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The ability of synthetic aperture radar (SAR) to capture maritime phenomena is

widely acknowledged. However, ocean SAR scene automatic classification

remains challenging due to speckle noise interference, the nonlinearities and

poor distinguishability of different geophysical phenomena. Kernel entropy

component analysis (KECA) was recently proposed as a feature extraction

approach. It is capable of handling nonlinear data and revealing different

structures of interest. However, KECA suffers from high computational

complexity, meaning it cannot penetrate deep for finer feature extraction. To

address this issue, this paper proposes an efficient multilayer convolutional

kernel network (denoted as KECANet) equipped with KECA for ocean SAR

scene classification. The pivoted Cholesky decomposition is employed to

accelerate KECA filtering in the network. KECA was trained on hand-labeled

but limited samples describing ten oceanic or atmospheric phenomena.

Several conventional and state-of-the-art deep learning methods were also

included for comparison. According to the classification experiments, KECANet

can greatly improve the classification precision of geophysical phenomena,

considering that the precision, recall and F-score values increased by 13.3%,

2.3% and 12.2% in average. Overall, the results suggest that KECA is a promising

approach for various applications in remote sensing image recognition.

KEYWORDS

synthetic aperture radar, kernel entropy component analysis, convolutional kernel
network, oceanic phenomena detection, cholesky decomposition
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1 Introduction

The synthetic aperture radar (SAR) has been widely applied

in different fields as a result of its unique advantages, including

its high resolution, wide swath, and all-time and all-weather

application. However, SAR imagery has speckle noise

interference and a unique imaging mechanism, which makes

target classification in SAR images challenging (Gommenginger

et al., 2019; Wang et al., 2020b). Ocean SAR scene classification

is particularly difficult due to the following four issues:
Fron
1. Environmental conditions, e.g., ocean eddies and wind

speed, give rise to the complex features typical of

oceanic phenomena in SAR images (Marghany, 2014;

Wang et al., 2019a);

2. The distinguishability of backscattering characteristics

among various ocean phenomena in SAR images is

relatively poor, as compared with their different

geometric properties exhibited in the real world (Yan

et al., 2020);

3. Limited labeled data are available for modeling due to

the long acquisition period and expensive labeling

process (Xie et al., 2021);

4. The transmitted signal from the ocean scene to the SAR

image can be extended to include nonlinearity and

dispersive effects (Krogstad et al., 1994).
To resolve the aforementioned problems, a variety of

interesting works have been published with acceptable results

(Clausi, 2001; Wu and Liu, 2003; Salberg and Larsen, 2018).

These include the especially impressive performances achieved

by Convolutional Neural Network (CNN)-based deep learning

methods in recent years (Lima et al., 2017; Franz et al., 2018;

Krestenitis et al., 2019; Wang et al., 2019b; Li et al., 2020; Li et al.,

2022). Lima et al. (2017) attempted to implement automated

detection of oceanic fronts in sea surface temperature images

using a fine-tuned CNN model, which obtained a significantly

higher accuracy than other methods in the experiments.

Lguensat et al. (2018) developed a network named EddyNet to

achieve effective oceanic eddy detection in sea surface height

images. Bao et al. (2020) proposed a detection framework for

internal waves using faster regions with convolutional neural

networks. This not only obtains nearly 95% recognition

accuracy, but achieved a high detection speed of 0.22 s/image.

A variant of Inception-v3 CNNs (denoted CMwv) (Wang et al.,

2019b) was also employed for automatic SAR image

classification, thereby obtaining the optimal accuracy in the

detection of geophysical phenomena predefined in the

Sentinel-1 satellite SAR dataset. Owing to the multilayer

structure, these CNN-based models can robustly extract high-

level features of different oceanic phenomena, which is

chal lenging for automated classification in marine

environments (Wang et al., 2020a; Yan et al., 2020). One of
tiers in Marine Science 02
the core layers in CNNs is the convolutional layer. This helps the

networks extract features from original data using several

learnable filters (Qaraei et al., 2021). Training of such filters in

conventional CNNs is implemented by the Adam (Kingma and

Ba, 2014) or Stochastic Gradient Descent rule (Bottou, 2012).

Although these rules can obtain state-of-the-art results, training

CNNs remains difficult since conventional CNNs are required to

learn millions of parameters, which in turn requires a huge

amount of computational resources (Qaraei et al., 2021). In

response to this problem, Chan et al. (2015) proposed an

efficient CNN (known as PCANet), which uses a two-layer

Principal Component Analysis (PCA) structure to learn filters.

PCANet is not only layer-wise trained, but can achieve

performances on par with the complex deep learning methods

for object detection and image classification in the remote

sensing field (Gao et al., 2016; Low et al., 2017; Du et al., 2019;

Zhang et al., 2020). One limitation of PCANet, however, is that it

seeks a linear subspace in which the variance of the input data is

maintained at its maximum, meaning that PCANet cannot

reveal nonlinear information within remote sensing imagery

(Qaraei et al., 2021).

In order to extract more nonlinear features from input data,

Mairal et al. (2014) established a new CNN scheme, known as

the Convolutional Kernel Network (CKN), bridging a gap

between neural networks and kernel methods. CKNs mainly

use kernel approximation tricks, such as the Nyström method

(Bo and Sminchisescu, 2009) or Random Fourier Features (RFF)

(Rahimi and Recht, 2007), to obtain a stack of kernel feature

maps, which can be received as multilayer neural networks.

Mohammadnia-Qaraei et al. (2018) proposed a new CKN using

a fast approximation method based on RFF, which achieved a

higher accuracy and faster speed for face recognition than

conventional CKNs. Mairal (2016) designed a convolutional

kernel network in the context of unsupervised learning, whose

applicability has been demonstrated in image classification and

super-resolution experiments. Qaraei et al. (2021) developed a

CKN that is structurally similar to PCANet, known as

RNPCANet, which extends the training techniques of PCANet

to a nonlinear case using a randomized kernel approximation

trick. The core of RNPCANet relies on the theory of Kernel

Principal Component Analysis (KPCA) (Schölkopf et al., 1998).

More specifically, RNPCANet implicitly maps the patches from

the input data to a higher dimensional feature space, i.e.,

Reproducing Kernel Hilbert Space (RKHS), using kernel

approximation. Then, the principal components extracted in

RKHS, i.e., the eigenvectors associated with the top eigenvalues,

are employed to assign the filters of each layer (Qaraei et al.,

2021). Although RNPCANet equipped with KPCA is superior to

traditional CKNs and PCANet in image classification

experiments, it performs feature extraction by selecting the top

eigenvalues and the corresponding eigenvectors, which cannot

reveal the underlying structure of the input data from the

perspective of information theory (Zhang and Hancock, 2012).
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A novel information-theoretic method, namely kernel

entropy component analysis (KECA), was proposed for the

nonlinear processing of image patches (Jenssen, 2009). KECA

aims to seek optimal eigenvectors (defined as entropic

components) in RKHS that can compress the Rényi entropy

information of the input space as much as possible instead of

selecting top eigenvalues (Bai et al., 2019; Bai et al., 2020a). As

compared to the principal components obtained by KPCA that

solely correspond to the ranking order of eigenvalues, entropic

components are strikingly different and oriented towards the

maximum Rényi entropy of the input data (Jenssen, 2009). More

specifically, KECA preserves the maximum Rényi entropy in the

input space via a kernel matrix using Parzen windowing. Then,

only the eigenvectors contributing the most entropy to the input

data are selected as the nonlinear features extracted in RKHS.

These distinguished characteristics make KECA superior to

KPCA in image classification and data transformation

(Gomez-Chova et al., 2011; Izquierdo-Verdiguier et al., 2016;

Bai et al., 2020b). Despite the theoretical appeal, KECA suffers

from low efficiency of representation and high computational

complexity, as it engages in computing entropic components of

the kernel matrix. This leads to the relatively poor performance

in computer vision tasks when using KECA as compared to

CNN- or CKN-based methods, since KECA cannot penetrate

deep for finer feature extraction.

To address the aforementioned problems in ocean SAR

scene classification using machine learning methods, we

propose an efficient multistage CKN, namely KECANet, to

automatically classify several typical geophysical phenomena

observed in the sea. In every stage of KECANet, every patch is

explicitly mapped to a RKHS or feature space using a kernel

approximation technique called the pivoted Cholesky

decomposition (Harbrecht et al., 2012). Thus, each patch can

be projected on a nonlinear subspace using Nyström-type low-

rank KECA as convolution filters. An adjacent layer with mean

pooling was also added to average the filter responses. Then,

multiple convolution layers can be used to learn the high-level

features of oceanic phenomena. At the end of all the stages,

similar to PCANet, we use binary hashing in combination with

block-wise histograms to capture nonlinear information and

encode the features. KECANet was evaluated in image

classification tasks using a hand-annotated SAR dataset (Wang

et al., 2019a) in terms of the detection of 10 geophysical

phenomena that often occur on the ocean surface. The

experimental results show that KECANet outperforms

traditional and state-of-the-art methods in terms of

classification accuracy. The code was made publicly available

for result reproduction.

The main contributions of this work are as follows.
Fron
1. In comparison to CKNs, KECANet is structurally more

similar to CNNs but can be trained with the goal of

retaining the maximum Rényi entropy of the input data.
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In contras t to CNNs , KECANet has fewer

hyperparameters and layers, making training much

easier.

2. In each stage of the network, KECANet can capture the

nonlinear structure of the patches, unlike PCANet,

which utilizes linear PCA. Additionally, KECANet can

achieve more accurate classification results using less

memory than PCANet (please refer to section 3).

3. To the best of our knowledge, this is the first time KECA

has been utilized in the context of deep learning

methods. Additionally, it can mitigate the high

computational complexity often required for kernel

matrix evaluation.

4. KECANet is not only robust in handling image noise,

but it can obtain the regional and seasonal statistics of

different geophysical phenomena (e.g., sea ice) and help

evolve certain aspects of numerical ocean models.
The remainder of this paper is divided into the following

three sections: data description and the design of the proposed

method, the analysis of the experimental results, and the

concluding remarks.
2 Material and methods

In this section, to facilitate understanding of KECANet, the

datasets utilized in this study are first described. Thereafter, we

review several basic concepts related to KECA. Finally, we

present a detailed description of the ocean SAR scene

classification process of the new network.
2.1 Data illustration

Since SEASAT in 1978, several satellite missions, including

ERS-1/2 (1991–2003), RADARSAT-1/2 (1995–present),

TerraSAR-X (2007–present), Sentinel-1 (S–1) (2014–present),

and Gaofen (GF)-3 (2016–present), have provided ever-

improving ocean SAR images. The S-1 mission receives the

most attention as it is the only satellite that provides publicly

available routine SAR wave mode (WV) measurements at the

global scale (Torres et al., 2012; Potin et al., 2016; Bioresita et al.,

2018; Bjerreskov et al., 2021). Additionally, its production is

characterized by the outstanding characteristics of a large scene

footprint and a fine spatial resolution. Therefore, S–1 SAR data

were adopted in this paper to implement global-scale

classification of an ocean SAR scene.

2.1.1 Sentinel-1 wave mode
WV is the default imaging mode operated by the microwave

SAR instruments on S-1 satellites, which are two polar-orbiting
frontiersin.org
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and sun-synchronous, namely, S-1A and S-1B. WV obtains

small SAR image scenes (defined as imagettes) at two

alternating center incidence angles of 23° (WV1) and 36.5°

(WV2). Both angles often apply in linear vertical (VV) image

transmission and polarization receival, although certain

horizontal (HH) images have been acquired during special

phases. The size of each imagette is 20 × 20 km with a 5 m

spatial resolution. This paper mainly focuses on S–1A WV data,

as S–1B SAR data essentially have equivalent characteristics

(Wang et al., 2019b).

2.1.2 TenGeoP-SARwv dataset
Wang et al. (2019a) constructed an ocean SAR dataset that

includes more than 37,000 S–1 20 × 20 km imagettes, namely,

the TenGeoP-SARwv dataset, which is of great use for scholars

and users when modeling in geoscience, remote sensing, and

deep learning applications. Specifically, the total number of

imagettes in this dataset is 16,068 and 21,485, which were

obtained under the WV1 and WV2 modes, respectively. Each

imagette in this dataset is labeled corresponding to 10

atmospheric or oceanic phenomena (please refer to Figure 1):

atmospheric fronts (AF); biological slicks (BS); icebergs (IB);

low-wind areas (LWA); microconvective cells (MCC); oceanic

fronts (OF); pure ocean waves (PW); rain cells (RC); sea ice

(SI); and windstreaks (WS). Additionally, data quality control

was implemented according to the following two steps: first,

the raw products were converted into the Normalized Radar

Cross Section (NRCS) by applying the nominal calibration

method proposed by the European Space Agency; second, the

NRCS was recalibrated to reduce the incidence angle effect with

the CMOD5n model function. The dataset was made publicly

available at http://www.seanoe.org/data/00456/56796/
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provided by the French Research Institute for Exploitation of

the Sea (IFREMER). Figure 2 shows the distribution of the

TenGeoP-SARwv dataset in a 5 × 5° global spatial grid. As can

be seen, the data coverage is nearly complete over the Pacific,

Indian, and South Atlantic oceans. However, the SAR image

density in each region is relatively low considering that the

largest number of WV images is smaller than 50. Carrying out

geophysical phenomena classification is made difficult by this

lack of data.
2.2 Kernel entropy component analysis

As the name implies, KECA attempts to select the most

entropic components instead of variance-based or principal

components in KPCA to extract features of interest. As is well

known, the concept of Rényi quadratic entropy is as follows:

H(p) = − log
Z

p2(x)dx (1)

where p(x) denotes the probability density function.

Equation (1) can be regarded as the measure of information

derived from the given input imagesX = ½x1,…, xN �(xi ∈ RD)

in KECA (Jenssen, 2009). Considering the monotonic

property of logarithmic function, Equation (1) can be

simplified as follows:

V(p) =
Z

p2(x)dx (2)

Using a kernel ks (x, xt) of the Parzen window density

estimator combined with the width coefficient s (Jenssen,

2009), Equation (2) is converted to
FIGURE 1

Description of the TenGeoP-SARwv dataset. Ten examples of defined geophysical phenomena: atmospheric fronts (AF); biological slicks (BS);
icebergs (IB); low-wind areas (LWA); microconvective cells (MCC); oceanic fronts (OF); pure ocean waves (PW); rain cells (RC); sea ice (SI); and
windstreaks (WS).
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V(p) ≈ V̂ (p)

= 1
N o

x∈X
p(x)

= 1
N o

xi∈X

1
N o

xj∈X
ks (xi, xj)

= 1
N2 1TK1

(3)

where K = fKijjKij = ks (xi, xj)g is the kernel matrix and 1 is

an N-dimensional vector containing all ones. Employing

eigendecomposition (Jenssen, 2009)

K = AAT = WD
1
2

� �
D

1
2WT� �

(4)

Equation (9) can be transformed into

V̂ (p) =
1
N2 o

N

i=1

ffiffiffiffi
li

p
1Twi

� �2
(5)

where the eigenvalues l1,⋯, lN corresponding to w1,⋯,wN

is reserved as the entropy estimate. In another word, KECA

performs feature extraction not by the eigenvectors associated

with the top Nc eigenvalues but by the axes contributing most to

the Rényi entropy estimate V̂(p) (Jenssen, 2009; Bai et al.,

2020a). This can be concluded as the most distinct difference

between KECA and KPCA (Jenssen, 2009).
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2.3 KECANet for ocean SAR
scene classification

In the interest of easy understanding for the reader, we first

present the main flowchart of an ocean SAR scene classification

based on KECA in Figure 3, whose main steps can be

summarized as follows. 1) The SAR imagettes are preprocessed

using a batch normalization technique and are then used as

input into KECANet. 2) Noting that KECANet consists of

multiple stages of successive convolutional layers and pooling

layers, an approximation of KECA by the pivoted Cholesky

decomposition (Harbrecht et al., 2012) is adopted for learning

the filters to extract features in its convolutional layers. 3) The

features of different imagettes are introduced to a final stage of

spectral histogram (SH) encoding. Then, the output of

classification results can be accomplished by the most naïve

nearest neighbor classifier with cosine similarity scores. The

internal structure of KECANet is also shown in Figure 4 for

experimental reproduction. In the following sections, we

describe the entirety of the process in detail.

2.3.1 Data preprocessing
Assuming that N ocean SAR imagettes fX(0)

i ∈Rm0�n0�C0gNi=1
derived from the TenGeoP-SARwv dataset penetrate deep

into the ℓth layer of KECANet, where the channel C0 = 1 denotes
FIGURE 2

SAR data coverage under VV polarization in 2016. The color represents the number of WV images within each 5° by 5° spatial bin.
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the grayscale input, the overlapping (stride- Sℓ , Sℓ = 1 adopted in

our work) patches of kℓ × kℓ are extracted from each X(0)
i . We

subtract batch normalization from each patch using the z-score

technique and obtain a cluster of f�X(0)
i ∈ R(k2‘C0)�(m0n0�N)gNi=1 ,

which is fed into the following chain of convolution and

pooling operations.
2.3.2 KECA filter learning

f�X(0)
i ∈ R(k2‘C0)�(m0n0�N)gNi=1 Dℓ -dimensional RKHS using

the Equations (3)–(5). Thereafter, the ℓ th layer can obtain the

feature maps from the preceding (ℓ−1) th layer

�X(‘)
i = b �X(‘−1)

i ∗W(‘)
� �

∈ Rm‘−1�n‘−1�C‘ (6)

where * represents a convolution operator and b(·) denotes
the nonlinear mean pooling with a pooling window of qℓ × qℓ
such that mℓ = (mℓ−1−qℓ)/sℓ + 1 and n‘ = (n‘−1 − q‘)=s‘ + 1.W(‘)

∈ R(k2‘C‘−1)�C‘ is defined as the layerwise filter ensemble with cℓ
Frontiers in Marine Science 06
KECA filters prelearned from the (ℓ−1) th layer. However, there

are several limitations in directly using the KECA algorithm, e.g.,

too many computations when calculating the kernel matrix (as

many as O(N3) , where N is often more than 1K) and low

efficiency of the representation as compared to deep learning

methods (Bengio and LeCun, 2007). Hence, we provide an

efficient algorithm (please refer to Algorithm 1) to obtain a

low-rank approximation of the kernel matrix, while effectively

maintaining the outstanding performance of KECA. The key to

the mathematical analysis of Algorithm 1 is illustrated as follows.

Let K (‘)
i ∈ R(m‘n‘)�(m‘n‘) be a kernel matrix derived from �X(‘)

i . In

order to save time and memory when obtaining K (‘)
i , on the

basis of Equation (4), we carry out the eigendecomposition on a

smaller feature space, i.e., of size r‘ ≪ m‘n‘ . Then, we expand

the results back up to m‘n‘ dimensions. In other words, our

intention here is to seek a Nyström-type low-rank

approximation ~K (‘)
i of K (‘)

i that satisfies the approximation

error ‖ E(‘)
i ‖ = ‖K (‘)

i − ~K (‘)
i ‖ ≤ e . Finally, after substituting
FIGURE 3

The workflow of ocean SAR scene classification using KECANet.
FIGURE 4

Architecture of the KECANet algorithm: batch normalization, multilayer convolution using KECA filters and mean pooling (nonlinearity), and SH
feature encoding on layerwise feature maps.
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~K (‘)
i into Equations (4) and (5), we can obtain the KECA

lea rn ing fi l t e r s w(‘) f r om the (‘ − 1) th l ay e r fo r

feature extraction.

Lemma 1. The low-rank approximation ~K (‘)
i derived from

the Algorithm 1 satisfies ‖ E(‘)
i ‖ = ‖K (‘)

i − K (‘)
i ‖ ≤ e, where ϵ

denotes a minimum value.

Proof of Lemma 1. For simplicity, let ~K and K (‘)
i represent

~K (‘)
i and K with Nℓ = mℓ nℓ , respectively. Considering that ~Kj

obtained in the j th iteration is a positive semidefinite matrix

(Harbrecht et al., 2012), ~Kj can be decomposed by the Cholesky

technique (Harbrecht et al., 2012; Zhou, 2015).

~Kj = KNl�j Kj�j� �−1
KN1�j� �T

= Pj Pj
� �T (7)

Without loss of generality, we assume

~Kj+1 = KNl�(j+1) K j+1ð Þ� j+1ð Þ
� �−1

KN1� j+1ð Þ
� �T

= Pj+1 Pj+1
� �T (8)

On the basis of Cholesky factorization:

Kj�j = LjL
T
j (9)

where Lj is a lower triangular matrix. Then, substituting

Equation (9) into Equation (7), we obtain

Pj = KNl�j Lj
� �−T (10)

Motivated by the pivoted Cholesky decomposition

(Harbrecht et al., 2012; Zhou, 2015), let

K j+1ð Þ� j+1ð Þ = Kj+1

Kj�1
t

Ktj KttKtj KttKtj KttKtj KttKtj KttKtj KttKtj KttKtj KttKtj ñ1 ñ1 ñ1 ñ1 ñ1
Ktt ñ1ñ1ñ1ñ1

h i
= Lj+1
� �TLj+1

(11)

where Kj�1
t = (K1t ,⋯,Kjt)

T , i.e., the tth kernel column.

Using Equations (9)–(11), we can obtain Step 4 in Algorithm 1:

Lj+1 =
Lj
uT

0
m

h i
(12)

where u = (Lj)
−1Kj�1

t is exactly the tth column of Pj and m =ffiffiffiffi
K

p
tt − uTu . Let

Pj+1 = Pjpj
� �

(13)

On the basis of Equations (8) and (12), we obtain

Pj+1 = KNl� j+1ð ÞL−Tj+1 = Pjm
−1 KNl�1

t Lju
� �h i

(14)

Therefore, the approximation error in iterations is

Ej+1 = ~Kj − ~Kj+1 = Pj Pj
� �T= Ej − p2j (15)

which means that the error is monotonically decreasing until

it meets the error tolerance ϵ.

For convenient computing, the trace norm is chosen in Step

9 as the error measurement in Algorithm 1. □
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Algorithm 1.

Input: the normalized patches patches f�X(0)
i ∈ R(k2‘C0)�(m0n0�N)gNi=1, the error

tolerance ϵ and the number r of the pivot elements.1: Let approximation
error

1: Let approximation error e = ‖ d1 ‖ = ‖½K11,…,KN1N1
�T ‖, N1 = 1 :N1

2: While j = 1 ≥ r && ej > ϵ:

3: seek t = argmaxi∈N jdj,i , where dj,i denotes the ith element of dj

4: if j=1 then

5: Pj+1 = p = KN1�1
t =

ffiffiffiffiffiffi
Ktt

p
6: else

7: Pj+1 = ½Pjpj�, where pj = m−1(KN1�1
t − Lju), u = (Lj)

−1Kj�1
t , m =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ktt − uTu

q
8: end if

9: let Nj+1 = Nj+1nt, then dj+1,i = dj,i − p2j,i (i ∈ Nj+1),ej =oi∈Nj+1
dj+1,i

10: j = j +1

11: end while

Outpout: the low-rank approximation ~K (‘)
i = PTP
2.3.3 Encoding and classification
After the aforementioned stages , involving the

convolutional, mean pooling, and KECA layers, a binary

hashing similar to PCANet"s is employed in KECANet to

compute the block-wise histograms in encoding stage.

Specifically, we first binarize the outputs of (X (‘−1)
*W

(‘)) ∈
Rm‘−1�n‘−1�C‘ before pooling. The hashed feature maps are

divided into C‘=Cl (pre-fixed Cl to 8 after fine tuning)

different sets and each set is encoded with a C‘ bit integer.

Secondly, we can obtain

S ‘ð Þ
t =o

Cl

c=1
unit �X ‘−1ð Þ ∗ W ‘ð Þ

� �
Cl t−1ð Þ+c

	 

2c−1t (16)

where t = 1,…,H‘ and unit( � ) represents the unit step

function (Low et al., 2017). Thirdly, S(‘)t is clustered into B‘

nonoverlapping blocks, each of whom is histogrammed into 2Cl

bins. Thus, in each layer, H‘B‘ blockwise histograms are

cascaded to form the final feature vector of the input SAR

imagette. Finally, the feature vectors derived from KECANet

can be trained by the most naïve nearest neighbor classifier with

Cosine similarity scores and achieve ocean scene recognition.

2.4 Computational complexity

In the data preprocessing stage, the main cost of z-score

normalization is O(Nm0n0) computations. In the KECA filter

learning stage, the complexity of Algorithm 1 is O(r2N). This is

very efficient as compared to O(N3), which is required by the

conventional kernel method (r ≤ 9). The eigendecomposition of

approximation kernel matrix needs O(D3
‘ ) computations. The

cost of mapping the patches to the RKHS space isO(D2
‘N). In the
frontiersin.org
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final stage, the binary hashing and block-wise histograms require

O(2D‘N) and O(H‘B‘D‘N log2 ). Considering N ≫ max (m‘, n‘
,D‘,H‘, B‘), the overall cost of KECANet is presented as follows:

O o
L

‘=1

Nm‘n‘ +o
L

‘=1

N r2 + D2
‘

� � !
(17)

which can be simplified as (due to D‘ ≫ r )

O o
L

‘=1

N D2
‘ +m‘n‘

� � !
(18)

Considering that the complexity of a two-stage PCANet is

O(o2
‘=1N(m‘n‘)

2) (Chan et al., 2015) and D‘=m‘n‘ ≪ 1 for

SAR imagery, the complexity of KECANet is lower than

PCANet, which requires far fewer computations than CKNs

(Mairal et al., 2014; Mohammadnia-Qaraei et al., 2018; Qaraei

et al., 2021). In the next section, we demonstrate the potential

and performance of KECANet in detail.
3 Experiment and results

This section starts with a detailed ablation study to analyze

the contributions of deep learning architecture and the pivoted

Cholesky decomposition to a conventional KECA method.

Afterward, considering that deep kernelized methods are

greatly impacted by the number of layers and the width

coefficient, we implemented a sensitivity analysis on these two

important coefficients using the TenGeoP-SARwv dataset. Then,

another experiment on noise-filled SAR imagettes was also

performed to test the noise robustness of KECANet. To

further validate the model performance, a geophysical map of

sea ice in Antarctica, as detected by KECANet, is analyzed and

compared with the global gridded product. Finally, we compared

KECA with several different methods and presented state-of-

the-art results for undertaking the task of ocean SAR scene auto-

classification. For the training strategies in this section, we

adopted the set proposed by Wang et al. (2019b). A total of

320 imagettes per class (N = 320) were randomly chosen as the

input dataset from the annotated TenGeoP-SARwv dataset

separated by WV1 and WV2. Notably, the size of the input

was relatively small. Moreover, 70% and 30% of the dataset were

selected as the training and testing subsets, respectively. All of

the experiments without data augmentation were implemented

by MATLAB R2021b on a server with GN7.2XLARGE32

processors, 32 GB memory, and a Windows Server 2016

operating system. All results were averaged over 10 runs. The

reported values of the recall (R), precision (P), and F-score (F)

were averaged over 10 repeated experiments. The values of these

three parameters were all expected to approach one (Wang et al.,

2019b). KECANet was implemented using the parameter

configuration shown in Table 1.
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3.1 Ablation study

Table 2 shows the classification results of various variants of

KECA on the test set of the TenGeoP-SARwv dataset. Noting

that KECA is the original method (Jenssen, 2009), KECANet-1

and KECANet-2 denote a KECA, which has penetrated deep into

the 1st and 2nd layers, respectively, without using the

accelerating technique of the pivoted Cholesky decomposition.

Low-rank KECANet-1 and Low-rank KECANet-2 integrate the

deep learning architecture and the accelerating technique with

the conventional KECA (Jenssen, 2009). Table 2 empirically

validates the effectiveness of using deep learning methods,

considering that KECANet-1 improves the averaged

classification result of KECA by 6.48%, 23.25%, and 12.96% in

R, P, and F statistics, respectively. Table 2 also shows that using

the accelerating technique can significantly reduce computing

time and memory since KECANet-2 was so prone to exhausting

its memory that it severely impeded its functionality. Compared

to the original KECA, we progressively improved classification

accuracy in R, P, and F statistics by 46.21%, 44.99%, and

46.53%, respectively.
3.2 Impact of the number of layers

We evaluated KECANet"s performance on the selected

dataset using different numbers of layers. The KECA filter

ensemble C‘ of 8� 8� 16� 16 was selected in layer 4.

Table 3 illustrates the overall performance for multilayer

KECANet. It can be observed that KECANet"s average

performance regarding R, P, and F increased from 58.99%,

56.63%, and 56.87% in layer 1, to 86.40%, 84.73%, and 84.95%

in layer 4. Considering a tradeoff between computing time and

classification performance (the advantage of KECANet-4 is
TABLE 1 KECANet parameter configuration for the TenGeoP-SARwv
database.

Parameters Values

X(0)
i

299� 299

N 320

max (‘) 3

k‘ 8

q‘ 3

C‘ 8� 16� 16

D‘ 64

r 64

H‘ 128

B‘ 8

s 1� 10−3

ks (x, xt) (2psN )−1=2 exp ( − ‖ x − xt ‖ =(2s 2))
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almost negligible as compared to KECANet-3), the maximum

number of layers, i.e., max (‘) = 3, was adopted in this study.

KECANet-3 is denoted as KECANet for simplicity in the rest of

the article unless otherwise stated.
3.3 Impact of the width coefficient

The width coefficient, also known as the kernel width s ,

plays a role in kernel-based methods (Bai et al., 2019; Bai et al.,

2020a). We evaluated the impact of the width of KECANet on

the selected dataset. The average results of classifying 10

geophysical phenomena are shown in Figure 5. The width

coefficients of three layers were the same and ranged from 1�
10−4 to 1. The results show that the classification performances

increase significantly as a result of properly choosing the width

coefficient. Therefore, 1� 10−3 was adopted in this study. More

details are shown in Table 4.
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3.4 KECANet for denoising

In this subsection, we evaluate the noise robustness of

KECANet. We randomly selected 200 imagettes of each oceanic

phenomenon and added block noise to the input datasets. All noise

insertions accounted for 0.01 to 0.15 of the image area and were

located within a rectangle with randomly distributed positions

(please refer to Figure 6). Thus, we established a new gallery split

into two subsets for the classification experiment. One subset was

used for training, including 140 noisy imagettes and 84 noise-free

imagettes per class. The other subset contained the remainder for

testing. We ran this process 10 times. Table 5 shows the

classification results versus those derived from KECANet on the

original dataset. By comparative analysis, we can conclude that

KECANet can provide relatively acceptable robustness in SAR data

denoising, considering it obtained more than 82% in R, P, and F

statistics, even though the classification performances deteriorated

by about 1–2% in calibration metrics.
TABLE 2 Ablation Study of KECA on WV1 (upper) and WV2 (lower) imagette recognition (%).

KECA KECANet-1 Low-rank KECANet-1 KECANet-2 Low-rank KECANet-2

R P F R P F R P F R P F R P F

AF 74.3 87.5 80.4 66.1 65.7 65.9 64.7 65.3 65.0 N/A N/A N/A 84.4 89.8 87.0

66.3 67.7 67.0 66.6 85.9 75.0 66.3 85.5 74.7 N/A N/A N/A 91.8 86.3 88.9

BS 65.1 85.4 73.9 57.9 65.7 61.5 56.4 65.3 60.5 N/A N/A N/A 76.2 89.8 82.4

43.2 65.6 52.1 47.0 89.3 61.6 46.8 88.8 61.3 N/A N/A N/A 72.2 89.6 80.0

IB 35.1 27.1 30.6 56.3 55.7 56.0 54.8 55.3 55.1 N/A N/A N/A 74.5 79.8 77.1

25.8 16.7 20.3 41.7 75.9 53.9 41.5 75.5 53.5 N/A N/A N/A 66.9 76.3 71.3

LWA 51.2 44.8 47.8 65.8 44.0 52.7 64.3 43.6 52.0 N/A N/A N/A 84.1 68.1 75.3

51.8 45.8 48.6 60.9 79.3 68.9 60.7 78.8 68.6 N/A N/A N/A 86.1 79.6 82.7

MCC 41.7 52.1 46.3 68.3 50.7 58.2 66.9 50.3 57.4 N/A N/A N/A 86.6 74.8 80.3

81.9 89.6 85.6 66.0 77.6 71.4 65.8 77.2 71.0 N/A N/A N/A 91.2 77.9 84.1

OF 34.9 30.2 32.4 61.8 65.7 63.7 60.4 65.3 62.7 N/A N/A N/A 80.1 89.8 84.7

63.7 60.4 62.0 66.8 89.3 76.4 66.5 88.8 76.1 N/A N/A N/A 92.0 89.6 90.8

PW 37.8 17.7 24.1 38.7 65.7 48.7 37.2 65.3 47.4 N/A N/A N/A 56.9 89.8 69.7

25.8 17.7 21.0 40.5 85.9 55.0 40.2 85.5 54.7 N/A N/A N/A 65.7 86.3 74.6

RC 87.7 96.9 92.1 72.2 50.7 59.6 70.8 50.3 58.8 N/A N/A N/A 90.5 74.8 81.9

95.8 95.8 95.8 72.0 80.9 76.2 71.8 80.5 75.9 N/A N/A N/A 97.2 81.3 88.5

SI 65.9 56.3 60.7 59.7 50.7 54.8 58.3 50.3 54.0 N/A N/A N/A 78.0 74.8 76.4

53.0 45.8 49.2 53.5 72.6 61.6 53.2 72.2 61.3 N/A N/A N/A 78.7 72.9 75.7

WS 44.9 59.4 51.1 57.6 55.7 56.6 56.2 55.3 55.7 N/A N/A N/A 75.9 79.8 77.8

48.4 64.6 55.4 46.7 82.6 59.6 46.4 82.2 59.3 N/A N/A N/A 71.9 82.9 77.0

AVE 53.9 55.7 53.9 60.4 57.0 57.8 59.0 56.6 56.9 N/A N/A N/A 78.7 81.1 79.2

55.6 57.0 55.7 56.2 81.9 66.0 55.9 81.5 65.6 N/A N/A N/A 81.4 82.3 81.4

Max(std) 0.81 0.93 0.86 1.92 1.64 1.72 1.93 1.68 1.73 N/A N/A N/A 1.56 1.46 1.48

0.85 0.98 0.91 2.10 1.77 1.91 2.13 1.78 1.92 N/A N/A N/A 1.88 1.57 1.64

Time 0.8h 2.7h 0.4h N/A 18.1h
frontie
AVE, Max(std), and Time denote the average function, the maximum standard deviation, and computing time, respectively.
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3.5 A geophysical application

To further verify the credibility capabilities of KECANet,

the deep learning method was applied to all SAR imagettes
Frontiers in Marine Science 10
from January to December 2016 in the TenGeoP-SARwv

dataset. We examined the geophysical map of detected sea

ice comparable to the NOAA/NSIDC Climate Data Record of

Passive Microwave Sea Ice Concentration (Version 4,
BA

FIGURE 5

Average classification performance in WV1 (A) and WV2 (B) imagette classification of KECANet equipped with different width coefficients.
TABLE 3 Classification performance (%) in WV1 (upper) and WV2 (lower) imagette recognition for KECANet using different layers.

KECANet-1 KECANet-2 KECANet-3 KECANet-4

R (%) P (%) F (%) R (%) P (%) F (%) R (%) P (%) F (%) R (%) P (%) F (%)

AF 64.65 65.30 64.97 84.37 89.80 87.00 91.80 93.33 92.56 92.07 93.40 92.73

66.30 85.49 74.68 91.78 86.25 88.93 94.55 86.67 90.43 94.58 86.97 90.62

BS 56.43 65.30 60.54 76.15 89.80 82.42 83.58 93.33 88.19 83.84 93.40 88.36

46.76 88.82 61.26 72.23 89.58 79.98 75.00 90.00 81.82 75.04 90.30 81.97

IB 54.82 55.30 55.06 74.54 79.80 77.08 81.97 83.33 82.64 82.23 83.40 82.81

41.46 75.49 53.52 66.93 76.25 71.29 69.70 76.67 73.02 69.74 76.97 73.18

LWA 64.34 43.63 52.00 84.06 68.14 75.26 91.49 71.67 80.37 91.75 71.73 80.51

60.65 78.82 68.55 86.12 79.58 82.72 88.89 80.00 84.21 88.93 80.30 84.40

MCC 66.85 50.30 57.40 86.57 74.80 80.26 94.00 78.33 85.45 94.26 78.40 85.60

65.76 77.16 71.00 91.23 77.92 84.05 94.00 78.33 85.45 94.04 78.64 85.65

OF 60.35 65.30 62.73 80.07 89.80 84.66 87.50 93.33 90.32 87.76 93.40 90.49

66.49 88.82 76.05 91.97 89.58 90.76 94.74 90.00 92.31 94.78 90.30 92.49

PW 37.22 65.30 47.41 56.94 89.80 69.69 64.37 93.33 76.19 64.63 93.40 76.40

40.18 85.49 54.67 65.65 86.25 74.55 68.42 86.67 76.47 68.46 86.97 76.61

RC 70.77 50.30 58.80 90.49 74.80 81.90 97.92 78.33 87.04 98.18 78.40 87.18

71.76 80.49 75.87 97.23 81.25 88.53 100.00 81.67 89.91 100.00 81.97 90.09

SI 58.31 50.30 54.01 78.02 74.80 76.38 85.45 78.33 81.74 85.72 78.40 81.89

53.24 72.16 61.27 78.71 72.92 75.70 81.48 73.33 77.19 81.52 73.64 77.38

WS 56.18 55.30 55.74 75.90 79.80 77.80 83.33 83.33 83.33 83.60 83.40 83.50

46.39 82.16 59.29 71.86 82.92 76.99 74.63 83.33 78.74 74.67 83.64 78.90

AVE 58.99 56.63 56.87 78.71 81.14 79.24 86.14 84.67 84.78 86.40 84.73 84.95

55.90 81.49 65.62 81.37 82.25 81.35 84.14 82.67 82.96 84.18 82.97 83.13

Max(std) 1.93 1.68 1.73 1.56 1.46 1.48 1.13 1.27 1.19 1.09 1.25 1.19

2.13 1.78 1.92 1.88 1.57 1.64 1.21 1.38 1.23 1.19 1.37 1.22

Time 0.4 h 18.1 h 35.4 h 73.1 h
frontier
AVE, Max(std), and Time denote the average function, the maximum standard deviation, and computing time, respectively.
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CDRPM-SIC) (Meier et al., 2021). From January to December

2016, nearly 5% of SAR imagettes are classified as SI by

KECANet. More than 90% of them are distributed near

Antarctica due to the satellite coverage and perennial low
Frontiers in Marine Science 11
temperatures around the polar Southern Ocean. The mapping

of classified SI occurrence in Figures 7A–D shows a clear

seasonal variability, increasing from early April to a

maximum in the Antarctic winter period (from June to
FIGURE 6

The first row (A–E) presents randomly selected 5 imagettes in the TenGeoP-SARwv dataset. The second row (F–J) show the associated noisy
imagettes.
TABLE 4 Classification performance (%) in WV1 (upper) and WV2 (lower) imagette recognition of KECANet equipped with different width
coefficients.

1� 10−4 1� 10−2 1� 10−2 1� 10−1 1

R P F R P F R P F R P F R P F

AF 82.0 82.0 82.0 91.8 93.3 92.6 82.6 87.7 85.0 81.6 71.3 76.1 56.7 63.1 59.7

51.2 45.8 48.4 94.5 86.7 90.4 93.1 81.5 86.9 86.0 63.0 72.7 67.8 35.7 46.7

BS 73.8 82.0 77.7 83.6 93.3 88.2 74.3 87.7 80.5 73.4 71.3 72.3 48.5 63.1 54.8

31.7 49.2 38.5 75.0 90.0 81.8 73.6 84.8 78.8 66.4 66.3 66.4 48.3 39.0 43.1

IB 72.1 72.0 72.1 82.0 83.3 82.6 72.7 77.7 75.1 71.8 61.3 66.1 46.9 53.1 49.8

26.4 35.8 30.4 69.7 76.7 73.0 68.3 71.5 69.8 61.1 53.0 56.8 42.9 25.7 32.1

LWA 81.7 60.4 69.4 91.5 71.7 80.4 82.2 66.0 73.2 81.3 49.6 61.6 56.4 41.4 47.8

45.6 39.2 42.1 88.9 80.0 84.2 87.5 74.8 80.6 80.3 56.3 66.2 62.1 29.0 39.5

MCC 84.2 67.0 74.6 94.0 78.3 85.5 84.8 72.7 78.2 83.8 56.3 67.4 58.9 48.1 52.9

50.7 37.5 43.1 94.0 78.3 85.5 92.6 73.1 81.7 85.4 54.7 66.7 67.3 27.3 38.9

OF 77.7 82.0 79.8 87.5 93.3 90.3 78.3 87.7 82.7 77.3 71.3 74.2 52.4 63.1 57.2

51.4 49.2 50.3 94.7 90.0 92.3 93.3 84.8 88.8 86.2 66.3 74.9 68.0 39.0 49.6

PW 54.5 82.0 65.5 64.4 93.3 76.2 55.1 87.7 67.7 54.2 71.3 61.6 29.3 63.1 40.0

25.1 45.8 32.4 68.4 86.7 76.5 67.0 81.5 73.5 59.8 63.0 61.4 41.7 35.7 38.4

RC 88.1 67.0 76.1 97.9 78.3 87.0 88.7 72.7 79.9 87.7 56.3 68.6 62.8 48.1 54.5

56.7 40.8 47.5 100. 81.7 89.9 98.6 76.5 86.1 91.4 58.0 71.0 73.3 30.7 43.2

SI 75.6 67.0 71.1 85.5 78.3 81.7 76.2 72.7 74.4 75.3 56.3 64.4 50.3 48.1 49.2

38.2 32.5 35.1 81.5 73.3 77.2 80.0 68.1 73.6 72.9 49.7 59.1 54.7 22.3 31.7

WS 73.5 72.0 72.8 83.3 83.3 83.3 74.1 77.7 75.8 73.1 61.3 66.7 48.2 53.1 50.5

31.3 42.5 36.1 74.6 83.3 78.7 73.2 78.1 75.6 66.1 59.7 62.7 47.9 32.3 38.6

AVE 76.3 73.4 74.1 86.1 84.7 84.8 76.9 79.0 77.3 75.9 62.6 67.9 51.0 54.4 51.6

40.8 41.8 40.4 84.1 82.7 83.0 82.7 77.5 79.6 75.6 59.0 65.8 57.4 31.7 40.2

Max(std) 6.93 6.68 6.73 1.13 1.27 1.19 1.43 1.47 1.45 2.09 2.33 2.15 5.81 5.98 5.92

7.37 7.46 7.42 1.21 1.38 1.23 1.48 1.59 1.55 2.13 2.35 2.22 6.82 6.87 6.85
f
rontiersin
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October) before decreasing after that. Specifically, in the

austral winter (please refer to Figures 7B, C), there is

abundant sea ice from 20°E to 60°W and from 100°W to

150°E. Most of it is distributed around Antarctica and

poleward of 60°S, or even 54°S. As can be seen in

Figure 7D, the summer period sea ice significantly decreases

compared to the winter, especially from 120°W to 180°. Sea

ice concentration data from the National Snow and Ice Data

Center (NSDIC) are also compared in Figures 7E–H.

Although the CDRPM-SIC aims at the gridded polar SIC

product leading to greatly different resolutions between the

first and the second rows of Figure 7, most areas of higher SI

occurrence, as detected by KECANet, mirror the high SIC

areas. For example, this is especially true for the sea ice extent

that expands to the north of 60°S (20°E to 60°W) in the April–

June season (see Figures 7B, F). This agreement is another

measure of the capability of KECANet as an ocean SAR scene

classification tool.
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3.6 Comparison with state-of-the-art
methods

In this subsection, we present the averaged results for the

task of ocean SAR scene classification using several well-known

models over 10 runs for comparison. The same training

strategies with KECANet were adopted here. CMwv (Wang

et al., 2019b), a CNN-type model, was selected as the baseline

as a result of its notable ability in ocean SAR scene classification.

Additionally, CKN, as proposed by Mairal et al. (2014) (denoted

Gauss-CKN), and RNPCANet (Qaraei et al., 2021) were also

employed as state-of-the-art representative models for CKN. We

also selected PCANet (Chan et al., 2015) for comparison

considering its impressive results in face recognition tasks. As

proposed in (Qaraei et al., 2021), for PCANet and RNPCANet,

the number of layers was set to 2. The size of both filters and

blocks was 7 × 7 and the overlap ratio of the blocks was 0.5. The

parameter set for Gauss-CKN was the default set in the code

provided by Dr. Mairal, which is available at https://lear.
TABLE 5 Classification performance (%) in WV1 (upper) and WV2 (lower) imagette recognition for KECANet using noisy and noise-free datasets.

Noisy Noise-Free

Recall(%) Precision(%) F-Score(%) Recall(%) Precision(%) F-Score(%)

AF 90.95 93.07 92.00 91.80 93.33 92.56

94.36 85.93 89.95 94.55 86.67 90.43

BS 82.81 92.86 87.55 83.58 93.33 88.19

74.74 89.85 81.60 75.00 90.00 81.82

IB 81.46 82.78 82.11 81.97 83.33 82.64

69.62 75.95 72.65 69.70 76.67 73.02

LWA 91.35 71.12 79.98 91.49 71.67 80.37

87.77 79.63 83.50 88.89 80.00 84.21

MCC 93.68 77.93 85.08 94.00 78.33 85.45

93.25 77.90 84.88 94.00 78.33 85.45

OF 87.00 92.97 89.89 87.50 93.33 90.32

94.40 89.95 92.12 94.74 90.00 92.31

PW 63.44 92.55 75.28 64.37 93.33 76.19

67.50 85.95 75.61 68.42 86.67 76.47

RC 97.08 77.82 86.39 97.92 78.33 87.04

99.71 80.58 89.13 100.00 81.67 89.91

SI 85.04 78.26 81.51 85.45 78.33 81.74

81.32 72.82 76.84 81.48 73.33 77.19

WS 83.23 82.57 82.90 83.33 83.33 83.33

73.59 82.27 77.69 74.63 83.33 78.74

AVE 85.60 84.19 84.27 86.14 84.67 84.78

83.63 82.08 82.40 84.14 82.67 82.96

Max(std) 1.24 1.33 1.24 1.13 1.27 1.19

1.25 1.44 1.36 1.21 1.38 1.23
f

AVE and Max(std) denote the average function, the maximum standard deviation, respectively.
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Inrialpes.fr/people/mairal/solaris/software.html. CMwv was

fine-tuned as suggested in (Wang et al., 2019b). The

performances of the aforementioned methods are summarized

in Figure 8 including average recall, precision, and F-score

statistics. More details can be found in Table 6. Our

observations are as follows:
Fron
1. KECANet yielded the best classification accuracy

considering that F-score statistics are a combined

index of both precision and recall statistics, when no

data augmentation is applied. This is because the feature

extracted by KECA optimally reveals the structure

corresponding to the maximum Rényi entropy of the
tiers in Marine Science 13
original SAR data and encodes the discriminant

information. Overall, the average recall, precision, and

F-score values obtained with KECANet were 86.1%

(84.1%), 84.7% (82.7%), and 84.8% (83.0%) higher

than the other methods when applied in WV1 (WV2)

imagette classification, excepting the recall achieved

with Gauss-CKN on WV2;

2. Although KECANet performs marginally better than

Gauss-CKN, Gauss-CKN requires more computational

resources and time than KECANet;

3. The classification performances of CKN models (i.e.,

KECANet, Gauss-CKN, and RNPCANet) are superior
BA

FIGURE 8

Average classification performance in WV1 (A) and WV2 (B) imagette classification of different methods.
B C D

E F G H

A

FIGURE 7

Sea ice around the Antarctica from January 2016 to December 2016. Sea ice coverage detected by KECANet in seasons: January-February-
March (JFM), April-May-June (AMJ), July-August-September (JAS) and October-November-December (OND) are shown in (A-D) with color
denoting the occurrence percentage in 2° × 2° boxes. (E-H) show the mean sea ice concentration from the NSIDC monthly product.
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Fron
to those of CNN-type models (i.e., PCANet and CMwv)

on ocean SAR imagettes.
4 Discussion and conclusions

This paper proposes a new deep learning method, KECANet,

for combining kernel entropy component analysis with the

pivoted Cholesky decomposition and convolutional kernel

networks. Through an ablation study, we demonstrate that

mixing these three concepts is fruitful. We also achieved an

acceptable performance compared with several conventional

and state-of-the-art models (e.g., PCANet, RNPCANet, CMwv,

etc.) on a high-quality SAR dataset called TenGeoP-SARwv,

which has a simple architecture and limited labeled samples.

Although KECANet has shown potential for automated ocean

SAR scene classification, various challenges related to our model

remain open for future research. One such challenge concerns
tiers in Marine Science 14
the use of GPU acceleration technology to improve classification

task efficiency. Another involves leveraging the theoretical

interpretation of our convolutional kernel networks to better

understand network function.
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TABLE 6 Classification performance (%) in WV1 (upper) and WV2 (lower) imagette recognition of different methods.

PCANet CMwv RNPCANet Gauss-CKN KECANet

R P F R P F R P F R P F R P F

AF 69.9 90.4 78.9 93.2 38.3 54.3 70.9 91.7 80.0 64.8 95.0 77.0 91.8 93.3 92.6

69.0 91.2 78.6 93.2 36.3 52.3 70.8 91.3 79.8 64.8 98.3 78.1 94.5 86.7 90.4

BS 89.2 88.7 89.0 93.2 86.3 89.6 90.2 90.0 90.1 74.7 93.3 83.0 83.6 93.3 88.2

88.3 89.6 88.9 87.2 89.3 88.3 90.1 89.7 89.9 70.5 91.7 79.7 75.0 90.0 81.8

IB 77.5 58.7 66.8 95.2 14.3 24.9 78.5 60.0 68.0 89.7 86.7 88.1 82.0 83.3 82.6

76.5 59.6 67.0 90.2 16.3 27.7 78.4 59.7 67.8 90.2 76.7 82.9 69.7 76.7 73.0

LWA 81.3 58.7 68.2 98.2 85.3 91.3 82.2 60.0 69.4 89.8 73.3 80.7 91.5 71.7 80.4

80.3 59.6 68.4 98.2 77.3 86.5 82.2 59.7 69.1 96.0 80.0 87.3 88.9 80.0 84.2

MCC 93.2 70.4 80.2 78.2 74.3 76.2 94.1 71.7 81.4 90.6 96.7 93.5 94.0 78.3 85.5

92.2 71.2 80.4 83.2 92.3 87.5 94.1 71.3 81.1 93.4 95.0 94.2 94.0 78.3 85.5

OF 97.3 85.4 91.0 98.2 3.3 6.4 98.2 86.7 92.1 94.8 91.7 93.2 87.5 93.3 90.3

96.3 86.2 91.0 98.2 3.3 6.4 98.2 86.3 91.9 85.5 98.3 91.5 94.7 90.0 92.3

PW 62.0 97.1 75.7 45.2 98.3 61.9 63.0 98.3 76.8 77.0 78.3 77.7 64.4 93.3 76.2

61.1 97.9 75.2 37.2 96.3 53.7 62.9 98.0 76.6 80.0 73.3 76.5 68.4 86.7 76.5

RC 89.7 85.4 87.5 91.2 86.3 88.7 90.6 86.7 88.6 86.4 95.0 90.5 97.9 78.3 87.0

88.7 86.2 87.4 91.2 78.3 84.3 90.6 86.3 88.4 96.5 91.7 94.0 100. 81.7 89.9

SI 87.0 85.4 86.2 88.2 94.3 91.2 88.0 86.7 87.3 94.3 55.0 69.5 85.5 78.3 81.7

86.1 86.2 86.2 94.2 94.3 94.3 87.9 86.3 87.1 90.0 45.0 60.0 81.5 73.3 77.2

WS 90.7 50.4 64.8 81.2 75.3 78.2 91.7 51.7 66.1 97.8 75.0 84.9 83.3 83.3 83.3

89.7 51.2 65.2 81.2 94.3 87.3 91.6 51.3 65.8 79.3 76.7 78.0 74.6 83.3 78.7

AVE 83.8 77.1 78.8 86.2 65.6 66.3 84.7 78.3 80.0 86.0 84.0 83.8 86.1 84.7 84.8

82.8 77.9 78.8 85.4 67.8 66.8 84.7 78.0 79.7 84.6 82.7 82.2 84.1 82.7 83.0

Max(std) 1.14 1.07 1.09 1.09 1.19 1.13 1.09 1.17 1.13 1.02 1.10 1.08 1.13 1.27 1.19

1.31 1.43 1.38 1.22 1.34 1.26 1.33 1.45 1.38 1.03 1.13 1.10 1.21 1.38 1.23

Time1 18.2h 4.4h 18.7h 38.3h 35.4h
f
rontiersin
1 It should be noted that the computing time of PCANet and RNPCANet is just for training two layers, compared to that of KECANet for training three layers. The server are prone to be out
of memory when training PCANet and RNPCANet with three layers.
AVE, Max(std), and Time denotes the function of average, the maximum of standard deviation and computing time, respectively.
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