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YOLO-Rip: A modified
lightweight network for
Rip currents detection

Daoheng Zhu1†, Rui Qi2†, Pengpeng Hu1, Qianxin Su1,
Xue Qin2 and Zhiqiang Li1*

1School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang,
China, 2School of Big Data and Information Engineering, Guizhou University, Guiyang, China
Rip currents form on beaches worldwide and pose a potential safety hazard for

beach visitors. Therefore, effectively identifying rip currents from beach scenes

and providing real-time alerts to beach managers and beachgoers is crucial. In

this study, the YOLO-Rip model was proposed to detect rip current targets

based on current popular deep learning techniques. First, based on the

characteristics of a large target size in rip current images, the neck region in

the YOLOv5s model was streamlined. The 80 × 80 feature map branches

suitable for detecting small targets were removed to reduce the number of

parameters, decrease the complexity of the model, and improve the real-time

detection performance. Subsequently, we proposed adding a joint dilated

convolutional (JDC) module to the lateral connection of the feature pyramid

network (FPN) to expand the perceptual field, improve feature information

utilization, and reduce the number of parameters, while keeping the model

compact. Finally, the SimAM module, which is a parametric-free attention

mechanism, was added to optimize the target detection accuracy. Several

mainstream neural network models have been used to train self-built rip

current image datasets. The experimental results show that (i) the detection

results from different models using the same dataset vary greatly and (ii)

compared with YOLOv5s, YOLO-Rip increased the mAP value by

approximately 4% (to 92.15%), frame rate by 2.18 frames per second, and the

model size by only 0.46 MB. The modified model improved the detection

accuracy while keeping the model streamlined, indicating its efficiency and

accuracy in the detection of rip currents.
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rip currents, deep learning, joint dilated convolution module, multi-scale fusion,
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Introduction

Rip currents are a widely studied oceanic phenomenon

defined as strong currents flowing from the beach to the sea

(Brighton et al., 2013; Castelle et al., 2014). When waves break,

they form a “nearshore circulation,” that is, lead to a rise in the

mean water level. These nearshore currents can vary along the

coastline depending on the height of the waves and topography

of the seafloor. When the currents tend to flow along the coast

from high- to low-wave areas, they accumulate as offshore

currents that flow in a cross-shore direction. A combination of

various factors—such as water depth, wave height and direction,

tides, and beach topography—determine the location and

intensity of rip currents. Rip currents can be transient or

persistent in both space and time. Rip currents often found in

the same location usually indicate a relatively stable bathymetric

feature, such as a sandbar or reef, or a hard structure, such as an

exposed rock or pier. These bathymetric features result in

variations in wave breaking and formation, which tend to

produce rip currents in the trench structures. Transient or

flashing rip currents are independent of water depth and can

move up and down the beach or appear or disappear.
Rip currents are a daily possibility on beaches worldwide.

However, most of the time, they are so weak that swimmers

rarely notice them. Beaches are a popular place to relax,

especially during the summer; however, they also present the

danger of the occurrence of rip currents. Most of the velocities of

rip currents obtained by in situ observation and theoretical

analysis are between 0.3 and 1 meter per second (Brander

et al., 2011), but Short, 2007 has observed rip currents with

velocities exceeding 2 meters per second and even reaching 3

meters per second. Once a rip current with excessive velocity is

encountered, swimmers are at a risk of drowning (Buscombe

et al., 2020). However, most beachgoers do not know how to

recognize rip currents, and there is no reliable way to identify

them. Globally, thousands of beach users drown each year

because of rip currents (Da F. Klein et al., 2003). A 20-year

study conducted by the United States Lifesaving Society showed

that of the 37,000 beach rescues per year, 81.9% were caused by

rip currents (Brewster et al., 2019). Despite the warning signs

and educational materials, the number of associated drowning

deaths has not decreased.
Beach lifeguards are frequently trained to recognize rip

currents. However, most drownings occur on beaches where

lifeguards are not trained (ASLS. 2019). Posted signs can provide

warnings, but evidence suggests that most people do not

consider existing signs to be helpful in identifying rip currents

in real-world scenarios (Brannstrom et al., 2015). Experts from

the National Oceanic and Atmospheric Administration

(NOAA) have used images and videos to collect statistical data

on rip currents. These data support the validation of rip current

prediction models to alert people to potential hazards (Dusek

and Seim, 2013). The most common method for visualizing rip
Frontiers in Marine Science 02
currents from videos is time averaging, which summarizes the

video into individual images (Holman and Stanley, 2007). This

method is popular because time-averaged images are usually

more easily observed by the human eye. Maryan et al. (2019)

applied machine learning to identify riffle channels in time-

averaged images. Nelko and Dalrymple (2011) also used time-

averaged images and noted that prediction schemes developed

for one beach may not be directly applicable to other beaches

without modification. In contrast to these studies, de Silva et al.

(2021) showed that the target detection performance on a single

frame was better than that of the averaged time image. In an

enhanced simple feature cascade (Rashid et al., 2021), machine-

learning techniques are used to detect rip currents in time-

averaged images. However, these temporal averages may be

misinterpreted when evaluated manually. In addition, these

data are neither easily accessible nor easily understood by the

average beachgoer (Pitman et al., 2016). The process

o f ca lcu la t ing the averages removes the ex i s t ing

misunderstanding of information.

The most used methods for the study of rip currents are in

situ observations or numerical simulations. With in-situ

observation techniques, fluorescein dyes are usually released

into the ocean and used to observe the morphology and

dispersion of the rip current (Clark et al., 2010; Clark et al.,

2014). Wave sensors, sound velocimeters, and current profilers

can be deployed in specific locations (Elgar et al., 2001; Inch,

2014). Floats equipped with global positioning system (GPS)

receivers have also been used to measure rip currents (Schmidt

et al., 2003; Castelle et al., 2014). These methods are costly, time-

consuming, require technical expertise, and are usually

applicable only to highly localized instances in time and space.

In contrast, models such as SWAN (Dudkowska et al., 2020),

FUNWAVE (Hong et al., 2021), SWASH (Wang et al., 2018;

Chang et al., 2021), and XBEACH (Mouragues et al., 2021) are

widely used for numerical simulations of rip currents. Although

numerical simulations can visualize the characteristics of rip

currents, the simulation results do not represent the actual

situation because rip currents are transient and difficult to

capture in real scenarios. This poses a significant challenge

to observers.

The prediction model of rip currents was a hot issue that has

been widely studied. Dusek and Seim, 2013 proposed a

probabilistic rip current prediction model that predicted data

observed at 19 stations, showing that wave height was the main

driver of rip current occurrence. Wave direction, tide, and the

wave post-wave event window were secondary factors. However,

the accuracy of this calculation of rip current occurrence

probability based on empirical equations was not high. Eom

et al. (2014) developed a rip current forecasting system, the

KMA, which predicted the occurrence of rip currents by

analyzing hourly wave conditions and flow field changed and

classified the danger level into four categories: safe,

announcement, warning, and dangerous. However, this system
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suffered from a single type of forecast information, low accuracy,

and an inability to guarantee real-time information. Because of

these limitations, the applicability of the above methods for both

public warning and model validation needed to be improved.

Mori et al. (2022) investigated the use of optical flow analysis

techniques to detect rip currents in videos. By improving the

flow field visualization method, a substantial improvement was

achieved both in detecting fine rip currents and in the clarity of

the visualization. Dense optical flows (Horn and Schunck, 1981)

have also been used to detect rip currents in videos (Rashid et al.,

2020). This method is highly superior because the optical flow

field can be directly compared with the ground-truth flow field

obtained from in situ measurements. Unfortunately, these

methods are sensitive to camera interference and have

difficulty in identifying regions that lack texture information.

In contrast, de Silva et al. (2021) performed target detection on a

single frame, outperforming previous optical flow-

based methods.

In terms of rip detector development, Rashid et al., 2021

proposed a full convolutional autoencoder-based method for rip

current recognition. When RipNet was compared with previous

methods, RipNet showed a substantial improvement in

accuracy, specificity, and sensitivity metrics for rip current

recognition. Subsequently, they proposed a novel, fast, and

lightweight Rip detection framework called RipDet. Rashid

et al. (2021) trained Tiny-YOLOv3 on the COCO2017 dataset

to obtain the initial values of the weights and fine-tune the

structure of the Tiny-YOLOv3 network. The original dataset was

first expanded, and the samples were trained by systematically

adjusting the learning rate to make the weights of the model

more sensitive to the rip region distribution. Finally, an mAP

value of 98.13% was achieved on the benchmark dataset.

Certain types of rip currents have visible features of

sediment plumes, which can be segmented based on color

changes. For example, Liu and Wu (2019) used a thresholding

method in the HSV color space to detect rip currents. However,

not all rip currents contain features of sediment plumes. For

example, the data we collected are real beach scene images, and it

is difficult to effectively discriminate these features on beaches

with wide tidal differences and broken wave bands.

The detection of targets from images has become a high

priority in computer vision in recent years (Han et al., 2018), and

these methods have been extended to detect targets in videos

(Han et al., 2016). De Silva has attempted to identify rip currents

as an object from an image, but few people have applied this

technique to the marine domain. The ability to detect an

indefinitely shaped “object” such as a rip current is inherently

challenging, and there is a lack of publicly available datasets for

training and testing.

We collected many beach photographs as a training set for

rip current detection, partly from the web, partly from the

dataset provided by de Silva et al. (2021), and partly from

beach sites along the coast of South China. Based on our
Frontiers in Marine Science 03
judgment, the regions that could be judged by the naked eye

as cleavage currents were labeled. A set of beach photos is

provided in Figure 1. We analyzed the most popular YOLOv5

model, proposed the YOLO-Rip network, and used it for rip-

current target detection. Several different models were used for

extensive training and testing of the data. The experimental

results showed that YOLO-Rip provides a notable improvement

in detection accuracy and speed compared with several other

models, which verifies the effectiveness and accuracy of

the method.

The main contributions of this study are as follows. (i) The

YOLO-Rip model was proposed for the detection of rip

currents, and the effectiveness of the method was verified. (ii)

A comparison of several currently popular target detection

algorithms showed that YOLO-Rip has a higher detection

accuracy and detection speed. The remainder of this paper is

organized as follows. In Section 2, we show how the data were

collected and describe our approach in Section 3. The

experimental results are analyzed in Section 4, and the results

are discussed in Section 5. In Section 6, we summarize

this work.
Models and data

Joint dilation convolution module

In rip current images, the size of the rip current target is

generally large. Therefore, it is important to extract more rip

current features for the inference of the network. This requires

extending the perceptual field of the model. There are two

methods to scale: (i) downsampling the image, which results

in the loss of some feature information, and (ii) increasing the

number of convolutional layers. The superposition of

convolutional layers will extend the perceptual field. However,

as the number of layers increases, the amount of network

computation will also increase substantially, which will inhibit

the computational speed of the model.

Dilated convolution has been proposed to extend the

perceptual field (Yu and Koltun, 2015). Dilated convolution

adds voids to the normal convolution; that is, a 0-fill operation is

performed between every two parameters of the base

convolution, the dilation rate parameter is used to control the

number of intervals, and the size of the dilated convolution

kernel is calculated as in Equation (1).

f = d k − 1ð Þ + 1, (1)

where f is the expanded convolutional kernel size, d the

expansion rate, and k the original convolutional kernel size.

When the expansion rate was 2, the 3 × 3 convolutional kernels

expanded into 5 × 5 convolutional kernels, effectively expanding

the receptive field while keeping the parameters unchanged

(Figure 2A). When the convolut ional kernels are
frontiersin.org
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superimposed, it is possible to expand the perceptual field

without losing the size of the feature map. However, when all

the superimposed kernels have the same expansion rate, the

spacing between the parameters leads to a discontinuity in the

overall feature map based on the center of the convolution, and a

“checkerboard” effect occurs, showing a grid that expands

outward from the center of the convolution (Figure 2B).

For the characteristics of dilation convolution, we designed a

joint dilated convolution (JDC) module. The module adopts

three kinds of convolution kernels: 1 × 1, 3 × 3, and 5 × 5 sizes to

convolve in three groups of channels, as shown in Figure 3. The 1

× 1 convolution kernel in the structure is a reduced dimension

operation to reduce the number of parameters, while the 3 × 3

and 5 × 5 convolution kernels are expanded convolutions
Frontiers in Marine Science 04
superimposed for feature extraction operation. The 1 × 1

convolution kernel is used to reduce the number of parameters

by reducing the dimensionality. The 3 × 3 and 5 × 5 convolution

kernels are used to extract features by superimposing the dilation

convolution. The dilation rate of the two dilation convolution

layers of 3 × 3 and 5 × 5 was set to d = [2,3], and the padding was

set to [2,3] and [4,6], respectively. The last three groups of

channels were spliced and then output.

We embedded the JDC module into the lateral connection of

FPN in the backbone and neck regions. This can fully extend the

perceptual field and increase the adaptability of the network to

the desired scale while reducing the number of parameters. It can

effectively extract features and fuse them to improve the

detection accuracy.
BA

FIGURE 2

(A) schematic showing the grid size change with an expansion rate of 2 and (B) checkerboard pattern resulting from a uniform expansion rate.
FIGURE 1

A collection of pictures of beach scenes. According to our observations, there are clear rip currents in pictures (D, F, I), while there are no clear
rip currents in pictures (A-C, E, G, H). But the vast majority of people do not understand rip currents and they have difficulty in detecting them,
these targets do not have a clear shape.
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SimAM module

The block attention module (BAM) and convolutional block

attention module (CBAM) (Woo et al., 2018) combine spatial

and channel attention in parallel or serially, respectively.

However, these two types of attention in the human brain

tend to work in concert. By analyzing existing attention

modules (e.g., spatial and channel attention), Yang et al.

(2021) proposed a 3D attention module and designed an

energy function to calculate the attention weights. The

following energy function is defined in Equation (2).

et wt , bt , y, xið Þ = (yt − t̂ )2 +
1

M − 1o
M−1
i=1 (y0 − x̂ i)

2, (2)

w h e r e t̂ = wt t + bt , x̂ i = wtxi + bt i s t h e l i n e a r

transformation of the target neurons t and xi in the same

channel as the input feature, wt and bt are the weights and

biases at the linear transformation, and i is the index of the

spatial dimension. M is the number of neurons on that channel,

y0 and yt are two different values. The minimization Eq. (2) is

equivalent to training the linear differentiability between neuron

t and the other neurons in the same channel. After replacing y0
and yt with binary labels and adding regular terms, the final

energy function is defined by Equation (3).

et wt , bt , y, xið Þ

=
1

M − 1o
M−1
i=1 −1 − wtxi + btð Þð Þ2+ 1 − wt t + btð Þð Þ2+lw2

t

(3)

Theoretically, each channel has an M = H × W energy

function. The above equation has the following analytical

solution.
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wt = −
2 t − utð Þ

(t − ut)
2 + 2s 2

t + 2l
bt = −

1
2

t + utð Þwt , (4)

w h e r e mt =
1

M−1oM−1
i=1 xi,s

2
t =

1
M − 1o

M−1
i=1 (xi − mt)

2.

Therefore, the minimum energy can be obtained using

Equation (5).

e*t =
4 ŝ 2 + l
� �

(t − û )2 + 2ŝ 2 + 2l
(5)

Eq. (5) shows that the lower the energy, the more the neuron

t is distinguished from the surrounding neurons, and the higher

its importance. Therefore, the importance of a neuron can be

determined using 1

e*t
. According to the definition of the attention

mechanism, features must be augmented.

~X = sigmoid
1
E

� �
⊗X (6)
YOLO-rip model structure

The YOLOv5 model was divided into four versions

according to the depth and width of the network: YOLOv5x,

YOLOv5l, YOLOv5m, and YOLOv5s. Most target detection

networks find a balance between detection accuracy and

detection speed. Among the four versions of YOLOv5,

YOLOv5s is the network with the smallest depth and the

smallest width of the feature map, which agrees with the

lightweight characteristics of the network. Compared with

other networks in the YOLO series, it greatly reduces the

training time and increases the inference speed based on no

less than the average accuracy of detection and can meet the

basic requirements of real-time detection. Therefore, we chose

YOLOv5s as the base network to study and improve.
FIGURE 3

Schematic showing the convolution kernels adopted by the JDC module Structure of JDC module, where C is the number of channels, H is the
height of the feature map, W is the width of the feature map, d refers to dilation rate, and p refers to padding.
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YOLOv5s is structurally divided into four parts: input,

backbone, bottleneck, and detection head. The backbone

includes four modules: Focus, Convolution + Batch

normalization + Leaky_relu (CBL), Cross stage partial

networks (CSP), and Spatial pyramid pooling (SPP) (He

et al., 2015).

On the input side, it connects a focus module, which

expands the input channels by four times through slicing

operations, and then obtains a two-fold downsampling feature

map without information loss through convolution operation.

This effectively improves the detection speed while reducing the

computation. Feature extraction uses the CBL module for

convolution, normalization, and activation, and the C3 (CBL +

Bottleneck + Concat) module to enhance feature extraction and

optimize the gradient to speed up network inference. Finally, the

SPP module unifies the network output size to reduce the impact

of inconsistent input image size and resizing.

In the neck region, it uses a combination of FPN and path

aggregation network (PAN) (Lin et al., 2017; Liu et al., 2018),

where the FPN upsamples the image from the top down and

combines the extracted features with the features extracted from

the backbone to enhance feature information. Finally, we

divided the images into three grid sizes, 20 × 20, 40 × 40, and

80 × 80, for detect ing large , medium, and smal l

targets, respectively.

Because the target of the rip current occupies a large area in

the image, it can be considered a large target to reduce the
Frontiers in Marine Science 06
number of anchor boxes. Therefore, we removed the detection of

small targets and the 80 × 80 feature map branches that were

suitable for small targets, to reduce the complexity of the model.

Similarly, the default data enhancement method of YOLOv5s is

Mosaic. One image is selected along with three other random

images for random cropping. Then, they are stitched onto one

image and input to the network as training data. This enriches

the target background and increases the number of small targets

to achieve a balance between differing scale criteria. After

removing the branch that detects small sizes, we did not

enable Mosaic, considering that its presence was redundant.

Finally, we embedded the JDC into the FPN lateral

connection of YOLOv5s after connecting it to the SimAM

module to obtain the improved network model shown in

Figure 4. This model, which we call YOLO-Rip, was used to

detect rip currents.
Dataset

Rip-current detection is a new problem in the field of

computer vision. The only available public data is the database

provided by de Silva et al. (2021). This database contains 1740

images with rips and 700 images without rips. Because the

images in the dataset are all aerial images, the image types are

not rich enough, and there is a lack of images of real-time beach

scenes. This poses a great challenge for beachgoers to accurately
FIGURE 4

Schematic of the improved network model, YOLO-Rip.
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identify rip currents from diverse types of images. We took

several sets of real beach scene photographs on beaches along the

coast of South China. We selected 1352 high-resolution images,

of which 746 had rips and 606 did not. The size of these images

ranged from 4000 × 2250 to 480 × 360 pixels. After processing,

the images had a uniform size of 640 × 640 pixels. We used axis-

aligned bounding boxes to label the rip boundaries in the images

containing the rip currents, where the x- and y-axes of the

bounding boxes were aligned on the x- and y-axes of the images,

respectively. An example of a set of training and test data is

shown in Figure 5.
Experiments

Experimental environment
and parameters

The hardware environment for this experiment included an

Intel(R) Core (TM) i5-10400F CPU @ 2.90 GHz with 16 GB of

RAM and an 8 GB graphics card and an NVIDIA GeForce RTX

3060Ti GPU. The software environment was Windows 10 and

the deep learning framework used was PyTorch 1.9.0, Python

version 3.7, and CUDA version 7.6.5. The model input image

size was 640 × 640 pixels, and the number of channels was three.

The model training was set with a momentum coefficient of

0.937, weight decay coefficient of 0.0005, learning rate of 0.01,

and batch size of 32, and 300 training iterations (Table 1).
Evaluation indicators

To verify the performance and detection effectiveness of the

YOLO-Rip model, we selected four common evaluation metrics
Frontiers in Marine Science 07
(Precision [P], Recall [R], mean Average Precision [mAP], and

Frame Per Second [FPS]) (Liu, 2009). The formulas for

precision, recall, and mean average precision are given in

Equations (7), (8), and (9).

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

mAP =
on

i=1

Z 1

0
Pi Rið ÞdRi

N
(9)

where TP denotes the number of correctly detected targets,

FP the number of incorrectly detected targets, FN the number of

missed targets, and N the number of target categories. The mAP

is a composite measure of the overall average accuracy of the

model recognition. Typically, a higher mAP value represents a

better detection performance of the model. The average of the

previous 30 epochs was used as the result for all evaluation

metrics. The detection speed of the model was measured by FPS,

which indicates the number of images processed by the model
FIGURE 5

A set of images in the training set. The upper part of the images all contained rip currents, and red boxes indicate the boundaries of the rips.
The lower part of the images did not contain rips.
TABLE 1 Experimental parameter setting.

Parameters Value

Image_size 640 × 640

Channels 3

Moment 0.937

Learning_rate 0.01

Weight_decay 0.0005

Batch_size 32

Epochs 300
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per second. The larger the fps value, the faster the model

processed the images.
Results

Results of different testing scales

In Section 1.3, we discussed the removal of the 80 × 80

feature map branches in the YOLOv5s network to detect small

targets and the retention of the 20 × 20 and 40 × 40 feature map

branches. In this section, multiple sets of training experiments

were conducted on the YOLOv5s and YOLO-Rip networks to

obtain the results shown in Figure 6. After removing the 80 × 80

feature map branch, the model size was reduced by 0.54 MB, the

mAP decreased by 0.33%, and the detection speed reached a

maximum of 49.63 frames per second. This is an improvement

of 3.58 compared to the original network. This proves that the

YOLO-Rip network structure improves the detection speed. The

slight decrease in the mAP value was acceptable in exchange for

a substantial improvement in speed.
Training results for various JDCs

To verify the effect of the joint dilation convolution designed

in this study on the model detection performance under various

combinations, we added three additional dilation convolution

structures for testing. The three joint dilation convolution
Frontiers in Marine Science 08
structures are shown in Figure 7. Various joint dilation

convolutional structures were applied to the network model

with the 80 × 80 feature map branches removed for testing. The

experimental results in Table 2 show that although the various

joint expanded convolutional approaches made the model

larger, they each enhanced the detection ability of the model,

and the mAP and FPS values were improved. Among them, the

original JDC structure controlled the model enlargement best,

increasing it by only 0.46 MB. Concurrently, the mAP value

increased 2.99% to 91.14%, and the FPS increased by 2.05, which

was the best performance among all schemes. Therefore, we

selected an initial JDC structure embedded in the neck region.
Comparison of different attention
mechanisms

We used the fused attention mechanism CoordAttention

and CBAM to conduct comparison experiments to verify the

compatibility of SimAM with the model. The experimental

results are shown in Table 3. CBAM could capture the local

correlation of feature information. However, it was difficult to

capture the dependence on large areas. The convolution

operation in CoordAttention further expands the perceptual

field. Location information is embedded in the channel

attention for small targets, and coordinate attention is

generated to enhance feature aggregat ion. Adding

CoordAttention and CBAM modules can improve the

detection accuracy of small targets. However, neither is
FIGURE 6

Comparison of the original and modified network parameters.
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suitable for large targets such as rip currents. Introducing

additional parameters to increase the number of network

layers or convolution operations beyond the optimal field of

perception will result in lower mAP and FPS values. In contrast,

SimAM does not combine spatial attention with channel

attention but explores the importance of each neuron to

generate attention weights. Moreover, it does not introduce

additional parameters compared with CoordAttention and

CBAM. After adding the SimAM module, the mAP value was
Frontiers in Marine Science 09
improved by 1.01% and the FPS value was increased by 0.13

compared to the original network Table 3.
Ablation experiments

With the above scheme, we designed the YOLO-Rip model

and completed the training task for the dataset, and obtained the

experimental results in Table 4.
FIGURE 7

Schematic of three joint dilation convolution structures, where C is the number of channels, H is the height of the feature map, W is the width
of the feature map, d refers to dilation rate, and p refers to padding. (A) is the structure of JDC1, with the parameters of JDC1 in the red solid
box, (B) is the structure of JDC2, with the parameters of JDC2 in the blue dashed box, and (C) is the structure of JDC3, with the parameters of
JDC3 in the purple dashed box.
TABLE 2 Results of training with various JDC structures.

Structures Size (MB) mAP@0.5 (%) FPS

Original 6.74 88.15 46.05

JDC1 8.38 90.29 47.54

JDC2 10.88 89.34 46.13

JDC3 7.66 89.48 46.68

JDC 7.20 91.14 48.10
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The results of Experiment III show that mAP and FPS

increased by 1.65% and 0.63, respectively. However, the FPS

improvement was not significant without scale improvement.

By adding the scale improvement in Experiment V, the model

size was reduced by 0.54 MB and the FPS was increased by

1.62 compared with Experiment III. Concurrently, mAP

increased by 1.34%, indicating that removing the redundant

network detection branches can improve the detection

capability of the network. Finally, in Experiment VIII,

SimAM, a simple, parameter-free attention module, was

added to further enhance the feature processing capability of

the network. Compared with Experiment V, the model size

remained the same, mAP improved by 1.01%, and FPS

improved by 0.13. Overall, compared to YOLOv5s, YOLO-

Rip increased in size by only 0.46 MB while increasing the

mAP value by 4% and the detection rate by 2.18 frames

per second.
Training results on different models

We trained the same dataset on several mainstream

detection models and obtained the training results listed in

Table 5. Compared with the other networks, YOLO-Rip had

the highest mAP value of 92.15% for detection. The FPS value

was 48.23, which was larger than that of YOLOX-s and

YOLOv3-tiny. The model size was 15.3 MB, which was larger

than that of YOLOX-s and YOLOv5s, and mainly depended on

the structure of the model. Among the balanced mAP and FPS

values, YOLO-Rip was the best choice.
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Figure 8 shows the detection performance of the YOLO-Rip

model on a set of test images. It detected rip currents completely

in most cases where they were present and achieved a high

intersection over union (IOU) value (Jiang et al., 2018). Images

that did not contain rip currents were virtually free of

false positives.
Discussion

Detection model

For a target recognition task, the choice of recognition model

is critical. de Silva et al. (2021) trained a self-built dataset using

Faster R-CNN and used temporal smoothing to qualify the

anchor frame to obtain average accuracy. Satisfactory results

have been achieved in detecting rip currents characterized by a

gap in the breaking waves. However, Faster RCNN is a two-stage

detection algorithm. When the dataset reached a certain size, the

detection time increased rapidly. Field detection has a high

requirement for real-time performance, and rip currents are

highly transient. Therefore, if the occurrence of rip currents is

not detected in a timely manner, there is greater risk to

swimmers. It is difficult for beach managers to achieve real-

time forecasting of sea surface conditions in the nearshore area.

We used the state-of-the-art YOLO detection framework, which

has pronounced advantages over the Faster RCNN framework.

The YOLO framework is a one-stage detection algorithm,

where YOLOv4 uses class label smoothing; a regularization

method (Bochkovskiy et al., 2020). If the neural network is

overfitted and/or overconfident, we can attempt to smoothen the

labels. That is, the labels may be incorrect at the training time

and we may “over” trust the labels of the training samples and

fail to recognize the complexity of other predictions. Therefore,

to avoid overconfidence, it is more reasonable to encode the class

label representation to evaluate uncertainty. YOLOv4 uses class

smoothing and selects a model with a correct prediction

probability of 0.9.

The advantages of YOLOv5 are even more evident. YOLOv5

has a faster training speed than the Darknet framework used by
TABLE 3 Model training results when various attention mechanisms
were used.

Mechanisms mAP@0.5 (%) FPS

Original 91.14 48.10

CoordAtt 90.83 46.13

CBAM 90.75 47.54

SimAM 92.15 48.23
TABLE 4 Results of ablation experiments.

Experiment Scale Improvement JDC SimAM Size (MB) mAP(%) FPS

I 6.74 88.15 46.05

II √ 6.20 87.82 49.63

III √ 7.74 89.80 46.48

IV √ 6.74 88.89 43.13

V √ √ 7.20 91.14 48.10

VI √ √ 6.20 88.21 47.14

VII √ √ 7.74 90.13 42.08

VIII √ √ √ 7.20 92.15 48.23
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YOLOv4 (Jocher et al., 2021). In particular, the object recognition

speed of YOLOv5s of up to 140 fps is very impressive. Figure 9

shows that YOLOv5s has the smallest model size of several models
Frontiers in Marine Science 11
(YOLOv3, YOLOv4, and YOLOv5). If the intention is to deploy

the model as part of an early warning system, then model size is a

concern, and YOLOv5s has clear advantages.
TABLE 5 Results of the number of parameters and mAP values on the training dataset of various models.

Models Size (MB) mAP @ 0.5 (%) FPS

Faster RCNN (Ren et al., 2015) 108.2 48.96 16.18

EfficientDet-D0 (Tan et al., 2020) 15.1 55.14 23.26

EfficientDet-D1 (Tan et al., 2020) 25.6 86.86 18.55

EfficientDet-D2 (Tan et al., 2020) 31.2 87.81 17.33

YOLOX-s (Ge et al., 2021) 9.0 86.45 55.76

YOLOv3 (Redmon and Farhadi, 2018) 235.1 84.93 46.95

YOLOv3-tiny (Adarsh et al., 2020) 33.79 75.68 49.21

YOLOv4 (Bochkovskiy et al., 2020) 244.4 91.69 45.07

YOLOv4-tiny (Jiang et al., 2020) 22.5 87.22 47.65

YOLOv5l (Jocher et al., 2021) 46.5 84.89 38.31

YOLOv5m (Jocher et al., 2021) 21.2 85.83 41.68

YOLOv5s (Jocher et al., 2021) 6.74 88.16 46.05

YOLO-Rip 7.19 92.15 48.23
frontiers
FIGURE 8

Detection performance of YOLO-Rip. The red bounding boxes represent manually defined rips, and the yellow bounding boxes depict rips
detected by the model. The absence of bounding boxes in the image indicates the absence of rip current.
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Detection effect

Although it is difficult to make a fair comparison between

different target detectors, in some specific scenarios, for “object”

such as rip current, in addition to the accuracy, the detection

speed also needs to be considered. Therefore, we did a lot of

training on different detection models. In order to balance

accuracy and speed, we finally selected YOLOv5s as a

benchmark for comparison because of its excellent

performance (Table 5).

A comparison of the mAP values obtained on the training

set before and after model improvement is shown in Figure 10

which shows that YOLO-Rip has a notable improvement in

mAP compared to YOLOv5s, and the specific mAP values are

partially listed in Table 6. This indicates that YOLO-Rip has

better performance.

In addition, we tested YOLOv5s and YOLO-Rip on a

publicly available video. YOLOv5s occasionally mis detected

(Figure 11A1), missed (Figures 11C1, E1, F1), and overlapped

markers in the same region (Figures 11B1, D1) during the test.

However, YOLO-Rip performed well in avoiding these

problems (Figures 11A2, B2, C2, E2, and F2). This may be a

result of the distinct signal strengths generated by the features

in each frame. Therefore, we attempted to compare feature

images with the same number of frames. de Silva et al. (2021)

obtained high detection accuracy using time averaging in the

Faster RCNN model. However, it has a two-stage structure

and the detection speed was not high (Table 5), which

substantially increased the training time (usually by 3–6

days) and GPU resources. It is impractical to train the

Faster RCNN model using multiple types of target

detection methods.
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Future work

Although deep learning is an important approach to

machine learning with numerous achievements in object

detection, image processing, and machine translation, there are

few cases and applications in ocean observation. After studying

the existing literature, we realized that it is difficult to find

previous work for comparison in the field of rip current

recognition due to the lack of a baseline. The current dataset

that can validate our proposed model is limited and not general.

As with other machine learning models, YOLO-Rip sometimes

failed to detect during training. Our training data mainly

consisted of groove-type and depth-controlled rip currents

(Leatherman, 2013), which are typically characterized by clear

wave-breaking gaps and visually distinct color changes.

Although some other metrics may be neglected, such as the

length and width of the breakwater, these metrics should be

considered in the next step of the study.

Future research should focus on building a rich database of

rip current images to include more beach scenes so that the

results can be generalized. The publicly available dataset and

methodology of de Silva et al. (2021) provide a successful

reference case for those working on rip-current research. This

study extended the rip current image dataset by delving into the

problems of neural network models in identifying indefinite

targets and presenting a new detection model in this study.

Some factors, such as weather conditions and artificial

photography, should be considered and discussed in the study

of target sample detection because they play a vital role in the

detection effectiveness of rip current targets and the robustness

of the model (Laroca et al., 2018). In addition, research on deep

learning techniques for rip current target detection has just
FIGURE 9

Comparison of the size of various models.
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begun, and further research is still needed for diverse types of rip

current characteristics. When acquiring images of rip currents,

factors such as sea wind and waves can make the images appear

exposed to varying degrees and can lead to problems such as

missed targets. These issues remain to be solved. In addition,

further depth detection of rip currents in complex backgrounds,

including operations such as preprocessing and reconstruction

of image data, is also a research direction that needs attention.
Conclusion

We presented a neural network model for identifying rip

currents, YOLO-Rip, based on the YOLOv5 detection

framework. The aim of the study was to effectively extract

features of rip current targets and perform multi-scale fusion.
Frontiers in Marine Science 13
This was accomplished by designing a joint dilated convolution

module to extend the perceptual field and solve the problem of a

substantial increase in the number of parameters or feature

losses when extending the perceptual field. To simplify the

model and speed up detection, the branching structure for

detecting small targets was removed. This allowed the model

to adapt to the detection of large targets such as rip currents.

Finally, to further improve the accuracy, the parameter-free

attention mechanism, SimAM, was added. This can enhance

the extraction of effective features without introducing

additional parameters. Several mainstream target detection

models were trained on the extended dataset, and the results

showed that the average detection accuracy of YOLO-Rip

reached 92.15%, and the detection rate reached 48.23 frames

per second. This is an increase of 4% and 2.18 frames per second,

respectively, compared with the YOLOv5s model. The average
FIGURE 10

Comparison of mAP values between YOLOv5s and YOLO-Rip training datasets.
TABLE 6 Comparison of mAP values between YOLOv5s and YOLO-Rip training datasets.

Epoch mAP @ 0.5 (%)

YOLOv5s YOLO-Rip
0 0.01762 0.01062

50 0.8828 0.8854

100 0.8873 0.9166

150 0.8921 0.9103

200 0.8842 0.9208

250 0.8901 0.9201

299 0.9084 0.9278
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detection accuracy was the highest compared to other neural

networks, demonstrating the accuracy and efficiency of YOLO-

Rip. The training and test data are included in the

supplementary material.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

access ion number(s) can be found in the art ic le/

supplementary material.
Author contributions

DZ conceived, designed and performed the designs and

drafted this paper. RQ completed the experimental

verification, PH, QS, and XQ reviewed and edited this paper.

ZL provided the design ideas and reviewed this paper. All

authors contributed to the article and approved the

submitted version.
Funding

This work was supported in part by the National Natural

Science Foundation of China under Grant 42176167, and the
Frontiers in Marine Science 14
Innovation Project Foundation of Guangdong Ocean University

under Grant 18307.
Acknowledgments

The authors would like to thank the Key Laboratory of public

Big Data of Guizhou University for technical support, and all

members of our team for their contributions to the collection of

rip currents images. Especially, the authors would like to thank

Akila de Silva et al. for providing the publicly available dataset.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
FIGURE 11

Actual detection results of YOLOv5s (blue boxes in A1, B1, C1, D1, E1, F1) and YOLO-Rip (A2, B2, C2, D2, E2, F2) in selected video frames. In
groups A, B, C, and D, dye was used to track rip currents and enhance the visual effect, but did not affect the detection of rip currents by the
model. (Video from de Silva et al.).
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Schwartz, W. R., et al. (2018). “A robust real-time automatic license plate
recognition based on the YOLO detector,” in 2018 international joint conference
on neural networks (ijcnn). (IEEE), 1–10. doi: 10.1109/IJCNN.2018.8489629

Leatherman, S. P. (2013). Rip currents. In Coastal Hazards. (Dordrecht:
Springer), 811–31. doi: 10.1007/978-94-007-5234-4_26

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).
“Feature pyramid networks for object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, IEEE. 2117–2125.
doi: 10.48550/arXiv.1612.03144

Liu, T. Y. (2009). “Learning to rank for information retrieval,” in Foundations
and trends® in information retrieval. 3 (3), 225–331. doi: 10.1561/1500000016

Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition , 8759–8768. doi: 10.48550/
arXiv.1803.01534

Liu, Y., and Wu, C. H. (2019). Lifeguarding operational camera kiosk system
(LOCKS) for flash rip warning: Development and application. Coast. Eng. 152,
103537. doi: 10.1016/j.coastaleng.2019.103537

Maryan, C., Hoque, M. T., Michael, C., Ioup, E., and Abdelguerfi, M. (2019).
Machine learning applications in detecting rip channels from images. Appl. Soft.
Comput. 78, 84–93. doi: 10.1016/j.asoc.2019.02.017

Mori, I., De Silva, A., Dusek, G., Davis, J., and Pang, A. (2022). Flow-based rip
current detection and visualization. (IEEE Access) 10, 6483–95. doi: 10.1109/
ACCESS.2022.3140340

Mouragues, A., Bonneton, P., Castelle, B., and Martins, K. (2021). Headland rip
modelling at a natural beach under high-energy wave conditions. J. Mar. Sci. Eng. 9
(11), 1161. doi: 10.3390/jmse9111161

Nelko, V., and Dalrymple, R. A. (2011). “‘Rip current prediction in ocean city,
Maryland,” in Rip currents: Beach safety, physical oceanography, and wave modeling
(Florida: CRC Press International), 45–57.

Pitman, S., Gallop, S. L., Haigh, I. D., Mahmoodi, S., Masselink, G., and
Ranasinghe, R. (2016). Synthetic imagery for the automated detection of rip
currents. J. Coast. Res. 75 (10075), 912–916. doi: 10.2112/SI75-183.1

Rashid, A. H., Razzak, I., Tanveer, M., and Robles-Kelly, A. (2020). “RipNet: A
lightweight one-class deep neural network for the identification of rip currents,” in
International conference on neural information processing (Cham: Springer), 172–
179. doi: 10.1007/978-3-030-63823-8_21

Rashid, A. H., Razzak, I., Tanveer, M., and Robles-Kelly, A. (2021). “RipDet: A
fast and lightweight deep neural network for rip currents detection,” in 2021
international joint conference on neural networks (IJCNN). (IEEE), 1–6. doi:
10.1109/IJCNN52387.2021.9533849

Redmon, J., and Farhadi, A. (2018). Yolov3: An incremental improvement.
Computer Vision and Pattern Recognition. doi: 10.48550/arXiv.1804.02767

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural information
processing systems, vol. 28. doi: 10.1109/tpami.2016.2577031

Schmidt, W. E., Woodward, B. T., Millikan, K. S., Guza, R. T., Raubenheimer, B.,
and Elgar, S. (2003). A GPS-tracked surf zone drifter. J. Atmosph. Ocean. Technol.
20 (7), 1069–1075. doi: 10.1175/1460.1
frontiersin.org

https://doi.org/10.1109/ICACCS48705.2020.9074315
https://issuu.com/surflifesavingaustralia/docs/ncsr2019
https://issuu.com/surflifesavingaustralia/docs/ncsr2019
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.25035/ijare.05.04.11
https://doi.org/10.1016/j.apgeog.2014.10.011 
https://doi.org/10.1016/j.apgeog.2014.10.011 
https://doi.org/10.5194/nhess-19-389-2019
https://doi.org/10.5194/nhess-13-1069-2013
https://doi.org/10.1016/j.coastaleng.2019.103593
https://doi.org/10.2112/SI70-107.1
https://doi.org/10.2112/SI70-107.1
https://doi.org/10.2112/SIJCR-SI114-060.1
https://doi.org/10.1029/2009JC005683
https://doi.org/10.1175/JTECH-D-13-00230.1
https://doi.org/10.1016/j.coastaleng.2021.103859
https://doi.org/10.1016/j.oceano.2020.02.001
https://doi.org/10.1016/j.oceano.2020.02.001
https://doi.org/10.2112/Jcoastres-D-12-00118.1
https://doi.org/10.1175/1520-0426(2001)018%3C1735:cmpits%3E2.0.co;2.n/a
https://doi.org/10.1175/1520-0426(2001)018%3C1735:cmpits%3E2.0.co;2.n/a
https://doi.org/10.2112/SI72-012.1
https://doi.org/10.48550/arXiv.2107.08430
http://arxiv.org/abs/1602.08465
http://arxiv.org/abs/1602.08465
https://doi.org/10.1109/MSP.2017.2749125
https://doi.org/10.1109/MSP.2017.2749125
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1016/j.coastaleng.2007.01.003
https://doi.org/10.1007/s11069-021-04696-8
https://doi.org/10.1016/0004-3702(81)90024-2
https://www.researchgate.net/publication/311536127_Surf_Zone_Hydrodynamics_Measuring_Waves_and_Currents
https://www.researchgate.net/publication/311536127_Surf_Zone_Hydrodynamics_Measuring_Waves_and_Currents
https://www.researchgate.net/publication/311536127_Surf_Zone_Hydrodynamics_Measuring_Waves_and_Currents
https://doi.org/10.48550/arXiv.1807.11590
https://doi.org/10.48550/arXiv.1807.11590
https://doi.org/10.48550/arXiv.2011.04244
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.1109/IJCNN.2018.8489629
https://doi.org/10.1007/978-94-007-5234-4_26
https://doi.org/10.48550/arXiv.1612.03144
https://doi.org/10.1561/1500000016
https://doi.org/10.48550/arXiv.1803.01534
https://doi.org/10.48550/arXiv.1803.01534
https://doi.org/10.1016/j.coastaleng.2019.103537
https://doi.org/10.1016/j.asoc.2019.02.017
https://doi.org/10.1109/ACCESS.2022.3140340
https://doi.org/10.1109/ACCESS.2022.3140340
https://doi.org/10.3390/jmse9111161
https://doi.org/10.2112/SI75-183.1
https://doi.org/10.1007/978-3-030-63823-8_21
https://doi.org/10.1109/IJCNN52387.2021.9533849
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1175/1460.1
https://doi.org/10.3389/fmars.2022.930478
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2022.930478
Short, A. D. (2007). Australian Rip systems–friend or foe? J. Coast. Res, 7–11.
Available at: https://www.jstor.org/stable/26481546

Stephen, P. (2012). “Break the grip of the rip,” in Laboratory for coastal research
(Florida International University). Leatherman.

Tan, M., Pang, R., and Le, Q. V. (2020). “Efficientdet: Scalable and efficient object
detection,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2020, 10781–10790. doi: 10.48550/arXiv.1911.09070

Wang, H., Zhu, S., Li, X., Zhang, W., and Nie, Y. (2018). Numerical simulations
of rip currents off arc-shaped coastlines. Acta Oceanol. Sin. 37 (3), 21–30. doi:
10.1007/s13131-018-1197-1
Frontiers in Marine Science 16
Woo, S., Park, J., Lee, J. Y., and Kweon, I. S. (2018). “CBAM: Convolutional
block attention module,” in Proceedings of the European conference on computer
vision (ECCV). 2018, 3–19. doi: 10.48550/arXiv.1807.06521

Yang, L., Zhang, R. Y., Li, L., and Xie, X. (2021). “Simam: A simple, parameter-
free attention module for convolutional neural networks,” in International
conference on machine learning, PMLR, 2021, 11863–11874. Available at: https://
proceedings.mlr.press/v139/yang21o.html

Yu, F., and Koltun, V. (2015). Multi-scale context aggregation by dilated
convolutions. arXiv preprint arXiv:1511.07122. doi: 10.48550/arXiv.1511.
07122
frontiersin.org

https://www.jstor.org/stable/26481546
https://doi.org/ 10.48550/arXiv.1911.09070
https://doi.org/10.1007/s13131-018-1197-1
https://doi.org/10.48550/arXiv.1807.06521
https://proceedings.mlr.press/v139/yang21o.html
https://proceedings.mlr.press/v139/yang21o.html
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.3389/fmars.2022.930478
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	YOLO-Rip: A modified lightweight network for Rip currents detection
	Introduction
	Models and data
	Joint dilation convolution module
	SimAM module
	YOLO-rip model structure
	Dataset

	Experiments
	Experimental environment and parameters
	Evaluation indicators

	Results
	Results of different testing scales
	Training results for various JDCs
	Comparison of different attention mechanisms
	Ablation experiments
	Training results on different models

	Discussion
	Detection model
	Detection effect
	Future work

	Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


