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and Xinhuang Kang 

College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China

Estuaries and sewage outlets are key pathways for the transport of microplastics (MPs) 
from land to coastal waters. In this study, the spatiotemporal pattern, composition, and 
flux of MPs transported from land to Zhanjiang Bay (ZJB) in the South China Sea were 
investigated. The results showed that the overall mean MP abundance (± standard 
deviation) was 17.99 ± 9.72 items/L, with the highest in the normal season, followed 
by the dry and wet seasons. Fibers were the most dominant shape in these samples, 
blue was the most common color, and most MPs ranged between 100 and 330 μm. 
The MP diversity was higher in the wet and normal seasons than in the dry season. 
The highest seasonal flux of MPs was observed during the wet season, accounting for 
79.68%, with the largest contribution from the Suixi River. There was a significant positive 
relationship between the annual MP flux and river discharge (R² = 0.95, p< 0.001). 
Hydrological processes, human behavior, and weather conditions were key factors that 
contributed toward the spatiotemporal variation of MPs. Overall, the aim of this study was 
to provide baseline information on MP pollution in ZJB to help formulate control strategies 
for improving regional water quality and mitigating its pollution. In the future, this study 
can be used to assess the role of river basins and sewage outlets in transporting MPs to 
the estuaries and ocean.
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INTRODUCTION

The concept of microplastics (MPs) was first introduced in 2004 (Thompson et al., 2004). MPs are 
defined as small pieces of plastic that are less than 5 mm in size (GESAMP, 2015). They are known 
to affect aquatic organisms, cause environmental hazards (Desforges et al., 2015; Wright and Kelly, 
2017), and become one of the major carriers of pollutants (Faure et al., 2015; Mani et al., 2015; Zhang 
et al., 2015). Moreover, as they do not degrade easily and tend to remain in water for thousands of 
years (Ng and Obbard, 2006; Frias et  al., 2010; McCormick et  al., 2014), they are ubiquitous in 
the environment, including seawater and freshwater (Law et al., 2014), marine organisms (Sanchez 
et al., 2014; Peters and Bratton, 2016; Silva–Cavalcanti et al., 2017), air (Johnny et al., 2018), bottled 
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mineral water (Darena et al., 2018; Oßmann et al., 2018), and tap 
water (Tong et al., 2020) at varying concentrations.

As MPs have a higher specific surface area, their ability to 
adsorb pollutants increases (Reisser et  al., 2014). As a result, 
MPs are found in rivers and oceans, where pollutants are easily 
adsorbed (Browne et al., 2010; Yonkos et al., 2014; Fok and Cheung, 
2015). Previous studies estimated that more than 80% of marine 
litter comes from land-based sources and up to 90% of river litter 
comes from 10 rivers (Marine Litter Solutions, 2020). However, 
studies on the abundance, spatiotemporal composition, and flux 
of riverine MPs are limited, compared with those of marine MPs. 
Moreover, investigations on MPs in rivers have only recently 
been put into practice (Eerkes–Medrano et al., 2015; Rochman, 
2018; Eo et al., 2019). It has been shown that pollution sources, 
anthropogenic impacts, and hydrodynamics can influence MP 
accumulation and transport rates (Browne et al., 2011; Eerkes–
Medrano et al., 2015; Luo et al., 2019). Coastal river and sewage 
systems are often closer to land-based sources and are directly 
influenced by human activities (Pan et al., 2020). They play a key 
role in regulating the fate and transport of MPs in estuarine and 
marine habitats. Patterns for studying the characteristics of MPs 
in river systems are related to their sources, such as proximity to 
industrial and agricultural areas, high urban density areas, and 
wastewater discharge (Mani et al., 2015; Baldwin et al., 2016; Leslie 
et al., 2017). Although the proportion of plastics in wastewater 
as a percentage of freshwater is largely unknown, industrial and 
domestic wastewaters that enter estuaries and sewage outlets play 
an important role in MP pollution (Barnes et al., 2009; Lisa et al., 
2018; Luo et al., 2019). In addition, hydrological conditions are 
important factors that control the downstream export of MPs and 
influence river flow (Taryono et al., 2020). Coastal river estuaries 
are the predominant transport pathways (Lebreton et al., 2017; 
Schmidt et  al., 2017; Wu et  al., 2020), but they are complex 
dynamic systems that can accumulate, store, and recycle MPs 
at different spatiotemporal scales (Bai et al., 2022). Therefore, a 
comprehensive understanding of MP spatiotemporal patterns, 
compositions, and fluxes in estuaries and sewage outlets is 
required to provide a reference for the assessment of related MP 
pollution.

Zhanjiang Bay (ZJB) is a subtropical semi-enclosed bay 
located at the southernmost tip of the Leizhou Peninsula in 
Guangdong Province, mainland China (Zhang et  al., 2019b; 
Zhang et al., 2020a; Zhang et al., 2021a) and is the largest port 
in Zhanjiang City. Over the past decades, rapidly expanding 
mariculture, population growth, and economic development 
have led to environmental impacts on ZJB, including 
eutrophication (Zhang et al., 2019b) and harmful algal blooms 
(Zhang et  al., 2022a). However, with the advancement of 
economic activities and an increase in the population of 
Zhanjiang City, many rivers have become canals for industrial 
and domestic wastewater discharge (Zhang et  al., 2020b). 
Although previous studies have focused on nutrients from 
land-based sources entering coastal waters in Zhanjiang City 
(Zhang et al., 2019b; Zhang et al., 2020b; Zhang et al., 2021a), 
to the best of our knowledge, studies on MP pollution in the 
estuaries and sewage outlets of Zhanjiang City have not been 
conducted. To better understand pollution in ZJB, this study 

investigated land-based MPs in the coastal rivers and sewage 
outlets of ZJB during different seasonal periods.

To this end, coastal waters that were influenced by major 
adjacent estuaries and sewage outlets were selected for this study, 
which covered different land-based sources. The primary study 
objectives were as follows: (1) to determine the spatiotemporal 
distribution of MPs in the wet, normal, and dry seasons in ZJB; 
(2) to identify the composition and diversity of MPs input from 
land-based sources in ZJB; and (3) to quantify the land-based 
sources of MP flux into ZJB. This study aimed to provide a 
basis for understanding the transport of MPs from land-based 
sources to marine environments, and the possible contributions 
of anthropogenic activities as well as industrial and agricultural 
processes to MP pollution in ZJB.

MATERIALS AND METHOD

Study Area
ZJB is a semi-enclosed bay with weak hydrodynamic conditions. 
It is spread across an area of 193 km2 (Zhang et al., 2020a), having 
a total length of 54 km and a width of 24 km (Zhang et al., 2021a). 
In addition, it has a deep channel that is more than 10 m deep 
and 40 km long, and an estuary that is approximately 2 km wide. 
During the last three decades, human activities have disturbed 
the coastal environment, especially in the rapidly urbanizing 
and industrializing areas of the ZJB (Zhang et al., 2020c). Most 
of the rivers in ZJB were polluted by land-based agricultural, 
industrial, and domestic wastewater from neighboring areas of 
ZJB (Zhang et al., 2020c). More than 10 small seasonal rivers and 
sewage outlets discharge into the bay with varying discharge and 
nutrient loads, including the Suixi, Nanliu, and Lvtang Rivers. 
The largest of these rivers is the Suixi River, which is located at the 
top of ZJB. It carries runoff from key agricultural areas and is the 
largest freshwater flow into ZJB (Zhang et al., 2019b; Zhang et al., 
2020b). In this study, samples were collected from three estuarine 
monitoring stations and nine land-source input sewage outlets 
in ZJB (Figure 1). Land-based sources were sampled at different 
seasonal periods, considering the characteristics of the samples. 
The surroundings of these sampling stations were diverse and 
represented different areas of ZJB. Detailed information about 
each station is presented in Table 1.

Sampling and Analysis Methods
On the basis of the seasonal precipitation variation in Zhanjiang 
City in 2021, December, January, and February are classified as 
dry seasons; March, April, October, and November are the normal 
seasons; and May, June, July, August, and September are the wet 
seasons (Zhang et al., 2021a). Water samples were collected from 
12 land-based input stations for three field surveys on September 
19, 2021; October 30, 2021; and January 1, 2022, representing the 
wet, normal, and dry seasons, respectively (Zhao et  al., 2019). 
Note that data for four sampling stations (S3, S4, S5, and S9) 
in the wet season were obtained from Jian et al. (2022). All the 
tools used for this study were cleaned with distilled water prior 
to sampling. River water and wastewater samples were collected, 
stored, and measured according to the technical specification 
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requirements for monitoring surface water and wastewater 
(HJ/T91–2002) (MEPC, 2002a). Water samples were collected 
using portable samplers according to the Code for Liquid Flow 
Measurement in Open Channels (GB50179–93) (Ministry of 
Water Resources, 2005). Flow rates in each of the inlet rivers were 
monitored using a rotor flow meter (Zhang et al., 2021a). Sewage 
outlets 8 and 12 of the floodgate (Table  1) and the Hongxing 
Reservoir outlet estuary were closed during the survey period, so 
no water samples were available in January (dry season). A 5-L 
surface water sample was collected from the top 50 cm of each 
water body, after which the samples were promptly transported 
back to the laboratory.

In the laboratory, surface water samples were collected 
and passed through a 45-μm stainless steel sieve. The residue 
on the sieve was washed three times with ultrapure water and 
then transferred to a 100-ml beaker. To dissolve natural organic 
matter in the water samples, 10 ml of 30% H2O2 and 10 ml of 
0.05 M ferrous sulphate (FeSO4) solution were added to the 
samples, according to the National Oceanic and Atmospheric 
Administration (NOAA) protocol (NOAA, 2015). Then, this 
mixture was heated in a 75°C water bath for 24 h and cooled to 
room temperature (25°C) (Nuelle et al., 2014; Zhao et al., 2014). 

The samples were filtered using 10-μm glass fiber membranes 
under a vacuum pump. They were placed on an aluminium tray, 
air-dried at 75°C, and cooled in the same manner (as described 
above) for further analysis.

MPs retained on the filter membrane were systematically 
counted using a stereomicroscope (SMZ1270, Nikon, Japan) at a 
magnification of up to 40 x (Free et al., 2014; McCormick et al., 
2014; Gies et  al., 2018). MP particles were visually identified 
and had to meet the following criteria: (1) particles could not be 
broken using forceps, (2) particles were uniformly distributed in 
color, and (3) particles were free of tissue and cellular structures 
(Cole et al., 2011; Hidalgo–Ruz et al., 2012). The microscope was 
connected to a computer to capture images until each location 
was photographed (Zhao et al., 2020). The microscope resolution 
was limited to a minimum particle size of 45 μm, and the size was 
determined using the maximum length of each particle (including 
fibers). The number of MPs present in each photograph was then 
calculated manually and obtained by integration, after which they 
were classified according to their normalized sizes, colors, and 
shapes (Figure 3) (Li et al., 2021a). However, visual observation 
alone cannot fully and accurately identify MPs (Silva et  al., 
2018). In this study, the most common types of suspicious MPs 

TABLE 1 | Investigation of estuaries and sewage outlets.

Station Estuaries and Sewage Outlets Sources Longitude/°E Latitude/°N

S1 Hongxing Reservoir Aquaculture 110.4189 21.0569
S2 Donghai island aquaculture sewage outlet1 Aquaculture 110.3833 21.0722
S3 Donghai island aquaculture sewage outlet2 Aquaculture 110.3478 21.0739
S4 Nanliu River estuary Industry 110.3839 21.1528
S5 Lvtang River estuary Residential area 110.4131 21.2139
S6 Xiashan Sino–Australian Friendship Garden Residential area 110.4117 21.2444
S7 Jinsha Bay sewage outlet Tourism 110.3903 21.2708
S8 Sewage outlet of flood control sluice in Binhu Park Tourism 110.3878 21.2781
S9 Suixi River estuary Agriculture 110.3883 21.3928
S10 Guandu town aquaculture sewage outlet Aquaculture 110.4333 21.3861
S11 Guandu aquaculture sewage outlet Aquaculture 110.4567 21.3114
S12 Sewage outlet of flood control sluice in Dengta park Residential area 110.4344 21.2564

FIGURE 1 |   Geographic location and land-based sources input sampling stations in Zhanjiang Bay (ZJB).
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representing visual identification were selected. The analysis was 
performed by micro-Fourier transform infrared spectroscopy 
(Frontier, PerkinElmer, USA). The obtained spectra were 
compared with the library spectra on the instrument. Particles 
were identified as MPs only if they matched the spectral library 
by > 70% (Hidalgo–Ruz et al., 2012).

Quality Assurance and Control
Cotton lab coats were worn during all experimental steps, such 
as sampling, sample pre-treatment, and testing to protect the 
fibers from other clothing materials (Nuelle et al., 2014). During 
the experiments, glass/metal containers and instruments 
were covered with aluminium foil after rinsing several times 
with distilled water to prevent MPs from falling out. Prior to 
sample filtration, all solutions were filtered through a glass 
fiber filter membrane (47  mm diameter, 10 µm pore size) to 
prevent interference from external MPs. In addition, to prevent 
the effect of fibers on the filter membrane, the membrane was 
washed several times with distilled water. During sample pre-
treatment, a set of blank experimental procedures was prepared, 
where the same volume of ultrapure water was used in place of 
the seawater sample and treated as the other samples throughout 
the process. On average, four artificial fibers were detected on 
the filter membranes of the environmental blank group, which 
could be due to airborne MPs (Dris et  al., 2015; Prata, 2018; 
Zhu et al., 2019). The final data were corrected for the average 
MP concentration in the corresponding blank  group.

Quantifying the Diversity of Microplastics 
(MPs) Entering Zhanjiang Bay (ZJB) From 
Land-Based Sources
To estimate the complexity of MP types and sources in ZJB, the 
diversity indices D’ (MPs) were calculated according to Equation 
(1) (Wang et al., 2019; Huang et al. 2020b; Huang et al., 2021). In 
summary, three types of D’ (MPs), namely, size D’ (MPs), color 
D’ (MPs), and shape D’ (MPs) were calculated based on their 
shape, color, and size characteristics, respectively.

 D N
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


=
∑1

1

2

 (1)

where S is the number of MP categories, Ni is the number of MPs 
categorized into the ith type, and N is the total number of MPs 
in the sample.

Quantifying the Total Amount of MPs 
Entering ZJB From Land-Based Sources
MP exports were estimated from onshore sources of ZJB, which 
represented the MP flux from the most downstream main 
channel stations for which water discharge data were available. 
Therefore, each sampling station was used to quantify the flux of 
MPs transported from estuaries and sewage outlets to the coastal 
waters. The annual MP flux from the estuaries and sewage outlets 

was estimated using Equation (2), as follows (Zhang et al., 2019b; 
Zhang et al., 2020a):

 F C Qi i i= × × ×3600 24 120  (2)

where Fi (items) is the seasonal MP flux from land-based source 
i, Ci (items/m3) is the average MP abundance from daily land-
based source i, and Qi (m3/s) is the daily discharge from land-
based source i.

Thus, the total amount of MPs in ZJB was estimated using 
Equation (3):
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∑
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where Fi (items) is the single-season flux of 12 stations in ZJB 
and F (items) represents the cumulative number of MPs in three 
different periods in ZJB.

Statistical Analysis
Microsoft Excel 2019 was used for the analysis of MP data. 
Software Origin2022 (Origin Lab Corporation, Northampton, 
MA, USA) was employed for graphical analysis. Two-way 
ANOVA was used in SPSS28 to detect whether the two 
factors, namely, station and seasonal period significantly 
affected single and multiple elements. The former analyzed 
the abundance and flux of MPs, and the latter analyzed the 
characteristics (size, color, and shape). Pearson correlation 
coefficients were used to determine the correlation between 
MP flux and river discharge. All correlation analyses were 
determined to be significant at p< 0.05 and highly significant 
at p< 0.01. The station locations were mapped using ArcGIS 
10.2 (Esri Corporation, New York, USA).

RESULTS
Spatiotemporal Pattern of MPs in ZJB 
From Land-Based Sources
The abundance of MPs in ZJB from land-based sources during 
the wet, normal, and dry seasons was observed; however, no 
significant differences in MP abundance were found among 
stations or seasonal periods (p > 0.05) (Figure 2). MPs were 
detected in all water samples collected from 12 sampling 
stations, with a total mean abundance of 17.99 ± 9.72 items/L. 
Under the microscope, MPs were detected from 7.00 to 40.33 
items/L (average: 15.59 ± 8.94 items/L) in the wet season, from 
12.00 to 25.33 items/L (average: 18.90 ± 4.97 items/L) in the 
normal season, and from 3.33 to 45.52 items/L (average: 19.48 
± 13.66 items/L) in the dry season. The highest MP abundance 
in the dry season (45.52 ± 16.25 items/L) occurred at the 
Jinsha Bay sewage outlet (S7) and the lowest MP abundance 
(3.33 ± 1.15 items/L) occurred at Guandu aquaculture sewage 
outlet (S11).
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Spatiotemporal Composition of MPs in 
ZJB From Land-Based Sources
As shown in Figure  3A, among the six size groups (45–5000 
μm), MPs varied significantly with seasonal periods (p< 0.05) 
but not among the stations (p > 0.05). MPs between 100 and 
330 μm were the most abundant, accounting for 25.00%–50.00% 
of all detected MPs in the 12 stations during the wet season, 
18.92%–52.78% during the normal season, and 12.90%–59.04% 
during the dry season. The second most abundant MPs in the 
wet season, normal season, and dry season had size ranges of 
45–100 μm (28.91%), 330–500 μm (20.55%), and 500–1000 μm 
(21.78%), respectively. MPs with particle sizes less than 1,000 μm 
accounted for 87.02% of all samples and were mainly detected in 
the Guandu town aquaculture sewage outlet (S10) during the wet 
season, in the Suixi River estuary (S9) during the normal season, 
and in the Guandu aquaculture sewage outlet (S11) during the 
dry season. Thus, the smaller the particle size, the higher the 
abundance.

In addition, the 12 colors of MPs varied remarkably among 
seasonal periods (p< 0.05) but not among stations (p > 0.05) 
(Figure 3B). In the sewage outlet water samples, the main colors 
were black, multicolor, transparent, and blue. During the wet 
season, blue (24.94%) was the most common color, followed by 
transparent (17.55%), multicolor (15.14%), and black (10.47%). 
Black (21.67%) was the most common colors in the samples 
during the normal season, followed by transparent (20.96%), 
multicolor (20.71%), and blue (14.41%). Blue (36.11%) was the 
most prevalent color in the dry season water samples, followed by 
black (17.80%), multicolor (15.25%), and transparent (12.33%). 
All other colors accounted for less than 10.0% in each of the three 
seasonal periods. Brown was the least common colors found in 
our study, accounting for 1.08% of all samples.

Likewise, the shapes differed significantly among seasonal 
periods (p< 0.05) but not among stations (p > 0.05). Fibers 
were the most dominant component, ranging from 37.50% to 
93.75% in the wet season, from 63.89% to 95.12% in the normal 

season, and from 61.54% to 100.00% in the dry season at the 
12 stations (Figure 3C). This was followed by fragments in the 
wet (4.76%–50.00%) and dry seasons (0.00%–36.14%) and by 
films in the normal season (0.00%–33.33%). In this study, seven 
stations exceeded 80% of the fibers in the normal season, the 
nine stations in the dry season, compared with the four stations 
in the wet season. In short, fibers were more likely to be found 
close to sewage outlets.

Typical characteristics and compositions of MPs under the 
micro-FTIR were shown in Figure 4. The main polymers were 
found in selected samples of blue fragments (A), purple films 
(B), faded fibers that changed from blue to transparent (C), and 
black fibers (D), with the main types including polyacrylate (A), 

FIGURE 2 | Spatiotemporal pattern of MPs from land-based sources in ZJB coastal water.

FIGURE 3 | Spatiotemporal composition of MPs from land-based sources in 
ZJB (A, size; B, color; and C, shape).
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polypropylene (B), polyethylene terephthalate (C), and cellulose 
(D).

Seasonal Diversity of MPs Input From 
Land-Based Sources in ZJB
Variations in size, color, and shape were calculated separately 
according to Equation (1), and the diversity of the MP size, color, 
and shape indices, i.e., size D’ (MPs), color D’ (MPs), and shape 
D’ (MPs), was significantly different in each seasonal period  
(p< 0.05) (Figure 5). Size D’ (MPs) (0.69 ± 0.07) was significantly 
different from shape D’ (MPs) (0.43 ± 0.17) (p< 0.01), and color 

D’ (MPs) (0.74 ± 0.10) was significantly different from shape D’ 
(MPs) (0.43 ± 0.17) (p< 0.001) during the wet season. Shape D’ 
(MPs) (0.28 ± 0.12) was significantly different from size D’ (MPs) 
(0.75 ± 0.04) and color D’ (MPs) (0.78 ± 0.04), respectively, 
during the normal season (p< 0.001). In addition, shape D’ 
(MPs) (0.28 ± 0.16) was significantly different from size D’ (MPs)  
(0.73 ± 0.06) and color D’ (MPs) (0.73 ± 0.05), respectively, 
during the dry season (p< 0.001).

Quantifying the Total Amount of MPs in 
ZJB From Land-Based Sources
At the 12 sampling stations, the MP flux varied considerably 
during the three seasonal periods (Figure  6). On the basis of 
Equations (2) and (3), the flux of MPs into the sea was calculated 
during the wet, normal, and dry seasons. The annual MP flux into 
ZJB was 8.46 × 1013 items, including 79.68% in the wet season, 

FIGURE 4 | Typical MPs for identification and their composition. (A) Blue 
fragment, (B) purple film, (C) fading fiber from blue to transparent, and  
(D) black fiber.

FIGURE 6 | The total amount of MPs from land-based sources in ZJB.

FIGURE 5 | Seasonal diversity variation of MPs from land-based sources in 
ZJB.
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15.19% in the normal season, and 5.13% in the dry season. The 
highest flux of MPs was found in the Suixi River estuary (S9), 
accounting for 65.06%, 63.04%, and 32.13% in the three seasonal 
periods, respectively. In addition, its MP flux contributed the 
most to the annual MP load in ZJB, that is 63.06% of the total 
load, whereas the Jinsha Bay sewage outlet (S7) had the lowest 
contribution, that is 0.04% of the total load. Given that stations 
S1, S8, and S12 were closed during the dry season survey, their 
fluxes were zero, which also led to a relatively lower contribution 
of fluxes in the dry season.

DISCUSSION
Degree of Pollution of MPs Transported to 
the Sea in ZJB
As demonstrated in Table 2, almost all the sampling meshes 
used in this study were between 10 and 75 μm. As compared 
with other rivers and estuaries, ZJB had moderate levels of 
MP pollution. The seasonal variation of MPs in coastal waters 
varied because ZJB influenced by local aquaculture activities, 
sediment discharge, industrial wastewater discharge, 
precipitation, and anthropogenic influences (e.g., garbage 
that was not disposed properly and microfibers in the waste 
washing machine water) (Zhao et  al., 2019; Zhang et al., 
2020c; Zhang et al., 2020a). The concentration of MPs in ZJB 
was higher than that of the Chin Ling-Wei River (Bian et al., 
2022), Suzhou River (Luo et  al., 2019), Charleston Harbor 
(Gray et al., 2018), and Chishui River, South Carolina (Li et al., 
2021b). However, the range of MPs concentrations in ZJB was 
lower than that in other areas (Gray et  al., 2018; Yan et  al., 
2019; Zhang et  al., 2019a; Han et  al., 2020; Devereux et  al., 
2022). The high abundance of MPs in all studies may be due 
to a combination of economic development (commercial and 
tourism activities), human activities (agricultural cultivation, 

aquaculture, wastewater removal, solid waste management, 
industrial emissions, and land use), geographical features 
(rivers at mid-upper levels, weak hydrodynamics, prevailing 
winds, and ocean currents), and population density; the 
relatively low abundance of MPs may be mainly ascribed to one 
of the factors. In the present study, ZJB was observed to have a 
relatively high abundance of MPs due to its semi-enclosed bay 
as well as poor hydrodynamic exchange conditions because 
of reclamation, especially in the northern and northeastern 
waters of the bay (Zhang et  al., 2016; Zhang et  al., 2020c). 
Other studies have shown that seasonal variation in MP 
abundance was usually related to rainfall, temperature, and 
sea breeze (Cheung et  al., 2016; Eo et  al., 2019). The results 
of this study showed that the abundance of MPs was high 
during the normal and dry seasons but relatively low during 
the wet season. In addition, the river flow varied in different 
seasonal periods. During the wet season, a large amount of 
rainfall-runoff washed away a large number of MPs (Li et al., 
2021a), which might lead to the dilution of MPs (Liu et  al., 
2021). Rivers were known to be the major pathways for the 
deposition of MPs in the adjacent oceans (Lebreton et  al., 
2017; Zhu et  al., 2019). Changes in MP concentrations were 
influenced by human activities (Cole et al., 2011; Barboza and 
Gimenez, 2015; Zhu et  al., 2019), hydrodynamics of land-
based sources, and coastal waters influences (Zhang et  al., 
2020b).

Factors Controlling the Spatial  
Variation of MPs in ZJB

The spatial variation of MPs in estuaries and sewage outlets 
near ZJB may be influenced by a variety of environmental 
factors, such as weather conditions, watershed characteristics 
(Thiel et  al., 2003; Kukulka et  al., 2012), and anthropogenic 
activities (Browne et al., 2011; Zhang et al., 2015; Wang et al., 

TABLE 2 | Comparison of the abundance of MPs in ZJB with other rivers and estuaries.

River Sampling time Average concentration (items/L) Meshmethods Reference

Thames River at Westminster, UK January 2020 51.20 11-μm Whatman filter paper Devereux et al., 2022
Chin Ling–Wei River August 2020 9.81 75-µm stainless steel sieve Bian et al., 2022
Chishui River – 6.19 ± 4.08 75-μm screen Li et al., 2021b
Sanggou Bay November 2015 

March 2016
20.06 ± 4.73 30-μm steel sieve Xia et al., 2021

Yellow River estuary July 2018, 
March 2019

Wet season: 497.0 
Dry season: 930.0

50-μm stainless steel sieves Han et al., 2020

Pearl River December 2017 19.86 50-μm stainless steel sieve Yan et al., 2019
Suzhou River April to September 2017 7.4 20-μm nylon 

filters
Luo et al., 2019

Small-scale estuaries, Shanghai September to 
October 2018

 27.84 ± 11.81 10-μm nylon 
filters

Zhang et al., 2019a

Charleston Harbor, South Carolina June to August 
2014

6.6 ± 1.3 63-μm stainless steel sieve Gray et al., 2018
Winyah Bay, South Carolina 30.8 ± 12.1
Zhanjiang Bay Wet season: 

September 19, 2021 
Normal season: 
October 30, 2021 
Dry season: 
January 1, 2022

17.99 ± 9.72 45-μm 
stainless steel 
sieve

This study
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2017). Seasonal streamflow is a predominant factor that affects 
the spatial variation of MPs. Therefore, a high proportion 
of MP flux during the wet season may be due to the large 
freshwater discharge caused by rainfall, especially tropical 
storms (Kubo and Yamahira, 2020; Zhang et  al., 2020c). In 
addition, the Suixi River is the largest contributor to the flux 
of MPs discharged into ZJB, which is mainly influenced by 
agricultural activities and rainfall-driven runoff (Zhang et al., 
2019b). In contrast, owing to its proximity to the beach and 
the lack of dynamic tidal dynamics, most MPs at the Jinsha 
Bay sewage outlet (S7) tend to accumulate in the high tide 
area and on the dry beach, resulting in reduced water flow 
and MP flux (Kim et  al., 2015; Lefebvre et  al., 2021; Zhang 
et  al., 2022b). Concentrations of MPs vary considerably 
between estuaries and sewage outlets in ZJB, indicating 
different anthropogenic disturbances within the coastal 
watershed (Zhang et  al., 2020c). The limited sample size in 
our study may have contributed to the spatial heterogeneity 
of MPs in water samples (Zhao et al., 2015; Wang et al., 2017). 
Sewage discharges and garbage accumulation are some of 
the important land-based sources of plastic waste to coastal 
waters through surface runoff or estuaries (Fendall and Sewell, 
2009); Hidalgo–Ruz et al., 2012). For example, the industrial 
area is in close proximity to the Nanliu River Estuary (S4), 
where wastewater is discharged. The Lvtang River estuary 
(S5) is surrounded by residential areas, so residents inevitably 
discharge domestic wastewater into the river or dispose 

plastic wastes in the river, which undergoes degradation and 
produces MPs. (Zhang et al., 2019b; Jian et  al., 2022).

Interactions Between Discharge and MP 
Flux in Estuaries and Sewage Outlets
Measurements, such as discharge, are often used to derive 
fluxes throughout rivers or watersheds (Luo et al., 2019). Zhao 
et  al. (2019) used average MP concentrations from field data 
to calculate annual plastic fluxes. Mai et al. (2019) used Manta 
trawls (330 µm) to sample MPs in the surface waters of the Pearl 
River Delta by multiplying MP concentrations by river flow to 
calculate riverine MP input. However, there is no single method 
for estimating river MP fluxes. Many factors influence riverine 
MP flux estimates, including different sampling methods (Bai 
et al., 2022), seasonal variations (Eo et al., 2019), small sampling 
volumes (Park et al., 2020), ease of river sampling (large, fast, or 
rivers with high suspended loads greatly affect river fluxes) (Bai 
et al., 2022),  efficiency of sewage outlets (Siegfried et al., 2017), 
and incomplete MP data (Zhao et  al., 2019). In this study, the 
same sampling method was used in all three seasonal periods 
to ensure data integrity and thus reduce the uncertainty in 
estimating the flux of MPs. River discharge was determined by 
water depth, water width, and channel velocity, whereas flux was 
determined by river discharge, mean abundance of MPs, and 
time of day. There was a significant positive linear relationship 
(p< 0.001) between MP flux and river discharge during the wet 
and normal seasons in ZJB (Figures  7A, B), which could be 

A B

DC

FIGURE 7 | Linear regression relationships between river discharge and flux of MPs in ZJB. (A) Wet season, (B) Normal season, (C) Dry season, and  
(D) All seasonal periods.
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attributed to the fact that the input of MPs were mainly due to 
land-based sources (runoff-dominated Suixi River and MPs 
flowing into sewage outlets due to anthropogenic activities) 
and meteorological processes (affecting the instantaneous 
concentration and spatial accumulation of MPs, such as 
wind and rain), resulting in their accumulation in surface 
waters (Browne et  al., 2011; Barboza and Gimenez, 2015; 
Luo et  al., 2019). In this study, no direct linear correlation 
(p > 0.05) was observed during the dry season (Figure 7C). 
This may be due to anthropogenic influences (e.g., closure 
of sewage outlets, resulting in low water flow velocity as well 
as low depth, and thus small flux of MPs) at some stations 
(Guandu Town aquaculture sewage outlet S10 and Guandu 
aquaculture sewage outlet S11) (Besseling et  al., 2017; Bai 
et  al., 2022). However, the low river discharge but high MP 
flux in the Nanliu River estuary (S4) may be influenced by 
a combination of prevailing hydrological processes (channel 
morphology, turbulence, and tides) (González–Fernández 
et al., 2019; Luo et al., 2019; Bai et al., 2022) and wastewater 
treatment efficiency (Max et al., 2017). In general, there was 
a significant positive linear relationship between MP flux and 
river discharge (p< 0.001) (Figure  7D), which also revealed 
that estuarine and effluent discharges were the main factors 
limiting MP flux. However, the river discharges obtained in 
this study were transient, which could have been responsible 
for the elevated or reduced results. Therefore, further studies 
should focus over longer time scales to consider the temporal 
variability of MPs and estimate the flux of MPs with greater 
confidence.

Mitigation Strategies to Reduce the 
Accumulation of Contaminated MPs From 
Land-Based Sources
Tracing pathways of primary MPs will help in understanding 
the influencing factors and in developing monitoring strategies 
for the accumulation of MPs in rivers and sewage outlets. 
From the perspective of the spatial imbalance of land-based 
source inputs, the predominant source of MP pollution 
probably originated from the Suixi River estuary (S9), which 
had the highest runoff volume. The Suixi River contributed 
significantly to the load of MPs in ZJB during all seasonal 
periods, which was mainly due to two reasons. First, it was 
the largest freshwater river in ZJB with an area of 1,486 km2 
(Zhang et al., 2019b). On the other hand, the Suixi River Basin 
was dominated by agricultural land. Because heavy rains in 
summer and improper disposal of plastic wastes, which got 
exposed to the environment, broke into MPs, and entered 
rivers (Zhang et al., 2019b; Jian et al., 2022). Therefore, to 
improve the water quality in the estuary and along the coast, 
more attention should be paid to their source areas during the 
traceability process, and measures should be taken to control 
the sources of pollution in the Suixi River basin. In addition, 
the sources of MP pollution in the Nanliu River Estuary (S4) 
were industrial plants in the vicinity. The effluents from these 
plants contained large amounts of MPs that were discharged 
into coastal waters (Zhang et al., 2019b; Jian et al., 2022). The 

MPs in the samples were mainly 100–330 μm, which were 
typical of MPs from sewage outlets. This explained why smaller 
MPs that were a source of shoreline and rivershore sediments 
should be tracked and treated (Browne et  al., 2011; Klein 
et  al., 2015). In addition, aquaculture areas in inland waters 
(S1, S2, S3, S10, and S11) were used for the culture of shrimp, 
crabs, and finfish. During rearing, nets and ropes made of 
polypropylene were widely used in fisheries around the world, 
including in China and Southeast Asian countries, to increase 
production (Xue et  al., 2020). Mechanical wear and tear of 
these plastic fishing gears due to regular stocking, feeding, 
and catching could result in the release of large amounts of 
MPs into the marine environment. Moreover, the Lvtang 
River estuary (S5) in this study was heavily contaminated 
by untreated municipal wastewater discharge (Zhang et  al., 
2019b), which included a large number of fibers (cellulose). 
This was consistent with the study by Huang et al. (2020a), who 
found a high percentage (70%) of fibers in fish from mangrove 
wetlands in ZJB, probably from fiber fishing gear and residual 
fibers from residential washing machines (Cole et al., 2011). 
Therefore, proper regulation of aquaculture activities, such as 
shifting from crude to intensive fisheries while maintaining the 
carrying capacity of the ecosystem, can help reduce the total 
amount of MP pollution. The establishment of wastewater 
treatment plants may reduce the impact of MPs on rivers 
and coastal waters. Furthermore, polyethylene terephthalate 
was mainly used in food packaging, fast food containers, 
or plastic containers (Du et  al., 2020), which were often 
unintentionally released and then stranded in tourist areas 
(S7 and S8) (Vidyasakar et  al., 2020). Blue MPs were most 
abundant in sewage outlets adjacent to urban living areas (S6 
and S12). They were most likely to come from packaging waste 
from surrounding residential areas and polluted wastewater 
containing paint from fishing boats (Aliabad et  al., 2019; Li 
et al., 2020). Therefore, advanced cleaning technologies should 
be developed in tourist areas to track and recycle plastic debris 
to reduce MP pollution (Zhang et al., 2022b). In addition, the 
government should implement policies in residential areas to 
reduce the production of MPs by calling on residents to recycle 
water and eliminating the practice of littering plastic products 
in public places.

CONCLUSION

Spatiotemporal patterns, compositions, and fluxes were 
investigated in the estuaries and sewage outlets of ZJB. The 
abundance of MPs in ZJB ranged between moderate and high, 
as compared with that in similar rivers. MP pollution was mainly 
caused by smaller-sized MPs (100–330 μm), with fiber being 
the dominant shape and blue being the most abundant color. In 
addition, the diversity of MPs varied significantly. Moreover, 
the annual MP flux increased remarkably with river discharge, 
with the Suixi River contributing the most to the MP flux. This 
study also indicated the widespread presence of MPs in local 
watersheds, which helped quantify the total amount of MPs 
and provided an effective mitigation strategy for ZJB. Future 
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studies should focus on tracing the fate and transport of MPs 
to gain insight into MP pollution from land-based sources into 
the  ocean.
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