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1Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Cientı́ficas (IATS-
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The fast and remarkable growth of global aquaculture in recent years has

created new challenges, such as guaranteeing a sustainable supply of raw

materials used for aquafeed formulation. Gammarids are low-trophic

crustaceans with an increasing interest in aquaculture due to their high

nutritional profiles and their capacity to grow under high-density conditions.

Moreover, gammarids have the ability to thrive on a wide range of sidestreams

while accumulating relatively high levels of long-chain (≥C20) polyunsaturated

fatty acids (LC-PUFA). In the present study, juveniles of the marine gammarid

Gammarus locusta were cultured at four different temperatures (5°C, 10°C,

15°C, and 20°C) for 21 days and fed three diets, including the seaweed Fucus sp.

as control, and carrot leaves and coconut flesh representing two agri-food

industry sidestreams. Our results indicate that both the survival and biomass of

G. locusta were highly affected by diet, with coconut showing the lowest

growth performance. The temperature had no effect on biomass, although

high temperature (20°C) resulted in a decrease in survival. The effects of

temperature on the gammarid fatty acids were not evident, with diet being

the main modulator of the profiles. Furthermore, the results also reveal that the

Fucus sp. diet was associated with relatively high percentages of n-3 and n-6

LC-PUFA. Interestingly, essential LC-PUFA such as eicosapentaenoic (20:5n-3,

EPA) and docosahexaenoic (22:6n-3, DHA) acids were detected in gammarids

fed on either Fucus sp. or any of the sidestreams irrespectively of their presence

in the diets. These results suggest an ability of G. locusta for LC-PUFA

biosynthesis (trophic upgrading) and/or retention, making this species a

promising candidate for the production of high-value ingredients

for aquafeeds.

KEYWORDS

agri-food sidestreams, circular economy, gammarus locusta, long-chain polyunsaturated
fatty acids, novel marine ingredients
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Introduction

Rapidly expanding aquaculture worldwide has created new

economic and ecological challenges (FAO, 2020). With regard

to fish farming, such challenges have been mostly linked to

modifying the supply of raw materials used for feed

formulation in order to reduce the current usage of finite

resources such as the so-called marine ingredients fishmeal

(FM) and fish oil (FO). FM and FO are regarded as major

sources of essential nutrients for aquafeeds, including long-

chain (C20-24) polyunsaturated fatty acids (LC-PUFA) (Tocher,

2015; Shepherd et al., 2017). The current production of FM and

FO largely relies on feed-grade species fisheries and, with the

expansion of aquaculture worldwide, pressure on these

fisheries has grown to an extent that they may not

sustainably fulfill the increasing demand (Naylor et al., 2009;

FAO, 2020).

Several efforts have been made to find alternative feeding

sources to alleviate the abovementioned pressure on fisheries

and reduce the dependence upon FM and FO in finfish

aquaculture (Naylor et al., 2009; Turchini et al., 2011b;

Jannathulla et al., 2019). Up to the present, the use of raw

materials derived from animals or plants has become a widely

extended practice (Turchini et al., 2009; Jannathulla et al., 2019;

Galkanda-Arachchige et al., 2020). However, the replacement of

FM and FO with nonmarine ingredients has often been

associated with decreased nutritional value of fish farming

products, including reduced levels of the health-promoting n-3

LC-PUFA eicosapentaenoic acid (20:5n-3, EPA) and

docosahexaenoic acid (22:6n-3, DHA), as well as suboptimal

growth (Bell et al., 2001; Mourente and Bell, 2006; Turchini et al.,

2011a; Yıldız et al., 2018; Romano et al., 2020). Therefore, high-

quality alternative ingredients are needed in order to successfully

replace traditional sources of FM and FO in aquafeed while

maintaining growth performance and nutritional value (i.e.,

levels of n-3 LC-PUFA) of farmed fish (Alberts-Hubatsch

et al., 2019). Indeed, the search for novel aquatic ingredients

for aquafeed is a priority within the EU, as is their production

through Integrative Multi-Trophic Aquaculture (IMTA)

strategies (Guerra-Garcıá et al., 2016).

Ingredients derived from biomasses of low-trophic marine

crustaceans such as gammarids, krill, and copepods have been

regarded as promising candidates for aquafeed formulations

due to their balanced profiles of essential nutrients, including

n-3 LC-PUFA (McKinnon et al., 2003; Suontama et al., 2007;

Naylor et al., 2009; Dhont et al., 2013; Harlıoğlu and Farhadi,

2018). While the exploitation of wild populations of marine

crustaceans poses negative ecological impacts similar to those

of wild-capture fisheries alluded to above, biomass production

using intensive aquaculture systems arises as an interesting

strategy. Gammarids are abundant in benthic communities
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and inhabit practically all aquatic environments, which is

reflected in their high diversity of feeding habits (Costa and

Costa, 2000; Harlıoğlu and Farhadi, 2018). Moreover,

gammarids are fish’s natural prey, and their use as an

alternative ingredient for fish feeding has been explored

(Ashour et al., 2021). Gammarids can be grown and

maintained in laboratory cultures and adapt well to different

culture conditions and diets (Sexton, 1928; Costa and Costa,

2000; Neuparth et al., 2002; Ahyong and Hughes, 2016;

Beermann et al., 2018; Alberts-Hubatsch et al., 2019).

Interestingly, recent investigations have also demonstrated

that gammarids can be fed on a wide range of sidestreams

from bioindustries such as agriculture and aquaculture itself

(Alberts-Hubatsch et al., 2019; Jiménez-Prada et al., 2020).

Such sidestreams are characterized by being deprived or

having low contents of LC-PUFA, but, intriguingly,

gammarids fed on these sidestreams have shown relatively

high levels of LC-PUFA, suggesting that gammarids have

some capacity for trophic upgrading via endogenous lipid

metabolism (Alberts-Hubatsch et al., 2019; Jiménez-Prada

et al., 2020). Thus, applying circular bioeconomy strategies

by which sidestreams derived from bioindustries are used for

the production of high nutritional value gammarid biomasses

as potential fish feed ingredients has been proposed (Jiménez-

Prada et al., 2020). However, up to date, little is known about

the optimal culture conditions for reliable large-scale cultures

of marine gammarids (Alberts-Hubatsch et al., 2019; Jiménez-

Prada et al., 2020). Several factors, including diet, temperature,

and salinity can modulate LC-PUFA metabolism, growth, and

survival of aquatic invertebrates (Neuparth et al., 2002;

Monroig and Kabeya, 2018; Alberts-Hubatsch et al., 2019).

Hence, it is necessary to fine tune the culture conditions for

the production of LC-PUFA–rich gammarid biomass.

A previous study comparing the effects of several diets on

two gammarid species, namely Gammarus locusta and

Echinogammarus marinus, suggested that G. locusta is the best

candidate regarding LC-PUFA composition, growth, and

survival when fed sidestreams (Alberts-Hubatsch et al., 2019).

However, to the best of our knowledge, information on the

combined effects of diet and environmental factors, on survival,

growth, and LC-PUFA content of marine gammarids is lacking.

The main goal of this study was to elucidate the effects of three

diets and four temperatures on the FA profile and growth

performance of the marine gammarid G. locusta. For this

purpose, cultures were carried out at 5°C, 10°C, 15°C, and 20°

C, representing ambient temperatures in the wild, with G.

locusta occurring in coastal areas of the North Atlantic (Costa

and Costa, 2000). Fucus spp. was used as a natural marine diet,

and carrot leaves and coconut flesh as two different nonmarine

diets, mimicking agriculture sidestreams of different

nutritional values.
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Materials and methods

Animal collection and culture

All G. locusta specimens used in the experiments were

obtained from a laboratory culture at the Alfred Wegener

Institute, with stock cultures originating from the German

Bight, North Sea. Specimens were reared in the laboratory

prior to the experiment at temperatures of 18°C, a salinity of

33–34 ppt, and pH 8. Broodstock cultures and juvenile G. locusta

were raised on a mixture of dried Fucus spp. and vegetable

greens (mainly carrot greens and kale leaves). Juvenile G. locusta

(28 days posthatch) were collected from the same batch culture,

maintained at 10°C for 5 days, and starved for 24 h prior to

the experiment.
Experimental setup

The juvenile gammarids (5.327 ± 1.54 mm SD, n = 960) were

randomly transferred into white 1-L buckets, filled with 500 ml of

freshly filtered seawater (5µm tube filter) at 33–34 ppt and equipped

with a mesh (70 × 70 mm, 5 mm mesh size) and an oyster shell as

substrate. Each container was stocked with 20 specimens at 10°C

and randomly allocated to the respective temperatures (5°C, 10°C,

15°C, and 20°C) and diet in quadruplicates. The temperature was

slowly adjusted by transferring the containers into water baths at the

desired temperature. Three different diets were prepared: one

natural marine food source, thalli of Fucus spp. containing LC-

PUFA (hereafter referred to as Fucus), and two nonmarine diets:

carrot leaves (hereafter referred to as “Carrot”), an agricultural

sidestream, (high shorter-chain (<C20) PUFA content), and a diet

that mimics a potential sidestream rich in saturated fatty acids

(SFA) consisting on coconut flesh (hereafter referred to as “Coco”).

All diets were rinsed in fresh water and dried at 55°C for 24 h. The

temperature in the experimental containers was recorded twice a

day, and water exchange with fresh seawater adjusted to the

respective temperature was done every second day. Feeding was

done ad libitum with remaining food items removed and replaced

during water exchange. Dead individuals were removed on a daily

basis. Gammarids were cultured at the corresponding diet vs.

temperature combination for 21 days, until sexual maturity was

reached in the higher temperature treatments.
Growth and survival

Initially, a subsample of 100 juvenile gammarids (average

5 mm) was analyzed. Total body lengths of gammarids were

measured at the beginning and end of the experiment by

analyzing pictures of each replicate taken on scale paper using

Fiji ImageJ (vers. 1.53q, Schneider et al., 2012). Total lengths

were measured from the basal point of the antennae to the third
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urosome segment. Specific growth rate (SGR, in % day−1) was

calculated as length gain per experimental duration for each pool

as follows:

SGR = 100 × [ln (final length) − ln (initial length)/time

interval]. Initial individual weights could not be taken at the

beginning of the experiment due to the vulnerability of the early

life stages. Therefore, at the end of the experiment, all remaining

specimens were counted and wet biomass per replicate was

recorded using an analytical scale (Sartorius Practum 213-S1,

d = 0.001 g). The gammarids were rinsed in Milli-Q water twice,

placed into Eppendorf tubes, and immediately frozen at −80°C.

The frozen samples were then freeze-dried at −52°C within 2

weeks after the experiment and thereafter stored at −80°C until

further analyses.
Fatty acid analysis

Total lipids and FA were analyzed from gammarid samples

as well as from experimental diets. Briefly, total lipids were

extracted from the homogenized samples using the Folch

method (Folch et al., 1957). Subsequently, total lipids were

used to prepare fatty acid methyl esters (FAME), which were

analyzed using a Thermo Trace GC Ultra Gas Chromatograph

(Thermo Electron Corporation, Waltham, MA, USA), equipped

with a fused silica 30 m × 0.25 mm open tubular column (Tracer,

TR-WAX, film thickness: 0.25 mm, Teknokroma, Sant-Cugat del

Vallés, Spain), fitted with an on-column injection system, using

helium as a carrier gas, and a flame ionization detector (FID).

The analytical temperature was programmed from 50°C to 220°

C. Chromatograms were integrated and analyzed with Azur

Datlys (St Martin d’Heres, France) software. FAs were identified

by comparison of retention times of each peak with those of

well-characterized standards.
Statistical analysis

All data were subjected to statistical analyses using PAST

(vers. 4.09) (Hammer et al., 2001). Prior to the analyses, data

were tested for normality (Shapiro–Wilk) and homogeneity

(Levene’s test). After assuring that normality and homogeneity

criteria were met, data were analyzed using analysis of variance

(fixed effects two-way ANOVA) with Tukey’s post-hoc test for

multiple comparisons. Principal component analysis (PCA) was

used to analyze and visualize the relationship between diet and

FA profiles of gammarids. Differences in FA levels among

treatments were tested by using a two-way permutational

multivariate analysis of variance (PERMANOVA) with factors:

“Temperature,” four different conditions (5°C, 10°C, 15°C, and

20°C), and “Diet,” three different treatments (Fucus, Carrot,

Coco). One-way PERMANOVA was further used to compare

the scores of the dietary groups. Ellipses were fitted to the scores
frontiersin.org
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at 95% confidence. Additionally, the percentage of similarity

analysis (SIMPER) was used to determine the FA responsible for

dissimilarities between conditions within the dietary groups.

Unless otherwise stated, statistical significance was tested at

95% confidence level (p ≤ 0.05). The Unsaturation Index (UI)

was used to establish a relationship between the FA levels of diets

used and the FA levels of gammarids fed on the corresponding

diets in order to determine how diet can affect the gammarids’

FA profiles and to ascertain previous retention. The UI was

calculated according to the following formula: ∑ [area of fatty

acid * number of unsaturations].
Results

Growth and survival

The two-way ANOVA revealed that both temperature (F (3,

36) = 12.43, p < 0.0001) and diet (F (2, 36) = 18.08, p < 0.0001)

had a significant effect on the survival of G. locusta, although no

interacting effects of temperature and diet on survival were

observed (F (6, 36) = 0.38, p = 0.89). Pairwise comparisons of

the survival of gammarids at different temperatures revealed that

the highest temperature (20°C) resulted in significantly lower

survival rates, whereas no differences were observed between the

temperatures (Table 1). Regarding the diets, Coco resulted in

significantly lower survival of gammarids, whereas no differences

between the effects of Carrot and Fucus were found. The highest

mortality was obtained with the Coco diet at 20°C (Table 1).

Regarding total biomass, there was a significant interacting

effect of temperature and diet as revealed by the two-way
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ANOVA (F (6, 36) = 3.17, p = 0.01). Here, our analysis shows

no significance of temperature (F (3, 36) = 1.63, p = 0.20) but a

highly significant effect of diet (F (2, 36) = 29.07, p < 0.001).

Pairwise comparisons of the biomass output revealed highly

significant differences (p < 0.005) between all diet groups, with

the Fucus diet resulting in the highest (Table 1). No significant

differences were found in the gammarid biomasses when

comparing temperature groups.

The final length was not affected by the interaction of

temperature and diet (F (6,35) = 1.47, p = 0.22). In this case,

the diet had no effect on final length (F (2, 35) = 3.03, p = 0.06),

in contrast to temperature, which strongly affected final length

(F (3, 35) = 20, 73, p < 0.001). When looking at pairwise

comparisons, it becomes evident that this effect was caused by

the 20°C treatment, which resulted in significantly higher final

lengths compared to all other temperature groups (p < 0.001),

whereas no differences were found between the other

groups (Table 1).

The SGR followed a similar pattern as the final length data,

with temperature having a highly significant effect on SGR (F (3,

35) = 31.83, p < 0.001). This was also explained by the higher

SGR in the 20°C treatment, which was significantly different

from all other temperature treatments (p < 0.001) while the other

temperatures were not different (Table 1). Diet had a significant

effect on SGR (F (2, 35) = 5.26, p = 0.01), which was caused by

the low SGR when regarding pairwise comparisons, in which

Coco was significantly different from Fucus but not from Carrot

(Table 1). This was biased by the very high mortality in this

treatment group (see above). Similarly, a significant interaction

effect of diet and temperature on SGR (F (6, 35) = 3.44, p =

0.008) was observed.
TABLE 1 Survival, total biomass, and total length of G. locusta in response to different diets and temperatures after the 21-day feeding trial.

5°C 10°C 15°C 20°C

% Survival (± SD)

Fucus 73.75 ± 10.31 a, A 65.00 ± 10.80 a, A 71.25 ± 14.93 a, A 45.00 ± 28.28 b, A

Carrot 71.25 ± 6.29 a, A 60.00 ± 10.80 a, A 66.25 ± 27.80 a, A 32.50 ± 10.41 b, A

Coco 47.50 ± 8.66 a, B 23.75 ± 23.94 a, B 47.50 ± 8.66 a, B 8.75 ± 4.79 b, B

Biomass (mg ± SD)

Fucus 76.00 ± 11.86 a, A 122.50 ± 31.03 ab, A 121.25 ± 38.35 b, A 159.00 ± 36.39 ab, A

Carrot 67.50 ± 20.04 a, B 78.00 ± 26.89 ab, B 95.75 ± 41.10 b, B 86.50 ± 27.74 ab, B

Coco 64.00 ± 43.14 a, C 27.25 ± 9.00 ab, C 51.25 ± 16.66 b, C 27.25 ± 12.47 ab, C

Length (mm ± SD)

Fucus 6.92 ± 0.85 a 8.28 ± 1.44 a 8.24 ± 0.1 a 11.59 ± 2.45 b

Carrot 6.85 ± 0.73 a 7.10 ± 0.32 a 7.62 ± 1.05 a 9.81 ± 1.73 b

Coco 7.26 ± 2.63 a 5.31 ± 1.57 a 6.75 ± 0.3 a 10.89 ± 8.0 b

Specific growth rate (SGR ± SD)

Fucus 0.37 ± 0.12 a, A 0.89 ± 0.11 a, A 0.89 ± 0.13 a, A 1.68 ± 0.32 b, A

Carrot 0.53 ± 0.08 a, AB 0.71 ± 0.04 a, AB 0.74 ± 0.04 a, AB 1.29 ± 0.44 b, AB

Coco 0.43 ± 0.36 a, B −0.10 ± 0.58 a, B 0.66 ± 0.22 a, B 1.48 ± 0.39 b, B
Fucus, Fucus spp.; Carrot, carrot leaves; Coco, coconut flesh. Data are expressed as mean of the different replicates per condition ± standard deviation (SD). Statistical differences (Tukey’s
pairwise comparisons, p ≤ 0.05) are indicated by different letters: lowercase letters (a–d) indicate differences in temperature and uppercase letters (A–D) indicate differences in diet.
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Fatty acid profiles of gammarids

The FA analysis of the diets revealed that Fucus was rich in

oleic acid (18:1n-9) (29.8%), whereas a-linolenic acid (ALA,

18:3n-3) was the most abundant FA in carrot leaves (26.5%). On

the other hand, the Coco diet showed high levels of SFA (90.4%),

such as lauric acid (12:0) (48.7%) and myristic acid (14:0)

(19.9%) (Table 2). Low levels of DHA (22:6n-3) were detected

only in the Fucus diet (1.1%), whereas EPA (20:5n-3) was also

present in Fucus (4.8%) and only in trace amounts (0.2%) in

Carrot. Moreover, the Coco diet had the lowest UI (6.2) whereas

the Fucus and Carrot diets showed similar levels (150.4 and

138.3, respectively), reflecting that the former is very poor in

PUFA and MUFA and rich in SFA, as compared to the

other treatments.

FA analysis of cultured G. locusta showed similar profiles when

different temperature treatments were compared (Table 3).

However, the two-way ANOVA of the FA analyses only showed

significant differences when comparing the different dietary

treatments (Table 4). One-way ANOVA of gammarids fed on the

different diets (Table 5) did not show significant differences in EPA

and DHA levels. The two-way PERMANOVA results did not show

differences in FA among different temperatures (F (3, 28) = 1.20, p =

0.29), or the interaction temperature and diet (F (6, 28) = 0.73, p =

0.74). Moreover, the two-way PERMANOVA revealed diet as the

main modulator of FA profiles (F (2, 28) = 8.97, p < 0.001). PCA

revealed that the first component (PC1) accounted for the 60.81%
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of variance of this dataset, whereas the PC2 accounted for the

19.19% of variance (Figure 1). The PCA loading plot showed

saturated fatty acids such as lauric acid (12:0) and myristic acid

(16:0) are separated on the negative side of PC1 from unsaturated

and polyunsaturated fatty acids including LC-PUFA such as

arachidonic ac id (20 :4n-6 , ARA), EPA (20:5n-3) ,

docosapentaenoic acid (22:5n-3, DPA), and DHA (22:6n-3),

which load on the positive side (Figure 1). On the other hand,

16:1n-7, LA (18:2n-6), and ALA (18:3n-3) load on the negative side

of PC2. This variable distribution drives the scores segregation

(Figure 1). The FA profiles of G. locusta fed on Coco are correlated

with SFA (Figure 1). Those fed carrots are associated with LA and

ALA, whereas those fed the Fucus diet are associated with LC-

PUFA, among others. It is also interesting to note that the scores of

the FA profiles of gammarids fed on the Fucus diet showed less

dispersion than those fed the carrot leaves and coconut diets (95%

ellipses, Figure 1). One-way PERMANOVA (F = 9.38, p < 0.0001),

however, showed that the three dietary groups were significantly

different (Supplementary Table S1). No significant differences were

found for PC2. Additional SIMPER analysis (Supplementary Tables

S2-S4) revealed that oleic acid (18:1n-9, OA) was the FA with more

dissimilarity between the Fucus diet and the other diet groups

(Carrot and Coco). On the other hand, the SIMPER analysis

comparing Carrot vs. Coco showed that the SFA were the FA

characteristic of the Coco diet.

Generally, G. locusta fed on Fucus showed FA profiles richer

in LC-PUFA (C20-24) than those fed on Carrot or Coco, whereas
TABLE 2 Relative FA composition (% of total FA) of diets used in the feeding trial.

Fucus Carrot Coco

12:0 1.1 1.1 48.7

14:0 11.4 1.4 19.9

16:0 13.6 17.5 9.3

16:1n-7 1.5 0.2 0.1

18:0 0.7 1.3 3.5

18:1n-9 (OA) 29.8 2.1 4.7

18:2n-6 (LA) 8.8 14.3 0.7

18:3n-3 (ALA) 3.3 26.5 0.1

20:4n-6 (ARA) 12.0 0.4 nd

20:5n-3 (EPA) 4.8 0.2 nd

22:5n-3 (DPA) nd nd nd

22:6n-3 (DHA) 1.1 nd nd

SFA 27.7 23.2 90.4

MUFA 32.4 2.8 4.7

n-3 PUFA 11.6 26.7 0.1

n-6 PUFA 21.6 14.9 0.7

n-3 LC-PUFA 6.0 0.3 nd

n-6 LC-PUFA 12.8 0.6 nd

UI 150.4 138.3 6.2
frontiers
Fucus, Fucus spp.; Carrot, carrot leaves; Coco, coconut flesh; OA, oleic acid; LA, linolenic acid; ALA, a-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA,
docosapentaenoic acid; DHA, docosahexaenoic acid; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; LC-PUFA, long-chain
polyunsaturated fatty acids; UI, unsaturation index; nd, not detected.
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G. locusta fed on Carrot showed the highest levels of PUFA

(<C20) such as LA and ALA (Table 3). Notably, levels of EPA

and DHA were detected in G. locusta fed on either Carrot or

Coco regardless of these FA not being present in those diets.

Regarding SFA, G. locusta fed on Coco showed higher

percentages as compared to G. locusta fed on either Fucus or

Carrot (Table 3). It is important to note as well that lower

percentages of SFA were detected in cultured G. locusta fed on

Coco in comparison with the Coco diet itself, while maintaining

moderate LC-PUFA levels.
Discussion

The nutritional profiles of gammarids have been studied as

alternative sustainable ingredients for aquafeeds (Kolanowski

et al., 2007; Baeza-Rojano et al., 2010; Baeza-Rojano et al.,

2013; Baeza-Rojano et al., 2014; Jiménez-Prada et al., 2018) due
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to the potential of these organisms to feed on a wide range of

sidestreams (Harlıoğlu and Farhadi, 2018). However, only a

few investigations have focused on culture strategies based on

the use of aquaculture and/or agriculture waste as primary food

(Alberts-Hubatsch et al., 2019; Jiménez-Prada et al., 2020), and

up to date, there are no investigations reporting on the effect of

food and different environmental conditions on the fatty acid

profile, growth, and survival of these organisms. In the present

study, juveniles of G. locusta survived and reached sexual

maturity in all the conditions tested for both temperature

and diet groups. Interestingly, the survival of G. locusta was

significantly lower at 20°C than at the rest of the temperatures.

This result supports the hypothesis that at 20°C there is an

acceleration of growth and reduction of the life cycle of G.

locusta, resulting in a faster length growth and therefore

metabolism, which results in an increased mortality

(Neuparth et al., 2002). Regarding the effect of different diets,

survival was significantly lower in G. locusta fed on Coco,
TABLE 3 Relative fatty acid (FA) composition (% of total FA) of samples of G. locusta fed different diets at four temperatures.

5°C
Fucus

5°C
Carrot

5°C Coco 10°C
Fucus

10°C
Carrot

10°C
Coco

15°C
Fucus

15°C
Carrot

15°C
Coco

20°C
Fucus

20°C
Carrot

20°C
Coco

12:0 0.2 ± 0.1 0.1 ± 0.08 6.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 11.6 0.7 ± 0.2 0.2 ± 0.1 8.2 0.2 ± 0.2 0.3 ± 0.1 8.7 ± 1.7

14:0 3.0 ± 0.4 0.7 ± 0.1 4.9 ± 0.1 3.4 ± 0.7 1.0 ± 0.2 12.9 2.8 ± 0.2 1.0 ± 0.3 9.1 2.4 ± 1.0 1.1 ± 0.5 7.3 ± 2.0

16:0 15.0 ± 0.3 17.2 ± 1.3 15.7 ± 0.8 16.2 ± 0.6 15.3 ± 1.5 31.8 16.6 ± 0.2 16.4 ± 0.6 37.0 18.9 ± 1.4 18.3 ± 2.6 19.7 ± 2.9

16:1n-7 2 ± 0.5 1.5 ± 0.5 1.7 ± 0.9 2.2 ± 0.5 2.5 ± 1.4 0.8 2.0 ± 0.6 3.4 ± 0.4 0.9 1.5 ± 0.2 2.4 ± 0.6 1.8 ± 0.7

18:0 2.5 ± 1.4 3.4 ± 0.6 3.9 ± 0.69 2.1 ± 0.2 2.8 ± 0.4 9.1 3.6 ± 0.9 3.3 ± 0.5 12.5 3.3 ± 1.0 5.6 ± 1.6 5.2 ± 0.7

18:1n-9
(OA)

29.7 ± 4.0 17.5 ± 2.5 26.2 ± 2.4 27.2 ± 3.4 17.6 ± 6.1 18.3 27.7 ± 3.0 14.0 ± 2.7 8.7 24.9 ± 2.6 16.1 ± 2.7 14.2 ± 4.9

18:2n-6
(LA)

7.3 ± 0.7 8.6 ± 1.7 4.5 ± 0.2 6.7 ± 1.1 10.0 ± 0.0 2.2 6.0 ± 0.6 13.9 ± 1.4 0.7 5.5 ± 0.8 7.8 ± 3.3 2.4 ± 0.1

18:3n-3
(ALA)

2.3 ± 0.7 5.4 ± 1.9 0.4 ± 0.0 2.6 ± 0.3 8.5 ± 2.4 nd 2.1 ± 0.6 12.0 ± 1.5 1.1 1.8 ± 0.4 5.9 ± 0.8 0.3

20:4n-6
(ARA)

10.1 ± 3.6 10.9 ± 2.6 13.2 ± 0.3 12.1 ± 0.8 8.3 ± 1.3 3.5 12.3 ± 1.3 4.8 ± 1.0 0.8 13.5 ± 1.9 4.1 ± 1.6 4.6 ± 0.1

20:5n-3
(EPA)

7.1 ± 3.5 7.5 ± 2.3 8.9 ± 0.3 9.9 ± 0.8 6.3 ± 1.1 1.7 10.8 ± 1.4 4.1 ± 0.7 1.4 12.6 ± 3.7 5.9 ± 0.8 9.7 ± 2.1

22:5n-3
(DPA)

0.4 ± 0.0 0.2 ± 0.0 0.1 ± 0.2 0.5 ± 0.1 0.1 ± 0.2 nd 0.6 ± 0.1 0.2 ± 0.1 nd 0.7 ± 0.3 0.2 ± 0.1 0.3 ± 0.1

22:6n-3
(DHA)

2.3 ± 0.6 3.3 ± 0.9 2.3 ± 1.7 2.4 ± 0.7 3.0 ± 0.4 0.6 2.6 ± 0.9 1.7 ± 0.4 0.4 3.0 ± 0.8 3.0 ± 1.1 3.0 ± 0.6

SFA 20.9 ± 0.7 22.1 ± 1.6 32.0 ± 1.6 22.2 ± 0.9 22.3 ± 0.9 66.8 24.1 ± 0.2 22.3 ± 0.7 69.2 25.8 ± 3.7 24.6 ± 4.9 37.1 ±
11.4

MUFA 36.0 ± 4.0 23.7 ± 3.0 31.9 ± 0.2 35.7 ± 1.8 25.3 ± 8.8 22.4 34.2 ± 2.0 24.0 ± 3.8 12.5 30.9 ± 2.3 23.9 ± 1.9 23.7 ± 2.7

n-3 PUFA 16.6 ± 1.3 20.0 ± 1.2 12.8 ± 0.3 18.3 ± 1.6 20.2 ± 1.1 2.3 17.6 ± 1.5 21.8 ± 3.1 2.9 19.7 ± 4.1 21.1 ± 6.5 15.2 ± 1.9

n-6 PUFA 21.2 ± 0.3 23.0 ± 2.3 19.0 ± 0.1 20.8 ± 0.9 20.1 ± 1.0 6.0 19.6 ± 1.3 20.4 ± 2.0 1.6 20.5 ± 1.4 19.0 ± 1.9 10.8 ± 5.5

n-3 LC-
PUFA

12.2 ± 0.4 13.8 ± 0.6 12.4 ± 0.3 13.6 ± 1.4 11.6 ± 1.1 2.3 14.3 ± 2.3 9.7 ± 4.0 1.8 16.5 ± 4.8 12.7 ± 6.2 13.2 ± 2.4

n-6 LC-
PUFA

13.5 ± 0.3 12.6 ± 2.6 14.5 ± 0.1 13.6 ± 0.8 10.1 ± 1.0 3.8 13.8 ± 1.3 6.5 ± 1.4 0.8 15.0 ± 2.1 9.4 ± 3.3 5.3 ± 0.2

UI 184.0 ± 2.2 193.7 ± 9.1 165.0 ± 2.1 189.5 ±
9.9

165.3 ± 2.2 53.8 184.5 ±
9.6

162.1 ±
11.8

30.0 196.7 ±
26.6

184.4 ±
40.6

136.9 ±
19.3
front
Fucus, Fucus spp.; Carrot, carrot leaves; Coco, coconut flesh.; OA, oleic acid; LA, linolenic acid; ALA, a-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA,
docosapentaenoic acid; DHA, docosahexaenoic acid; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; LC-PUFA, long-chain
polyunsaturated fatty acids; UI, unsaturation index; nd, not detected.
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whereas no differences were found between those of

gammarids fed on the Carrot and Fucus diets. The absence

of physiologically essential compounds such as LC-PUFA in
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the coconut diet may explain this difference (Jump, 2002;

Monroig et al., 2022). Indeed, it is tempting to hypothesize

that the high content of SFA in the diet may be related to an
TABLE 4 Two-way ANOVA results of the fatty acid composition of samples of G. locusta fed different diets at four temperatures.

Temperature Diet Interaction

F-test (2, 38) p-value F-test (3, 37) p-value F-test (6, 40) p-value

12:0 0.56 0.65 19.78 < 0.001 0.32 0.92

14:0 0.27 0.84 14.09 < 0.001 0.25 0.96

16:0 0.32 0.81 1.15 0.329 0.34 0.91

16:1n-7 0.63 0.60 1.34 0.275 1.38 0.26

18:0 0.75 0.53 9.24 < 0.001 1.02 0.43

18:1n-9 (OA) 1.23 0.31 32.13 < 0.001 0.89 0.51

18:2n-6 (LA) 1.59 0.21 8.79 < 0.001 1.84 0.12

18:3n-3 (ALA) 1.87 0.15 11.71 < 0.001 1.60 0.18

20:4n-6 (ARA) 1.19 0.33 8.96 < 0.001 1.79 0.14

20:5n-3 (EPA) 1.56 0.22 4.28 0.021 0.74 0.62

22:5n-3 (DPA) 1.07 0.37 8.82 < 0.001 0.45 0.84

22:6n-3 (DHA) 2.06 0.12 0.85 0.437 0.75 0.61

SFA 0.19 0.90 7.09 0.002 0.30 0.93

MUFA 0.80 0.50 25.03 < 0.001 0.54 0.78

n-3 PUFA 0.13 0.94 4.36 0.019 0.49 0.81

n-6 PUFA 0.84 0.48 7.38 0.002 0.76 0.60

n-3 LC-PUFA 1.19 0.33 2.93 0.065 0.61 0.72

n-6 LC-PUFA 1.14 0.35 8.72 < 0.001 0.99 0.44
fronti
OA, oleic acid; LA, linolenic acid; ALA, a-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; SFA, saturated fatty
acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; LC-PUFA, long-chain polyunsaturated fatty acids.
TABLE 5 Tukey’s post-hoc test after ANOVA of the fatty acid composition of G. locusta fed different diets.

p-value

Fucus vs. Carrot Fucus vs. Coco Carrot vs. Coco

12:0 0.95 <0.001 <0.001

14:0 0.25 <0.001 <0.001

16:0 0.52 0.34 0.90

16:1n-7 0.63 0.69 0.25

18:0 0.04 <0.001 0.13

18:1n-9 (OA) <0.001 <0.001 0.45

18:2n-6 (LA) 0.08 0.08 <0.001

18:3n-3 (ALA) <0.001 0.77 <0.001

20:4n-6 (ARA) 0.004 0.002 0.002

20:5n-3 (EPA) 0.033 0.07 1.00

22:5n-3 (DPA) 0.010 <0.001 <0.001

22:6n-3 (DHA) 0.94 0.41 0.61

SFA 0.58 0.002 0.023

MUFA <0.001 <0.001 <0.001

n-3 PUFA 0.99 0.03 0.04

n-6 PUFA 0.49 <0.001 0.03

n-3 LC-PUFA 0.21 0.07 0.76

n-6 LC-PUFA 0.01 <0.001 0.62
OA, oleic acid; LA, linolenic acid; ALA, a-linolenic acid; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; SFA, saturated fatty
acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; LC-PUFA, long-chain polyunsaturated fatty acids.
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impairment of the membrane composition and properties,

ultimately resulting in an increase in mortality under the

most stressful temperature conditions (Hazel and Eugene

Williams, 1990; Hazel, 1995; Ernst et al., 2016; Laila, 2021;

Zinoöcker et al., 2021). Noticeably, cannibalistic behavior was

observed in gammarids fed on a coconut diet, suggesting a

potential corrective mechanism towards the nutritional

impairment. Although LC-PUFA was low in carrot leaves,

the survival of gammarids fed on this diet was similar to that

obtained with Fucus. As previously reported by Alberts-

Hubatsch et al. (2019), this higher survival may be partially

explained by the presence of other health-promoting nutrients

like carotenoids that can thus compensate for suboptimal levels

of LC-PUFA (Saini et al., 2015; González-Peña et al., 2021).

Indeed, carotenoids are regarded as biomolecules that protect

against unspecific and oxidant stress conditions such as

suboptimal temperatures, which can ultimately cause

increased mortality in gammarids (Agnew and Taylor, 1986;

Neuparth et al., 2002; Wijnhoven et al., 2003). Significant

differences in total gammarid biomass outputs were found

when comparing different diets, and, regarding temperature,

only significant differences were found between 5°C and 15°C,

the latter having been reported as the optimal growth

temperature for G. locusta (Neuparth et al. , 2002).

Interestingly, culturing gammarids at 20°C and fed on Fucus

resulted in the highest output of biomass as well as final length

and SGR. This may be due to the combined effects of the high

nutritional value of the Fucus diet (Alberts-Hubatsch et al.,

2019) as well as the increased growth performance of G. locusta

when grown at 20°C (Neuparth et al., 2002) that compensates
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for the biomass loss associated with the abovementioned high

mortality rates detected at 20°C.

Under the present experimental conditions, G. locusta

showed similar FA profiles regardless of the rearing

temperature. Only slight differences among temperatures

within the same diet were evident, indicating either an

apparent lack of temperature effect or a much more

predominant dietary phenotypic impact. The FA dietary

fingerprint was noticeable in the Fucus treatment in the LC-

PUFA of the gammarid’s profiles, whereas Carrot treatment

resulted in higher levels of LA and ALA, and Coco induced

higher amounts of SFA such as lauric and myristic acids in the

final biomass. Interestingly, G. locusta fed on either Carrot or

Coco still showed EPA and DHA percentages similar to those of

G. locusta fed on Fucus, regardless of the absence of these LC-

PUFA in the diets. This finding is in agreement with the

potential capacity of gammarids for trophic upgrading, as has

been suggested by several authors (Baeza-Rojano et al., 2013;

Baeza-Rojano et al., 2014; Jiménez-Prada et al., 2018; Alberts-

Hubatsch et al., 2019; Jiménez-Prada et al., 2020), indicating that

these animals could bioconvert the short-chain FA present in

sidestreams into high nutritional value LC-PUFA via their

biosynthetic pathway.

LC-PUFA biosynthesis relies especially upon the gene

repertoire and in the coordinated action of two types of

enzymes (Monroig and Kabeya, 2018; Monroig et al., 2022).

These two enzymes, elongation of very long-chain-fatty acid

proteins (commonly known as “elongases”), and front-end

desaturases (also named “desaturases”), need to be present and

active in the organism in order to efficiently biosynthesize LC-
FIGURE 1

PCA of the fatty acid composition of G. locusta fed different diets and reared at different temperatures. Dots (blue), squares (red), and triangles
(black) are the scores of G. locusta fed on Fucus spp., carrot leaves, and coconut, respectively. Fatty acids responsible for the grouping pattern
are displayed in the biplot (green vectors); 95% confidence ellipses are shown. For the sake of clarity, and due to the lack of statistical
significance, temperature labels are not shown.
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PUFA such as EPA and DHA from dietary FA (Castro et al.,

2016; Monroig and Kabeya, 2018; Monroig et al., 2022). A recent

report on the three different elongases in the marine gammarid

E. marinus (Ribes-Navarro et al., 2021) indicates the potential

capacity for endogenous production of LC-PUFA in marine

gammarids, but the presence and activity of desaturases remain

to be elucidated. The presence of EPA and DHA can be due to

reasons other than endogenous biosynthesis, such as the

accumulation and retention of these FA from sources other

than the diet provided, like the occasional and practically

unavoidable presence of prey organisms such as copepods and

rotifers in the culture tanks during the experiment. These

organisms, particularly copepods, are characterized by having

high LC-PUFA contents (McKinnon et al., 2003; Miller et al.,

2008; Naylor et al., 2009; Nielsen et al., 2019; Boyen et al., 2020;

Kabeya et al., 2021). It should be noted, however, that during

the experiment, it was evident that gammarids fed actively on the

vegetal substrates, and although impossible to rule out, the

possible contribution of the above-mentioned accompanying

fauna entering the system as well as that of the rapid

development of biofilm seems at most testimonial. Other

factors, like the fungal contribution described in the digestive

process for the freshwater G. pulex (Chamier and Willoughby,

1986), can also be invoked to explain the presence of unexpected

components in the final profiles, but this can only be clarified in

experiments run in controlled conditions, far beyond the scope

of the present experimental design.

In summary, the present study demonstrates that

gammarids can be fed on agricultural sidestreams (carrot

leaves) wi thout dras t ica l ly a ffec t ing the ir growth

performance and survival when reared at temperatures

ranging from 5°C to 15°C. A culture at 20°C is not

recommended due to the impairment between growth and

survival. This study is the first study of this kind to show

interactions between rearing temperatures and novel feed

ingredients for this species, further steps (e.g., other under-

used sidestreams from agriculture) need to be taken to

optimize biomass gain in addition to survival. In particular,

this study shows that G. locusta can be a potential candidate

for applying circular economy principles by which sidestreams

such as carrot leaves can be used as the main feed for

gammarid culture and potential biomass generation. The

aim of this study was also to get independent from marine

resources, such as macroalgae, that can be costly or not

sustainable to use for feeding gammarids. Thus, showing

that at least carrot greens are providing sufficient nutrients

for a successful culture of G. locusta gives important directions

in terms of sustainability. Moreover, under the present

experimental conditions tested herein, diet has been

established as the main modulator of FA profiling in G.

locusta. However, a combination of agricultural and

aquaculture sidestreams, along with other modulating
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conditions such as salinity, should be considered in order to

set the best environment for large-scale gammarid production.

Aside from the strong phenotypic effect of diet on the final FA

profile, the presence of LC-PUFA like EPA and DHA, detected

on G. locusta fed on diets devoid of these compounds, points

towards unknown mechanisms of trophic upgrading beyond

the theoretical endogenous biosynthetic capacity of

the species.
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Barroso, E., Caamal-Monsreal, C., et al. (2013). Marine gammarids (Crustacea:
Amphipoda): a new live prey to culture octopus maya hatchlings. Aquac. Res. 44,
1602–1612. doi: 10.1111/j.1365-2109.2012.03169.x
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