying depth, the surface gravity wave
equation is expanded to the fourth order by multiscale
expansion in the narrowband range, and the TMNLS equation
is obtained. When the time scale is longer than e-3 times of the
dominant wave period or the space scale is larger than e-3 times
of the dominant wavelength, the second depth derivative and
square of the first depth derivative influence on the first-order
wave height.
FIGURE 14 | Curves of Im W = 0 for a0 = 0.0995 and ∂ h
∂ x =

∂h
∂ y .
FIGURE 15 | Curves of Im W = 0 for a0 = 0.196 and ∂h
∂ x =

∂ h
∂ y .
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Compared with the MNLS perturbation analysis results on
the flat bottom when hx = hy = 0, the small perturbation’s
instability area by TMNLS is the entire wavenumber space,
except for the curve satisfying Equation (28), which means that
TMNLS increases the small perturbation’s instability area by
including depth variation terms to MNLS.

For a0 = 0.196, ∂ h
∂ x starts to influence the shape of curve for Im

W = 0 on the order of 0.00001 and to affect the curve of ǀImWǀ on
the order of 0.01. ∂ h

∂ y starts to influence the shape of curve for
Im = 0 on the order of 0.0001 and affect the curve of ǀImWǀ on the
order of 0.01.

For a0 = 0.0995, ∂ h
∂ x begins to influence the shape of curve for

Im W = 0 on the order of 0.000001 and to affect the curve of ǀIm
Wǀ on the order of 0.01. ∂ h

∂ y begins to influence the shape of curve
for Im W = 0 on the order of 0.00001 and affect the curve of ǀIm
Wǀ on the order of 0.01.

The curve for ImW = 0 is more sensitive to depth variation terms
than the curve of ǀImWǀ. The curve for ImW = 0 is more sensitive to
depth variation terms as a0 = 0.0995 than that as a0 = 0.196. The
curve for Im W = 0 is more sensitive to ∂ h

∂ x than that to ∂ h
∂ y .

As the value of ∂ h
∂ x increases, the curve for Im W = 0

approximates to m axis as ∂ h
∂ y <

∂ h
∂ x . The increment of the value

for depth variation in x direction contributes the Stokes wave to
be stable in or paralleling m axis disturbed by small perturbation
for ∂ h

∂ y <
∂ h
∂ x . The curve of Im W = 0 is the broken line composed

by m = 1 and m axis for ∂ h
∂ y =

∂ h
∂ x ≥ 0:05. As the value of ∂ h

∂ y
increases, the curve approximates to l axis for ∂ h

∂ x <
∂ h
∂ y . The
Frontiers in Marine Science | www.frontiersin.org 14
increment of the value for depth variation in y direction
contributes the Stokes wave to be stable in or paralleling l axis
for ∂ h

∂ x <
∂ h
∂ y . The curve of Im W = 0 is a broken line combined by

m = 1 and m axis for ∂ h
∂ x =

∂ h
∂ y ≥ 0:05.
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