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Marine ranching has been proposed as a promising solution to manage the

depleted coastal fishery ecosystem in recent decades across China. Marine

ranching integrates the practices of artificial habitat-based with aquaculture-

based enhancement. Assessing the ecological carrying capacity of target

species for enhancement is a precondition for determining the optimal

numbers for release, particularly for those species whose habitat restrictions

have been eliminated through the construction of artificial habitats in the

marine ranch. A responsible approach to stock enhancement aims not only to

increase total yield and stock abundance but also to consider any potential

effects on ecosystem structure and function. A time-dynamic, ecosystem

model was constructed using Ecopath with Ecosim for the Laizhou Bay

(Bohai Sea) marine ranching ecosystem in the nearshore waters of northern

China. Two sedentary target species with potential for stock enhancement, i.e.,

the carnivorous red snail Rapana venosa and the detritivorous sea cucumber

Apostichopus japonicus, were selected to simulate and estimate their

ecological carrying capacities and project their overall effects on the

ecosystem. Ecological carrying capacity was defined as the maximum

standing stocks of the target species that would not cause “unacceptable”

impacts on the ecosystem function and resilience, i.e., not cause any other

group’s biomass to fall below 10% of its original biomass. The ecological

carrying capacities estimated for R. venosa and A. japonicus were 623.46 and

200.57 t·km−2, respectively, corresponding to 7.8 and 5.0 times higher than

their current standing stocks. Simulations of R. venosa enhancement showed

distinct effects of increased target species abundance on other functional

groups and ecosystem properties. An increase in red snail biomass caused

negative impacts on the biomass of most other functional groups and

ecosystem indicators, such as Finn’s cycling index, transfer efficiency, and

Kempton’s Q index. In contrast, the simulated A. japonicus enhancement had

relatively few impacts, and the biomasses of most other functional groups and
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ecosystem indicators did not change or changed very slightly (<5%). The

current model framework provides a means of estimating the ecological

carrying capacity in commercial-scale stock enhancement practices and

avoiding potential ecological risks for marine ranching in northern China.
KEYWORDS

Rapana venosa, Apostichopus japonicus, Laizhou Bay, artificial habitats, aquaculture-
based enhancement, ecosystem effects, ecological risk
Introduction

The accelerating species extinction and the loss of

biodiversity in the global marine environment have severely

diminished the function of marine ecosystem services (Solan

et al., 2004; Worm et al., 2006). The conservation and restoration

of marine living resources are becoming increasingly important

for maintaining marine systems (Worm et al., 2009; Stier et al.,

2016). Marine stock enhancement, as a set of management

approaches involving the release of cultured organisms to

enhance or restore fisheries, has been practiced to implement

marine biological resource conservation. Furthermore, it plays

an increasingly important role in food security and developing

and enhancing recreational fisheries (Lorenzen et al., 2010;

Kitada, 2020; Lorenzen et al., 2021).

The implementation of stock enhancement programs in

open waters nowadays still often lacks the necessary scientific

evidence to be carried out effectively due to a lack of knowledge

of the environment, target species, and release locations. This

makes it difficult to identify any potential negative ecological

impacts of stocking such as a reduction in genetic diversity,

negative effects on wild stock growth and survival, and impacts

on ecosystem functioning (Cudmore-Vokey and Crossman,

2000; Taylor et al., 2005; Townsend, 2010; Taylor et al., 2017;

Lorenzen et al., 2021). For example, the introduction of salmon

into Lake Michigan resulted in significant changes in the food

web structure, causing the planktivorous fish ratio to fall from

8:1 in the 1930s to 1.3:1 at the end of the 20th century

(Cudmore-Vokey and Crossman, 2000). In addition, the

release of Brown Trout Salmo trutta into rivers in New

Zealand drove the Whitebait Galaxias spp., which had the

same niche as brown trout, to the brink of extinction

(Townsend, 2010). In contrast, Khan et al. (2015) compared

changes in the food web pre- and post-stocking of the carps,

Catla catla (Hamilton), Labeo rohita (Hamilton), and Cirrhinus

mrigala (Hamilton), in a tropical reservoir ecosystem in India,

and showed that after stock enhancement, the reservoir

ecosystem was more resilient and healthier based on ecological

network indicators’ analyses. Therefore, evaluating the potential

effects of stocking strategies on other fish species and aquatic
02
communities before stocking is important for informing the

stakeholders and fisheries managers and for avoiding any

unanticipated consequences of stocking.

A responsible approach to stock enhancement has been

advocated internationally since the concept was first developed

in 1995 and then later revised in 2010 (Blankenship and Leber,

1995; Lorenzen et al., 2010). This approach recommends

considering the effects of stock enhancement on the structure

and function of the target aquatic ecosystem such as biodiversity

and ecosystem properties (Blankenship and Leber, 1995; FAO,

2005; Zhang et al., 2009; Lorenzen et al., 2010; Jiang et al., 2014;

Taylor et al., 2017).

Assessing the ecological carrying capacity of target species

is a precondition to determining the optimal number of

individuals for stocking. In order to make effective use of

juveniles reared or collected for stock enhancement, an

understanding of the carrying capacity of the habitat is

needed. Overstocking will have detrimental effects on wild

populations of the species and the released individuals in

terms of growth and survival, and understocking will not

maximize the returns from stocking (Munro and Bell, 1997).

The risk of overstocking remains a concern, particularly

because of adverse ecological consequences, including the

displacement of wild populations and other competitors

(Taylor et al., 2013).

Carrying capacity is defined as the limiting biomass of a

specific population that the ecosystem can support under

specific environmental conditions, such as food and habitat

(Cooney and Brodeur, 1998; Taylor et al., 2005; Filgueira et al.,

2021). According to the relationship between population size

and the availability of resources, carrying capacity can be

classified into four broad categories: physical, production,

ecological, and social carrying capacities (Inglis et al., 2000;

McKindsey et al., 2006). The ecological carrying capacity

describes the maximum standing stock of target species that

does not cause “unacceptable” impacts on the species or the

ecosystem (Inglis et al., 2000; Kluger et al., 2016). Recent

advances in ecosystem modeling provide the means to

estimate ecological carrying capacity, given sufficient data on

biological processes (Byron et al., 2011; Kluger et al., 2016).
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Kluger et al. (2016) introduced the definition of stock collapse

(after Worm et al., 2009), i.e., any group biomass that falls below

10% of its original biomass, as an approach to define

“unacceptable” impact thresholds and further to estimate the

ecological carrying capacity for the target stocking species.

Laizhou Bay (LZB) in the Bohai Sea of north China is an

important spawning and feeding ground and nursery area for

many economically important fish and shrimp, such as the

Chinese shrimp Fenneropenaeus chinensis and small yellow

croaker Larimichthys polyactis (Jin and Deng, 2000; Jin et al.,

2013). The LZB ecosystem has deteriorated severely in recent

years as a result of overfishing and environmental pollution

(Jin et al., 2013; Wei et al., 2022). Moreover, the fisheries

resources and ecosystem structure of the LZB have changed

dramatically (Jin and Deng, 2000; Jin et al., 2013). Since the

1990s, a series of fishery resource management approaches

have been widely adopted in LZB to restore the productivity of

the ecosystem (Shen and Heino, 2014). One of these initiatives

has been the construction of marine ranches by deploying

artificial reefs and releasing target species such as Japanese

Flounder, Paralichthys olivaceus, and Chinese shrimp (Zhang

et al., 2009). By the end of 2021, three national marine ranching

demonstration zones had been built in LZB (Ministry of

Agriculture and Rural Affairs of the People’s Republic of

China, 2022). Following the deployment of the artificial reefs,

the reef surfaces were colonized by a large number of Pacific

oysters Crassostrea gigas, forming oyster reefs and even oyster

mountains (Xu et al., 2019). These provide important food and

habitat foundation for enhancing reef-associated species such

as the red snail Rapana venosa and sea cucumber Apostichopus

japonicus, which are commercially important, local species for

stock enhancement. The landings of R. venosa and A. japonicus

in 2020 were 4.2 and 1.65 t·km−2·year−1, respectively, according

to the statistics from the Blue Ocean Company.

In this study, we first build an Ecopath model (https://

ecopath.org/) to represent the current trophic flows of the LZB

marine ranching system. The base model for the system was

set as 2020–2021, following an annual survey of the biological

resources in the region. We then further developed the model

with Ecosim (Christensen and Walters, 2004) to simulate the

biomass increases of two resident target species, R. venosa and

A. japonicus, following stock enhancement. The simulated

increases in biomass fol lowing di fferent leve ls of

enhancement were used to estimate the ecological carrying

capacity for each species (Kluger et al., 2016) and then to

determine the indicators of ecosystem properties from the

models. These ecosystem properties were compared for

the different levels of enhancement with the pre-

enhancement state to determine the potential impacts of

different stocking levels. The results for estimating ecological

carrying capacity from the dynamic ecosystem model (EwE)

were compared with those from a static Ecopath model (Byron

et al., 2011).
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Materials and methods

Study area

Laizhou Bay, located in the southern region of the Bohai Sea,

is the largest bay in Shandong Peninsula (Figure 1). It stretches

from the northern corner of Qimu Cape in the east, to the

estuary of the Yellow River in the west, with a natural coastline of

319 km. Its total area is 6,966 km2, accounting for approximately

10% of the Bohai Sea, with a mean depth of 8 m and a maximum

depth of ~15 m at the eastern mouth of the bay. The first marine

ranch in LZB (37°15′–37°22′N, 119°38′–119°46′E) was built in
2010 by Shandong Blue Ocean Technology Co., Ltd. This marine

ranch occupies a total area of 107.95 km2 with an artificial reef

area of 33.3 km2 in the core area (Figure 1). The types of artificial

reefs deployed in this marine ranch include stone reefs, derelict

vessels, and artificial shell reefs. The core area of the ranch is

used primarily for the stock enhancement of benthic, reef-

associated species including R. venosa and A. japonicus (Xu

et al., 2019), and the remaining zone of 74.6 km2 is the zone of

marine ranching outside the area for stock enhancement

(Figure 1). No artificial reefs are deployed in this latter area.
FIGURE 1

Map showing the location of (A) Laizhou Bay (dashed square) in
the People’s Republic of China and (B) the model domain of
Laizhou Bay marine ranching area (EFGH—dashed rectangle) and
the core area for implementing stock enhancement (ABCD—
solid rectangle).
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The Ecopath model—functional groups
and data sources

Ecopath with Ecosim (EwE version 6.6) was used to first

construct the Ecopath model of LZB marine ranching. Based on

the ecological habits, economic values, and ecological roles of the

species in the area, we defined 27 functional groups in the model

(Table 1), which covered the main trophic flows in LZB marine

ranching ecosystem. Considering their important roles played in

supporting fishery catch and ecosystem function, 10 single-species

functional groups were established: four teleost groups (Sebastes

schlegelii, Hexagrammos otakii, Lateolabrax japonicus, and Sparus

macrocephalus); and six macroinvertebrate groups (A. japonicus

(Sea Cucumber), R. venosa (Rea Snail), Charybdis japonica (Asian

Paddle Crab), Oratosquilla oratoria (Japanese Mantis Shrimp), C.

gigas (Pacific Oyster), and Aurelia aurita (Moon Jellyfish) (Table 1).

The biomass inputs for macroinvertebrates and fish in the

Ecopath model were primarily based on the resource survey data.

The biomasses of fish and macroinvertebrates in the modeled area

were estimated by sampling using trawls, gillnets, long fishing traps,

and SCUBA quadrats during 2020–2021. Phytoplankton biomass in

terms of chlorophyll-a was first measured using a Turner

fluorometer according to standard procedure (Parsons et al.,

1984), and biomass was estimated by transforming the

chlorophyll-a concentration (mg/m3) using the following

relationships: the ratio of organic carbon:chlorophyll-a = 43:1

(Wang et al., 1998), the organic carbon:dry weight ratio = 35:100

(Ning et al., 1995), and the dry weight:wet weight ratio = 1:2.86 (Su

and Tang, 2002). The biomass of the macrobenthos and small

zoobenthos were sampled in situ using grab samplers. The

biomasses of water column bacteria and benthic bacteria were

obtained from field experimental measurements, and the biomass

of detritus (in water and sediment) was calculated with reference to

the linear model proposed by Pauly and Bartz (1993), as follows:

lgD  ¼  2:41 + 0:954lgPP + 0:863lgE (1)

where D [g(C)/m2] is detritus biomass, PP [g(C)/(m2·a)] is the

primary production, and E (m) is the euphotic depth.

In the Ecopath model, the fish Production : Biomass ratio (P/

B) and Consumption to Biomass ratio (Q/B) values were

calculated by empirical formula or using reported values of

similar ecological characteristics (Palomares and Pauly, 1989;

Pauly and Bartz, 1993; Wu et al., 2013). The P/B, Q/B, and

additional unknown parameters of other functional groups are

mainly based on the reported data in the Ecopath model in LZB

(Lin et al., 2009; Lin et al., 2013; Yang et al., 2016). The diet

composition was based mainly on the gut content analyses for S.

schlegelii, H. otakii, and C. japonica, as well as the literature for

other species (see Supplementary Material Table S1). However,

for the A. aurita and Spatangoida functional groups, the two

abundant taxa in this area, few or even no predators were
Frontiers in Marine Science 04
observed or reported. Thus, they were not in the diet

composition of any functional group. Data on landings of fished

species (S. schlegelii, L. japonicus, S. macrocephalus, C. japonica,O.

oratoria, R. venosa, and A. japonicus) were obtained from

Shandong Blue Ocean Technology Co., Ltd (see Supplementary

Material Table S2). No commercial landings on H. otakii were

available, but it is a commercial interest species.
Ecopath model tuning and
quality analysis

Prior to balancing the model, a pre-balanced diagnostic

(PREBAL) analysis was performed to evaluate the validity of

the input parameters. The PREBAL diagnostics offered a series

of tuning techniques to analyze the slope of the relationships for

biological ratio, vital ratio, and production ratio, relative to the

trophic level for each functional group (Link, 2010). According

to the PREBAL criteria, as well as “rules of thumb”, the biomass

estimated by the model should span 5–7 orders of magnitude,

where >7 indicates that there are too many taxonomic or age-

structured taxa in the model, and <5 indicates that the model

might be focused on specific trophic levels and not

representative of the broader food web (Link, 2010; Heymans

et al., 2016). In addition, the biomass (on a logarithmic scale)

should decrease by 5%–10% with increasing trophic levels across

all functional groups, based on PREBAL diagnostics. Likewise,

P/Q and Q/B were subjected to the same biomass PREBAL

criteria (Link, 2010; Heymans et al., 2016).

After completion of the PREBAL diagnostics, a preliminary

Ecopath model that met the ecological and fishing principles

was developed. The Ecopath model was balanced, and the

model quality was evaluated using the second law of

thermodynamics to check that it was maintained (Link,

2010). The indicators included are the respiration and

assimilation ratio (R/A ratio) and the gross efficiency (GE) of

each functional group. The dimensionless R/A ratio cannot

exceed 1, because respiration cannot exceed assimilation. The

GE indicates the value for the P/Q ratio should be between 0.1

and 0.3 (Darwall et al., 2010).

The pedigree index (referred to as the P index) was used to

analyze the uncertainty of the Ecopath model input parameters.

The P index quantifies the overall quality of the data and model

(Christensen and Walters, 2004). The quality of the input data

source was ranked in the following order: direct measurement,

empirical relationship, other models, and other references. The

confidence intervals of the input parameters (B, P/B, Q/B,

Landing, and diet composition) were between 0 and 1. The P

index of each functional group was used to evaluate the overall

quality indicator of the model. A higher value of the pedigree

index indicates a higher credibility of the model. The P index was
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calculated using the following formula:

P =o
n

i=1

Iij
n

(2)

where Iij represents the pedigree index value for functional group i, n

represents the total number of functional groups in the ecosystem,

and j represents B, P/B, Q/B, Landing, and diet composition.
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The Ecopath with Ecosim model
(Ecosim model)

The Ecosim model is a time scale-based dynamic model

based on the Ecopath model (Walters et al., 1997; Christensen

and Walters, 2004). It drives the time-dynamic model by

changing the initial food web model (Ecopath) over time steps
TABLE 1 Functional groups and main species comprising the different model compartments for the steady-state model of the Laizhou Bay
marine ranching ecosystem.

Number Functional
group

Rationale Species

1 Sebastes schlegelii Commercial and
recreational fishing

S. schlegelii

2 Hexagrammos
otakii

Commercial and
recreational fishing

H. otakii

3 Lateolabrax
japonicus

Commercial and
recreational fishing

L. japonicus

4 Sparus
macrocephalus

Commercial and
recreational fishing

S. macrocephalus

5 Gobiidae Aggregate group Synechogobius ommaturus, Acanthogobius flavimanus, Symechogobius hasta, etc.

6 Other demersal
fishes

Aggregate group Arelicus joyneri Günther, Paralichthys olivaceus, Kareius bicoloratus, etc.

7 Pelagic fishes Aggregate group Setipinna tenuifilis, Callionymus curvicornis, Thryssa kammalensis, Thryssa mystax, etc.

8 Octopodidae Aggregate group Octopus variabilis, Octopus ocellatus, etc.

9 Charybdis japonica Commercial fishing C. japonica

10 Oratosquilla
oratoria

Commercial fishing O. oratoria

11 Rapana venosa Stock enhancement/
commercial fishing

R. venosa

12 Apostichopus
japonicus

Stock enhancement/
commercial fishing

A. japonicus

13 Crassostrea gigas Habitat forming species C. gigas

14 Aurelia aurita Ecological importance A. aurita

15 Spatangoida Ecological importance Spatangoida

16 Other shrimps and
crabs

Aggregate group Matuta planip, Arcania undecimspinosa, Dorippe japonica, Eucrate crenata, Pyrhila pisum, Alpheus
distinguendus, etc.

17 Annelida Aggregate group Nephtys oligobranchia, Nephtys polybranchia, Scoloplos rubra, Scoloplos armiger, Scoloplos marsupoalis,
Sternaspis scutata, etc.

18 Other Mollusca Aggregate group Mytilus edulis, Alvenius ojianus, Moerella rutila, Ruditapes philippinarum, etc.

19 Other macro-
zoobenthos

Aggregate group Amphioplus japonicus, Ophiura kinbergi, Cleantiella, Leptochela gracilis, etc.

20 Small zoobenthos Aggregate group Polychaete, Copepods, Gastrotricha, Nematoda, Amphipoda, Ostracoda, Cladoceran, etc.

21 Zooplankton Secondary production Eurytemora pacifica, Centropages dorsispinatus, Labibocera bipinnata, Labibocera euchaeta, Acartia pacifica,
Sagittacrassa, Macrura larvae, Ophiopluteus larvae, Polychaete larvae, etc.

22 Bacterioplankton Secondary production Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Cyanobacteria, etc.

23 Sediment bacteria Secondary production Heterotrophic Bacteria

24 Phytoplankton Primary production Achnanthes brevipes, Bacteriastrum hyalinum, Chaetoceros, Cocconeis, Coscinodiscus asteromphalus,
Coscinodiscus oculusiridis, Coscinodiscus spp., Ceratium fusus, Dinophyceae cyst, Noctiluca scintillans,
Protoperidinium sp., etc.

25 Microphytobenthos Primary production Pyrrophyta, Bacillariophyta, etc.

26 Detritus in water
column

Energy cycling Detritus in water

27 Detritus in
sediment

Energy cycling Detritus in sediment
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and can simulate changes in the response of the system in a time

series. The Ecosim model is used to simulate management

behavior or environmental change to “experiment” with

ecosystems and subsequently analyze how the ecosystem

responds to changes, based on the different scenarios simulated.

The core equations of the Ecosim model are based on a series

of differential equations, as follows:

dBi

dt
= gio​Qji �o​Qij + Ii � Fi + Moi + eið Þ*Bi (3)

where the subscripts are as mentioned for equation (2), dBi/dt is the

rate of change in biomass, gi is the net growth efficiency, Qji is the

consumption of function group i by functional group j, Moi is the

non-predationnaturalmortality rate,Fi is thefishingmortality rate, ei
is emigration rate, Ii is the immigration rate, and Bi is the biomass of

group i (Christensen and Walters, 2004). The flow of biomass

between functional groups in the Ecosim model is based on the

“foraging arena” concept (Walters et al., 1997). The biomass of each

function group was divided into two parts: vulnerable and

invulnerable to predation. The vulnerability index is the transfer

rate (vij) between the two states, and Qji is based on the following:

Qij =
aijvijBiBj

vij+v0ij+aijBj
(4)

Where aij is the effective search efficiency of predator j for

prey organism i, Bi is the biomass of prey organism i, Bj is the

biomass of predator organism j, vij is the transfer rate between

“vulnerable” and “invulnerable” components, and conversely

(v′ij), with the assumption vij=v
′
ij (Christensen et al., 2005).

The value of the vulnerability index in Ecosim determines

whether the trophic control between predator and prey is a top-

down, bottom-up, or intermediate effect. An empirical formula was

applied to calculate the vulnerability index for each functional group

in the present study following Cheung et al. (2002):

vi¼ 0:1515� TLi+0:0485 (5)

where TLi is the trophic level corresponding to functional group

i. Vulnerability settings ranging from 0 to 1, with 0.0–0.3

representing a bottom-up control, 0.3 representing the mixed

control, and 0.3–1.0 describing a top-down impact (Christensen

and Walters, 2004). The vi was then transformed to derive vnew
for Ecosim input, which ranged from 1 to ∞:

logðvnewÞ ¼ 2:301985� vi + 0:001051 (6)
Enhancement simulations and
estimations of ecological
carrying capacity

Different levels of stock enhancement were modeled by

gradually increasing the individual density (e.g., 2, 3, and 4
Frontiers in Marine Science 06
inds·m−2) in the core area to represent the actual biomass of an

increase in each target species, R. venosa and A. japonicus,

because of stock enhancement. During this process, we

referred to the reported largest biomasses for R. venosa and A.

japonicus in natural waters as the possible upper limit reference

for biomasses of target species in the simulation (Xu et al., 2016;

Shalovenkov, 2017) (Table 2). As the Ecosim simulation needs

the biomass of target species as input data, the individual density

was first multiplied by the mean individual weight (measured in

situ during the resource surveys) to obtain the biomass of target

species in the zone of stock enhancement, and the final biomass

(Bfinal) (t/km2) for the entire simulation area under different

stock scenarios was calculated as follows:

Bfinal ¼  ðBenhancement � AenhancementÞ +
ðBnon-enhancement � Anon-enhancementÞ

(7)

where Benhancement is the biomass of the target species in the

enhancement simulation, Bnon-enhancement is the original biomass

from the Ecopath model, and Aenhancement and Anon-enhancement

represent the proportion areas for stock enhancement and non-

enhancement, respectively. Stock enhancement was implemented

only in the core area (33.3 km2), while the biomass in the non-

enhancement area (74.6 km2) during the simulation maintained

the original biomass (Table 2).

We applied the criteria of stock collapse to estimate the

ecological carrying capacity for two target species; i.e., when the

relative biomass of any other functional groups fell below 10% of

their original biomasses during the simulation of stepwise-

increasing biomass of target species, the resulting biomass at

the breakthrough points was identified as the ecological carrying

capacity of target species (Kluger et al., 2016). Lastly, we selected

four representative enhancement densities as the modeled

scenarios of ecological carrying capacity, i.e., slightly

increasing, intermediate increasing, approaching ecological

carrying capacity, and exceeding ecological carrying

capacity (Table 2).

Target species stocking expansion was simulated for a period

of 30 years under scenarios of differing final enhancement

biomass, which was implemented through a linear increase in

stock from 2 to 6 years and then held constant for the remaining

24 years. The time series of changes in relative biomass of a

single simulation scenario were extracted when all

simulations finished.
Ecological network analysis indicators

To explore the ecosystem effects under different stocking

scenarios for the target species, ecological network analysis

indicators were extracted and analyzed through the Ecopath

and Ecosim output (network analysis). These indicators were

divided into four categories in terms of Ecosystem Size—Total
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system throughput (TST), Total system biomass (B), Primary

production (PP), Total system respiration (R), and Total

production (P); Ecosystem Stability and Maturity—Entropy

(H), Average mutual information (AMI), Ascendancy (A),

Capacity (C), and Finn’s cycling index (FCI); Ecosystem

Efficiency—Trophic transfer efficiency (TE); and Ecosystem

Biodiversity—Kempton’s Q (Q) (Table 3). The changes in

ecological network indicators across the stocking levels were

compared with their initial values using radar plots.
Results

Evaluating Ecopath model quality

The biomass magnitude span of the taxa in the Ecopathmodel

estimated by the PREBAL diagnostics was 6, and the slope of the

biomass (on a logarithmic scale) from the highest to the lowest TL

declined by 8.5%, which indicates that the model is providing a

realistic representation of the system (Link, 2010; Heymans et al.,

2016). Moreover, the P/B and the Q/B magnitude span was in the

order of 6 and 4, and the P/B and Q/B ratios showed an increasing

trend from high to low trophic levels, indicating that these vital

ratios of prey species were generally higher than those of predators

(see Supplementary Material Figure S1). The thermodynamic

consistency law test revealed that the distribution of R/A among

trophic levels exhibited a positive slope (a = 0.074) (see

Supplementary Material Figure S2). The gross efficiency test

revealed that the model generally conformed to thermodynamic

constraints, with the exception of the O. oratoria functional group

(0.329) and other shrimp and crabs (0.321) with high GE (see

Supplementary Material Figure S3). Subsequent to calibrating the

Ecopath model, we obtained an ecologically significant mass-

balancedmodel. The Ecopathmodel Pedigree (P index) was 0.602,

indicating that a reasonable amount of the input data were from

the local area and have relatively good reliability and credibility.
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The trophic levels of the functional groups in LZB ranged from 1

to 4.183 (Table 4 and Figure 2). The trophic levels of the target

species for enhancement, R. venosa, and A. japonicus, were 2.62

and 2.27, respectively.
Ecological carrying capacity estimation

When the simulated stocking density of the red snail R.

venosa was maintained at 10, 20, and 23 inds·m−2, the relative

biomass of some functional groups (such as S. schlegelii, L.

japonicus, S. macrocephalus, Gobiidae, C. japonica, O. oratoria,

A. japonicus, C. gigas, other Mollusca, and small zoobenthos)

declined by different proportions ranging from 10% for other

Mollusca to ~75% for A. japonicus for different levels of stocking

(Figure 3). The biomasses of some functional groups were

predicted to increase greatly by up to three times, e.g., H.

otakii and Octopodidae (Figure 3). However, no functional

group fell below 10% of the original biomass, indicating that

level of enhancement scales did not exceed the ecological

carrying capacity of R. venosa. When the enhancement density

was set at the greatest density of 24 R. venosa·m−2, the relative

change in the biomass of other Mollusca functional groups

decreased by 93% in the 17th year of the simulation. This was

lower than the assessment threshold of the ecological carrying

capacity (Figure 3); thus, the estimated ecological carrying

capacity of R. venosa was 623.46 t·km−2, equivalent to a

density of 23 inds·m−2.

For the stocking scenarios of the sea cucumber A.

japonicus, when the simulated individual densities were

enhanced to 5, 10, and 14 inds·m−2, respectively, the biomass

of H. otakii, Gobiidae, and R. venosa declined by only ~10%,

while small zoobenthos declined to as low as ~10% to 35% of

the original biomass, depending on the enhancement scenario

(Figure 4). When the enhancement density increased to 15 A.

japonicus·m−2, the relative change in the biomass of small
TABLE 2 Simulation scenarios for different enhancement densities of the target species, red snail Rapana venosa and sea cucumber Apostichopus
japonicus, in Laizhou Bay marine ranching using the Ecopath with Ecosim model.

Target
species

Enhancement
density

(inds·m−2)

Enhancement
biomass
(t·km−2)

Proportion of
marine ranch for
enhancement

Original
biomass
(t·km−2)

Proportion of
marine ranch for
non-enhancment

Final
biomass
(t·km−2)

Reference
biomass
(t·km−2)

R. venosa 10 800

0.31

80

0.69

302.33 6,032.942
(Shalovenkov,

2017)
20 1,600 549.35

23 1,840 623.46

24 1,920 648.16

A. japonicus 5 200

40

89.41 793
(Xu et al., 2016)10 400 151.16

14 560 200.57

15 600 212.92
Reference biomass is the greatest biomass density recorded in similar waters from the literature.
frontiersin.org

https://doi.org/10.3389/fmars.2022.936028
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2022.936028
zoobenthos functional groups decreased by 90.3% in the 12th

year of the simulation, slightly lower than the evaluation

threshold of the ecological carrying capacity (Figure 4). Thus,

the estimated ecological carrying capacity of A. japonicus was

200.57 t·km−2, equivalent to an individual density of

14 inds·m−2.
Overall ecosystem effects
of enhancement

The ecological network analyses showed that the stock

enhancement of two target species under four simulation

scenarios caused different responses in the ecosystem size

(TST, B, PP, R, and P), ecosystem stability, and maturity (H,

AMI, C, A, and FCI), ecosystem efficiency (TE), and ecosystem

biodiversity (Q). The maximum positive response was that the

total system biomass increased by 102% after the stock

enhancement of R. venosa, while the maximum negative effect

was a 35% reduction in FCI for R. venosa enhancement

(Figure 5). The variability of ecosystem property indicators to

the R. venosa enhancement scenarios was more obvious than

that for A. japonicus enhancement (Figure 5). For example,

Kempton’s Q, a measure of ecosystem biodiversity, was

approximately 30% lower for R. venosa stocking than that for

A. japonicus (Figure 5).
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Discussion

Effects of simulated stock enhancement
on other functional groups

Stocking target species may affect the structure and

functioning of the ecosystem through direct and indirect

trophic interactions in the food web (Pauly et al., 2000; Eby

et al., 2006). Two sedentary benthic species, the red snail R.

venosa and the sea cucumber A. japonicus, from different trophic

levels were selected as the target species for stock enhancement

in the LZB marine ranching ecosystem. We assessed the

ecosystem effects of their stocking by evaluating different

stocking densities in Ecopath with Ecosim. The simulations

from these models showed that the effects of stocking were

greater when releasing the benthic carnivorous R. venosa than

for the benthic detritivore A. japonicus. When the stocking

density for R. venosa reached 24 inds·m−2, other Mollusca

functional groups fell below the collapse threshold of 10% of

their initial biomass, resulting from the direct feeding of R.

venosa on bivalves.

The enhancement scenario for A. japonicus indicated that

the biomass of the small zoobenthic functional group fell just

below the threshold for collapse when the A. japonicus

enhancement density reached 15 inds·m−2. The detritivorous

A. japonicusmainly preyed on microphytobenthos, detritus, and
TABLE 3 Description of ecological network analysis indicators used in Laizhou Bay marine ranching ecosystem model.

Indicators Description

Ecosystem Size

Total system
throughput (TST)

The sum of all flows through the ecosystem, measure of system size (Ulanowicz, 1986)

Total system biomass
(B)

Total biomass of the community excluding detritus (Christensen et al., 2005)

Primary production
(PP)

The summed primary production from all producers (Christensen et al,, 2005)

Total system
respiration (R)

The part of the consumption that is not used for production or recycled as feces or urine (Christensen et al., 2005)

Total production (P) The difference between total primary production and total respiration (Christensen et al., 2005)

Ecosystem Stability and Maturity

Entropy (H) The measurement of the number of interactions and evenness of flows in the food web (Baird et al., 2007)

Average mutual
information (AMI)

The inherent organization and degree of specialization of flows in the ecological network (Ulanowicz, 2004)

Ascendancy (A) The product of TST and AMI of the system, the key indicator of ecosystem development and maturity (Ulanowicz, 1986; Ulanowicz, 2004)

Capacity (C) The product of TST and H represents the upper limit to the ascendency (Heymans et al., 2007)

Finn’s cycling index
(FCI)

The ratio of the recycled flow to ecosystem throughput, is a measure of system maturity (Finn, 1976)

Ecosystem Efficiency

Trophic transfer
efficiency (TE)

For a given trophic level (TL), the ratio between the sum of the exports and the flow transferred to the next TL, and the throughput on the TL
(Christensen and Walters, 2004); in this study, the mean TE for TL > 2 is used

Ecosystem Biodiversity

Kempton’s Q (Q) The measurement of the biomass of species with trophic levels greater than 3, where an increase in the index indicates an increase in upper-
level biomass diversity (Kempton and Taylor, 1976; Shannon et al., 2009)
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bacteria in the sediment (Mao et al., 2009; Wang et al., 2019),

competing for food sources with the small zoobenthos functional

group, which had a similar diet. The increasing biomass of A.

japonicus following enhancement resulted in a reduction in their

food resources and indirect competition with the small

zoobenthos group, leading to a simulated decline in the

biomass of small zoobenthos below the threshold.

R. venosa and A. japonicus are the typical reef-associated

commercially important species on the northern coast of China,

and the deployment of artificial reefs throughout the region
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provides an increase in settlement habitat for oysters and

mussels (Xu et al., 2019; Xu et al., 2021). These species

efficiently filter suspended particulate organic matter (POM) in

the water column and provide food for higher trophic levels.

Additionally, the feces and pseudo-feces excreted by filter-

feeding oysters and mussels are removed by the detritivorous

A. japonicus, which improves the utilization rate of organic

detritus in the ecosystem and increases the energy recycling

efficiency in the system (Molly et al., 1998; Kang et al., 2003;

Zhou et al., 2006).
TABLE 4 Summary of the input and output parameters for functional groups as estimated by the EwE model of Laizhou Bay stocking marine
ranching ecosystem.

No. Functional
group

Biomass
(t·km−2)

P/B
(year)

Q/B
(year)

Unassimilation
consumption

Detritus import
(t·km−2·year−1)

EE Catch
(t·km−2·year−1)

Trophic
level

1 Sebastes schlegelii 2.8 0.9 5.62 0.2 – 0.540 0.6 4.183

2 Hexagrammos
otakii

0.52 0.82 7.28 0.2 – 0.985 – 3.533

3 Lateolabrax
japonicus

0.25 0.37 4.77 0.2 – 0.649 0.06 4.156

4 Sparus
macrocephalus

0.41 0.75 6.67 0.2 – 0.195 0.06 3.804

5 Gobiidae 0.8 2.33 9.31 0.2 – 0.964 – 3.420

6 Other demersal
fishes

0.5 0.743 6.975 0.2 – 0.892 – 3.761

7 Pelagic fishes 1.01 2.851 28.51 0.2 – 0.063 – 2.788

8 Octopodidae 0.38 3.3 11 0.2 – 0.901 – 3.792

9 Charybdis japonica 6.57 3.2 11.3 0.2 – 0.861 2.25 3.287

10 Oratosquilla
oratoria

0.92 1.5 4.56 0.2 – 0.719 0.05 3.217

11 Rapana venosa 80 1.37 5.31 0.2 – 0.065 4.2 2.617

12 Apostichopus
japonicus

40 0.6 3.37 0.2 – 0.069 1.65 2.273

13 Crassostrea gigas 268.1 4.31 16.63 0.4 – 0.574 – 2.333

14 Aurelia aurita 4.05 5.01 25.05 0.2 – 0.000 – 2.050

15 Spatangoida 10.79 2.25 7.85 0.2 – 0.000 – 2.000

16 Other shrimps and
crabs

2.55 3 9.3551 0.2 – 0.995 – 2.543

17 Annelida 3.26 1.6875 5.625 0.2 – 0.696 – 2.322

18 Other Mollusca 14.75 5 20 0.2 – 0.777 – 2.200

19 Other macro-
zoobenthos

6.63 0.7873 9.62 0.2 – 0.862 – 2.050

20 Small zoobenthos 0.97 11.18 44.7 0.35 – 0.589 – 2.250

21 Zooplankton 20.43 38.3041 127.6802 0.4 – 0.803 – 2.000

22 Bacterioplankton 3.46 174.51 580.16 0.2 – 0.580 – 2.000

23 Sediment bacteria 1.78 277.22 924 0.2 – 0.117 – 2.000

24 Phytoplankton 29.93 134.49 – – – 0.589 – 1.000

25 Microphytobenthos 12.38 72.43 – – – 0.562 – 1.000

26 Detritus in water
column

399 – – – 320 0.873 – 1.000

27 Detritus in
sediment

2962.96 – – – – 0.925 – 1.000
fro
Values in bold were estimated by Ecopath. “-” represents no data.
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Overall ecosystem-level effects

The ecological network analyses showed the ecosystem size

increased proportionally in response to increased levels of

stocking of the target species. However, the rate of increase

was greater for the R. venosa scenarios than A. japonicus. This is

possibly related to the higher biomass of the carnivorous R.
Frontiers in Marine Science 10
venosa, more diverse diet, and more complex trophic

connections than those for the detritivorous A. japonicus.

The values of total system biomass (B) and total system

respiration (R) also increased as the level of stock enhancement

increased. In fact, given the microbial cycling mechanisms, the

actual oxygen consumption of the community may be much

higher than the model estimates (Nizzoli et al., 2005). The total
FIGURE 2

Functional groups and their biomass (B) in the food web of the Laizhou Bay stocking marine ranching ecosystem. Curved line shows prey–
predator relationships. Blue arrows show target species for stock enhancement.
FIGURE 3

Predicted relative changes in biomass of each functional group in the Ecopath Model of Laizhou Bay marine ranching area for the selected four
representative scenarios of the red snail Rapana venosa stock enhancement. Vertical dashed line, time after which the biomass level of
R. venosa remained constant; horizontal dashed line, 10% threshold of initial biomass.
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system respiration can also be considered as a limiting indicator

through long-term monitoring of oxygen concentration in the

future. The estimation of ecological carrying capacity presented in

this study focused on the trophic interactions; however, other

biotic and abiotic limiting factors (e.g., space, disease) for a

population to grow might result in a change in the carrying

capacity of the system. The TST, representing the sum of all flows

through the ecosystem, under the stocking scenarios of R. venosa

and A. japonicus (41,699 and 31,711 t·km−2·year−1, respectively),

were far higher than the base value (25,110 t·km−2·year−1).

A distinct difference in ecosystem development and maturity

indicators between the two target species’ stocking was also

detected. Expanding the enhancement scale of R. venosa

facilitated the ecosystem capacity (C) and ascendancy (A),

while ecosystem entropy (H) and average mutual information

(AMI) gradually decreased. In contrast to R. venosa, enhancing

A. japonicus to different levels resulted in an increase in all

ecosystem development and maturity indicators i.e., C, A, H,

and AMI, suggesting an increase in the trophic flow interactions

among functional groups and a relative mature ecosystem, and a

lower degree of unevenness and variability in the flow structure

(Odum, 1969; Baird et al., 2007). Ulanowicz et al. (2004)

proposed that AMI is more indicative of the developmental

status of an ecosystem than H. With the biomass of A. japonicus

growing through enhancement, the diversity of flows increased

in the system. Furthermore, the increased AMI signifies that the

system is channeling flows along more specific pathways. As a

consequence, using the practices of appropriate stocking
FIGURE 4

Predicted relative changes in biomass of each functional group
for the selected four representative scenarios of the sea
cucumber Apostichopus japonicus stock enhancement in the
Ecopath Model of Laizhou Bay marine ranching area. Dashed
black line, time after which the biomass level of A. japonicus
remained constant; horizontal black dotted line, 10% threshold
of initial biomass.
A

B

FIGURE 5

Radar plots showing the relative changes in ecological network analysis indicators predicted from the Ecopath model for the Laizhou Bay
marine ranching areas under four stock enhancement scenarios for (A) the red snail Rapana venosa and (B) and the sea cucumber Apostichopus
japonicus. 2020 = pre-enhancement values.
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numbers, A. japonicus enhancement facilitates the maturity,

stability, and resilience of LZB marine ranching.

Finn’s cycling index (FCI), which describes the ratio of the

recycled throughput to the total throughput, declined by

different degrees as the scale of stocking increased but

responded differently for R. venosa compared with A.

japonicus. The FCI of R. venosa decreased by 35.1%, whereas

it decreased by only 10.7% for A. japonicus, suggesting that the

effects of the enhancement on ecosystems varied between these

two species and that stocking R. venosa would impair the

ecosystem maturity more than stocking A. japonicus. The

stocked R. venosa increased the consumption of oysters and

other filter-feeding bivalves greatly, which reduced the energy

flow of the ecosystem and limited the production of some

potential food sources like feces and pseudo-feces for

detritivores such as A. japonicus and likely also greatly

decreased the system cycling efficiency.

Kempton’s Q index(Q), which measures the biomass

diversity of species with trophic levels greater than 3

(Kempton and Taylor, 1976; Shannon et al., 2009), decreased

significantly as the enhancement density of R. venosa increased.

This indicates that the introduction of a large numbers of R.

venosa through stocking reduced the biomass diversity of upper

trophic levels in the Laizhou Bay marine ranching area. Kluger

et al. (2016) and Gao et al. (2020) reported a similar trend in Q

with the increasing culture biomass of the Peruvian bay scallop

(Argopecten purpuratus) in Sechura Bay, Peru, and the Oyster

(C. gigas) in Sanggou Bay, China, respectively. Conversely, Q

changed by only −2.7% in the A. japonicus enhancement

scenarios. The increase in single target species is likely to exert

increased predation pressure on prey and even lead to the

collapse of the prey functional group, decreasing biodiversity

and disrupting the ecosystem balance (Beck et al., 2011; Camp

et al., 2013). Empirical observations of the red snail have shown

that when a large number of R. venosa invaded the Black Sea,

significant changes in the benthic community were recorded,

including a decline in biodiversity in the northern part of the

continental shelf of the Black Sea (Janssen et al., 2014;

Shalovenkov, 2017; Kasapoglu, 2021).
Ecological carrying capacity

In the present study, the Ecopath-based method was also

employed to estimate the ecological carrying capacity for the

same target species (Byron et al., 2011). The resulting estimates

for A. japonicus and R. venosa (148.9 and 90.89 t·km−2,

respectively) were only 45.3% and 23.9% of the prior Ecosim-

based estimates, respectively. The discrepancies in estimates of

carrying capacity are attributed to the different approaches in the

estimations. The Ecopath method is based on a steady-state
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model that describes the constant energy flow between

functional groups and assumes that the biomass of other

functional groups remains unchanged when simulating the

biomass increase of the target species (Jiang and Gibbs, 2005;

Srithong et al., 2021). In comparison, in the dynamic Ecosim

models, the biomasses of all functional groups vary over time,

and thus, this approach provides a more realistic representation

of the ecosystem changes. It shows the potential impact of

increasing levels of stocking on a time scale and describes the

responses of biomass and ecological network indicators over

time (Kluger et al., 2016; Gao et al., 2020).

Most prior studies have focused on the ecological carrying

capacity estimates of suspended particulate-feeding bivalves

(Kluger et al., 2016; Gao et al., 2020), and we know of no

other studies using Ecopath with Ecosim for evaluating the

effects of enhancing target species in a marine ranching

ecosystem. The current model framework provides an

approach for estimating the ecological carrying capacity of

marine ranching ecosystems along the coast of China, where

the combination of habitat-based enhancement using artificial

reefs, and releasing target species, is practiced on a very large

scale. For example, in 2015, 190 marine ranches had been built in

China, and an estimated 619.8 km2 of coastal waters was covered

with artificial reefs with a volume of 60.94 million m3 along

the coast of China (Chen, 2020). Meanwhile, 167 billion cultured

juveniles (e.g., sea cucumber A. japonicus and abalone Haliotis

discus hannai) were released by the government and private

industry along the Chinese coast over the last two decades

(Liu et al., 2022). The results of our study highlight the

different ecosystem consequences of stocking two different

species at different densities and the importance to managers

of taking this information into account when designing their

enhancement practices. This knowledge will help determine the

optimal target species for enhancement and the densities for

enhancement and reduce the possible ecological risks of

enhancements. Our findings show that A. japonicus is an ideal

potential target species for stocking because the simulated

ecosystem responses in the Laizhou Bay marine ranching area

after stocking were relatively small. When considering the

implementation of stocking for commercially important

carnivorous species, it is essential to strengthen the evaluation

and monitoring of target species and their prey in the stock

enhancement. Furthermore, a more realistic estimation of

ecological carrying capacity in marine ranching is likely to be

obtained if spatial processes are taken into account. This can be

done by collecting information on different habitats and the

distribution of species within the ranch and developing an

Ecospace model to evaluate the ecological carrying capacity.

This approach recognizes the spatial heterogeneity within the sea

ranching ecosystem in estimating its potential ecological

carrying capacity.
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Conclusion

The ecological carrying capacities of red snail R. venosa and sea

cucumber A. japonicus, two sedentary and reef-associated target

species with potential for stock enhancement in themarine ranching

waters of northern China, were estimated to be 623.46 and 200.57

t·km−2, respectively. These estimated carrying capacities are 7.8 and

5.0 times higher than the current standing stocks ofR. venosa andA.

japonicus. The ecosystem consequences of stocking different species

are species-specific and relevant to their trophic position in the food

web and differ between the carnivorous gastropod R. venosa and the

detritivorousA. japonicus. The simulated enhancement forR. venosa

showed a stronger negative impact on most other functional groups

and ecosystem properties of marine ranching, such as system

maturity and stability and biodiversity, than that for A. japonicus,

which had relatively benign impacts. The current dynamic model

frameworkprovides analternativemeansof estimating the ecological

carrying capacity for stock enhancement practices in the

development of marine ranching in northern China.
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