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The Atlantic Ocean landscape:
A basin-wide cluster
analysis of the Atlantic near
seafloor environment

Mia Schumacher1*, Veerle A. I. Huvenne2, Colin W. Devey1,3,
Pedro Martı́nez Arbizu4, Arne Biastoch1,3 and Stefan Meinecke5

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2National Oceanography Centre,
Southampton, United Kingdom, 3Kiel University, Kiel, Germany, 4Senckenberg am Meer, German
Center for Marine Biodiversity Research (DZMB), Wilhelmshaven, Germany, 5Research Vessel, Sonne,
Briese Research, Briese Schiffahrts GmbH & Co KG, Leer, Germany
Landscape maps based on multivariate cluster analyses provide an objective

and comprehensive view on the (marine) environment. They can hence

support decision making regarding sustainable ocean resource handling and

protection schemes. Across a large number of scales, input parameters and

classification methods, numerous studies categorize the ocean into seascapes,

hydro-morphological provinces or clusters. Many of them are regional,

however, while only a few are on a basin scale. This study presents an

automated cluster analysis of the entire Atlantic seafloor environment, based

on eight global datasets and their derivatives: Bathymetry, slope, terrain

ruggedness index, topographic position index, sediment thickness, POC flux,

salinity, dissolved oxygen, temperature, current velocity, and phytoplankton

abundance in surface waters along with seasonal variabilities. As a result, we

obtained nine seabed areas (SBAs) that portray the Atlantic seafloor. Some SBAs

have a clear geological and geomorphological nature, while others are defined

by a mixture of terrain and water body characteristics. Themajority of the SBAs,

especially those covering the deep ocean areas, are coherent and show little

seasonal and hydrographic variation, whereas other, nearshore SBAs, are

smaller sized and dominated by high seasonal changes. To demonstrate the

potential use of the marine landscape map for marine spatial planning

purposes, we mapped out local SBA diversity using the patch richness index

developed in landscape ecology. It identifies areas of high landscape diversity,

and is a practical way of defining potential areas of interest, e.g. for designation

as protected areas, or for further research. Clustering probabilities are highest

(100%) in the center of SBA patches and decrease towards the edges (< 98%).

On the SBA point cloud which was reduced for probabilities <98%, we ran a

diversity analysis to identify and highlight regions that have a high number of

different SBAs per area, indicating the use of such analyses to automatically find
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potentially delicate areas. We found that some of the highlights are already

within existing EBSAs, but the majority is yet unexplored.
KEYWORDS

marine landscape, unsupervised learning, machine learning (ML), multivariate
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1 Introduction: landscape maps and
the need for objectivity

The ocean environment is perceived as vast and seemingly

endlessly variable, and so are its inhabitants. It may be argued

that breaking it down into a handful of distinct classes does not

account for its diversity. However, if we aim to develop

sustainable practices, particularly those grounded in

ecosystem-based management (typically using area-based

management tools, [e.g., IUCN, 2018)], there is a need to

condense this variability into spatially explicit delineations of

biological and environmental entities. As such, there is a need to

classify the marine ecosystem into ‘provinces’, ‘landscapes’, or

‘habitats’ (Roff et al., 2003). Indeed, Kavanaugh et al. (2016)

summarize that, ‘landscapes are conceptual models of systems

shaped by the local geomorphology, environmental conditions

and biological processes.’

Most classifications to date either start from a biological

point of view, based on the knowledge of species distributions

and leading to the delineation of biomes or biogeographic

provinces (e.g. , Watling et al . , 2013), or from the

physiographic point of view, deploying a classification of the

physical environment as a proxy for species niches and habitats

(e.g., Harris et al., 2014). Unfortunately, due to the remoteness

and challenging sampling conditions in the deep and open

ocean, our knowledge of species distributions in the marine

realm is still very limited, creating considerable uncertainties in

biogeographic classifications of the ocean (e.g. Tyler et al., 2016)

despite the significant progress achieved by large research

programs such as the Census of Marine Life (Snelgrove, 2010).

Predictions of the distribution patterns of species and biomass

are typically made using physical environmental variables as

predicting factors, given the fact that, particularly at broad scales,

the physical environment is one of the main drivers for species

occurrence and community composition, and is commonly

better known or observed than the species themselves (Gille

et al., 2004; Wei et al., 2010; Watling et al., 2013; Morato et al.,

2021). This means that the large-scale ecosystem classifications

of the oceans (i.e. the European Nature Information System

(hereafter EUNIS) by Davies et al., 2004, the Global Seascape
02
Map by Harris andWhiteway, 2009, the Global Open Ocean and

Deep Seabed (hereafter GOODS) biogeographic classification by

the Intergovernmental Oceanographic Commission (hereafter

IOC), 2009, the Global Seafloor Features Map (hereafter GSFM)

by Harris et al., 2014, and the Environmental Marine Units

(hereafter EMU) by Sayre et al., 2017) typically start with broad

divisions of the physical environment, based on key parameters

that influence species’ physiology, distribution, and behavior

(e.g., depth, temperature, oxygen concentration, and food

availability). They provide a first-level insight into the spatial

structure of ocean ecosystems and serve as a tool to indicate

ecosystem connectivity or patchiness, as well as supporting

marine protected area networks assessments (e.g. McQuaid

et al., 2020, Popova et al., 2019) or other aspects of marine

spatial planning and conservation (Combes et al., 2021).

Since there are already multiple large scale (e.g. Vasquez

et al., 2015, Verfaille et al 2009) or even global ocean

classifications, an important question could be: ‘why do we

need yet another?’. The answer to this is neither exhaustive

nor trivial: there is a need for enhanced objectivity when talking

about classifications, as well as for the use of updated and

recent data.

Classifying the ocean environment using thresholds that are

based on human interpretation of what exists on the seafloor

bears the risk of overlooking specific types of marine landscapes

by considering only a few aspects of the environment each time

and may introduce artificial divisions because of the way people

historically looked at ocean maps and biological data (Howell,

2010). In reality, the physical environment is a multivariate

continuum. Ideally, all aspects of its character should, a priori, be

considered simultaneously and equally weighted when

delineating significantly different environmental entities or

landscapes. Multivariate data analysis techniques are capable

of this, and can take marine landscape classification beyond the

initial, manual approach (Kavanaugh et al., 2016). To our

knowledge, only two studies exist that have applied this to the

global marine environment: the Global Seascapes by Harris &

Whiteway (2009) and the Environmental Marine Units (EMU)

by Sayre et al. (2017), which aim to take an objective approach

using unsupervised classification techniques on datasets that
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https://doi.org/10.3389/fmars.2022.936095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Schumacher et al. 10.3389/fmars.2022.936095
include hydrographic, morphological, and biological variables

on a global scale. Harris and Whiteway (2009, their Figure 10)

applied an unsupervised isoclass technique, which is comparable

to a stepwise (cascaded) K-Means, on six biophysical variables

(i.e., depth, seabed slope, sediment thickness, primary

production, bottom water dissolved oxygen, and bottom

temperature). Sayre et al. (2017) chose the k-means clustering

algorithm in their work. Within this study, we aim to expand the

range of input variables, including the latest data from recent

and fine-scale ocean models. Using density estimation and

model-based clustering, we try to overcome shortcomings of

the widely used K-Means, or of similar algorithms (e.g. isoclass),

such as their sensitivity to the initial cluster centre placement,

fixed number of clusters, limitation to spherically shaped

clusters, etc. (Press et al., 2007; Sayre et al. 2017).
1.1 Making use of marine
landscape maps

As pressures on the ocean floor from e.g., climate change,

overfishing and mining increase, it is becoming increasingly

urgent to protect key regions by declaring them marine

protected areas (MPA). Less than 10% of the ocean realm is

under any form of protection today (IUCN, 2021) although

there is agreement that protecting 30% of global land and ocean

would be beneficial not only for ecosystem and biodiversity

recovery but also for the financial and non-monetary economic

sector. This has been widely examined in the 30x30 study by

Waldron et al. (2020). And although in 2010, the World Park

Congress recommended a protection of 30% by 2014, it is widely

known that even today this is by far not the case (e.g. O'Leary

et al., 2016; IUCN, 2021).

Out of the existing MPAs, only 31% (less than 2% of the

entire ocean) enjoy full protection. The remaining 69% are still

open to some extent of fishing activities (Turnbull et al., 2021;

IUCN, 2021), although No-Take areas, regions that are fully

protected, have shown the greatest effectiveness in preserving

marine biodiversity and also a capability of re-establishing the

complexity of marine ecosystems (Sala & Giakoumi, 2017).

Often, a lack of basic knowledge about the deep-sea

ecosystems in a particular region of the deep sea can result in

it not being considered for protection. Landscape maps may be

an aid with this problem, as they highlight, on an ocean basin

scale, both coherent marine areas that may have been unknown

so far (e.g. Magali et al., 2021) and also regions of high landscape

variability. The latter are particularly relevant, because a major

criterion for the designation of MPAs or the definition of EBSAs

(Ecologically or Biologically Significant Areas) is the assessment

of the local environment’s diversity and variability (IUCN, 2018,

CBD 2009). EBSAs are defined by experts, based on seven

parameters (Uniqueness or Rarity, Special importance for life

history stages of species, Importance for threatened, endangered
Frontiers in Marine Science 03
or declining species and/or habitats, Vulnerability, Fragility,

Sensitivity, or Slow recovery, Biological Productivity, Biological

Diversity, Naturalness) (CBD 2019). Often, EBSAs can be found

in combination with rough topography, for example along

seamount chains (e.g. Walvis ridge) or large fracture zones (e.g

La Romanche), but also associated to upwelling and open water

regions (Convention on Biological Diversity (CBD), 2009).

Translated to the landscape map, these would be regions with

a high density of different landscapes. We therefore further

demonstrate a prospective use of classifications like this by

running a quantitative landscape analysis over the final cluster

map. It highlights areas of high cluster diversity density and

therewith potential regions of interest for future studies or

candidates for marine protected area designation.
2 Methods – processing steps

With this study, we aim to reduce human subjectivity in

ecosystem classification as far as possible by avoiding setting

thresholds between classes and applying an unsupervised

multivariate statistical approach. Unsupervised in this sense

means that the clustering procedure is an automatic process

that recognizes patterns in an unlabeled dataset. This kind of

multivariate statistical clustering scheme treats all input

variables equally. We believe that this is a more objective way

to describe the ocean environment than weighting

individual variables.
2.1 Data selection

Deciding on the right input parameters is as fundamental as

it is challenging. In an unsupervised cluster analysis, it is this

part which can be influenced by human subjectivity the most,

with incorrect choices at this stage potentially rendering biased

results (Roff et al., 2003; Harris and Whiteway, 2009). We

selected data based on the following: ecological understanding

described in literature and existing classifications (e.g., Harris

and Whiteway, 2009; IOC, 2009; Howell, 2010; Watling et al.,

2013; Harris et al., 2014; Sayre et al. 2017; Morato et al., 2021),

spatial coverage, resolution, data access, and data format to have

a representative sample of ecological determinants and a good

exemplification of the seafloor habitat. In our aim to map hydro-

morphological provinces of the Atlantic seafloor, the spatial

availability of input data is constrained to the Atlantic

geographical boundary and further excluded data from the sea

surface and the water column (except for the bottom water).

Hence in the deep sea, where data presence is scarce (e.g. Clark

et al., 2016) and the major area to be classified is below 1,000m

water depth, we relied on models and data compilations that are

available in full coverage and not in single scattered sample

points. We chose the Copernicus Mercator model (hereafter
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CMEMS) (EU Copernicus Marine Service, 2021) for

hydrographic variables and the Satellite Radar Topography

Mission version 2 (hereafter SRTM) 15+V2 data (Tozer et al.,

2019a) for geomorphological parameters. Furthermore, also

GlobSed (Updated Total Sediment Thickness in the World’s

Oceans, Straume et al., 2019) and Particulate Organic Carbon

(POC) flux (Lutz 2007) were chosen as determinant variables.

All data were unprojected and were referenced to World

Geodetic System (WGS) 84.
2.2 Data acquisition and description

2.2.1 CMEMS data products
Global physical and biochemical data from satellite

observations, ocean models, and in-situ samples are combined

and published on a regular basis by CMEMS and provide

information on the physical and biochemical state, dynamics,

and variability of the ocean ecosystem. All data products are

freely available to the public (EU Copernicus Marine

Service, 2021).

The data used for this study are based on numerical models

(NEMO 3.1, ORCA12) and data assimilation techniques

(reduced order Kalman filter) (Lellouche et al., 2018). From

these, we extracted the following parameters:
Fron
* Bottom temperature in [°C] (physical), resolution 1/12°

* Salinity in [psu] (physical), resolution 1/12°

* East (uo) and north (vo) components of ocean currents in

[m/s] (physical), resolution 1/12°

* Oxygen in [mmol/m^3] (biochemical), resolution ¼ °

* Phytoplankton in [mol] (biochemical) expressed as

carbon in sea water, resolution ¼ °
CMEMS provides all hydrographic data products via FTP

server download as global multiband and multi - dimensional

NetCDF files. The dimensions are time, latitude, longitude,

depth (50 layers), and 11 value variables (salinity, oxygen, etc.).

The physical data product (GLOBAL_ANALYSIS_

FORECAST_PHY_001_024_monthly) is based on the PSY4V3

Mercator system of the NEMO 3.1 model and amongst others

contains 3D monthly mean fields for temperature, salinity, and

current velocity. These data have a horizontal resolution of 1/12°

(approximately 8 km at the equator) with 50 depth levels and a

vertical resolution of 1m at the sea surface and 450m at the seafloor

depth level (Lellouche et al., 2018; Tressol et al., 2020; Chune

et al., 2020).

The biochemical data products (GLOBAL_ANALYSIS_

FORECAST_BIO_001_028) are based on the PISCES-v2

(Pelagic Interactions Scheme for Carbon and Ecosystem

Studies volume 2) model within NEMO 3.6 which simulates

biochemical and lower trophic levels of marine ecosystems, as
tiers in Marine Science 04
well as carbon and main nutrient cycles (Aumont et al., 2015).

It also contains 3D monthly mean fields for oxygen and

phytoplankton and comes with a horizontal resolution of

¼° (approximately 24 km at the equator). Similar to the

physical data, it has 50 depth levels at a vertical resolution

of 1m on the sea surface and 450 m at the seafloor depth level

(Paul, 2019).

For our analysis, the selected hydrographic data were

reduced to seafloor level (i.e., taking the CMEMS depth layers

closest to seafloor), averaged over three years (2018 - 2020) and,

additionally, three years’ seasonal variability was calculated. We

considered three years a reasonable time scale to capture annual

changes and seasonal variability at the same time. An overview

of all input variables and their main statistics is listed in the

supplementary material. A detailed description of the data

preparation and processing is given in sections 2.3 & 2.4.

2.2.2 SRTM15+ V2
The latest Shuttle Radar Topography Mission (SRTM)

version 2 digital topographic dataset released by NASA in

2015 is the basis to the topography determinants in our

classification. Depending on the satellites’ track spacing,

latitude, and water depth, the resolution of the predicted

bathymetry is approximately 6 km (Tozer et al., 2019a).

The SRTM15+ V2 grid is available via OpenTopography

(https://opentopography.org) as a global NetCDF. It is a data

compilation built by Tozer et al. (2019a) of the SRTM predicted

ocean depth complemented by shipborne MBES bathymetry at

15” (1/240°) resolution. To avoid bias towards higher resolution

data during the classification, the SRTM15+ V2 has been down-

sampled to the CMEMS data product resolution of 1/12°

(Yesson et al., 2011a, b). The bathymetry grid by Tozer et al.

(2019b) was used. Slope, terrain ruggedness (after Riley et al.,

1999) and topographic position index (a landform analysis

where each data point’s altitude is evaluated to its surrounding

neighbors, after Weiss, 2001) were calculated from the

depth grid.
2.2.3 Global sediment layer thickness and
POC flux

The latest compilation for sediment thickness data GlobSed

(Straume et al., 2019) was selected as a further determining

variable as sedimentation is a crucial indicator for ecosystem

types and biodiversity (e.g., Snelgrove, 1999; Zeppilli et al.,

2016). It was also used as a proxy for the sedimentation rate

since there is currently no Atlantic-wide full-coverage dataset

that reflects sedimentation rate across the basin. GlobSed is the

most updated version of global sedimentation information and

has been constructed at the same resolution as the CMEMS data

(1/12°). Particulate Organic Carbon (POC) flux (Lutz et al.,

2007) has further been chosen as a proxy for food availability at

the seafloor in addition to phytoplankton (from CMEMS) (e.g.
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Kharbush et al., 2020). The original grid of resolution of 1/11°

was rescaled to 1/12°.
2.3 Data pre-processing

The pre-processing was carried out using gdal (GDAL/OGR

2021), Python V3.7 (Van Rossum & Drake, 2009), and GMT

Generic mapping Tools V6.1.1 (Wessel et al., 2019). The results

were visualized with QGIS V3.16 (Hannover) (QGIS

Development Team, 2020). The following pre-processing steps

were made:
Fron
1. Apply scale factor and offset to unpack real values from

packed netCDF file format (Chune et al., 2020)

2. Create a seafloor layer, if necessary (from those data

including the entire water column, e.g. salinity).

Resample each input raster at an equal resolution of 1/

12° using the grdsample algorithm within GMT.

3. For bathymetry only: calculate derivatives slope, TPI, TRI

4. For partial current velocity components: Calculate

absolute velocity using:

v = sqrt(uo2 + vo2)

where vo, uo are north and east current velocity

components, respectively

5. For non-static variables: Calculate three-years mean

using: [(Jan18 + Jan19 + Jan20) + (Feb18 +)… +

(Dec20)]/36

6. For non-static variables: Calculate seasonal variability as:

|summer – winter| where: Summer = (June + July +

Aug.)/3 and Winter = (Dec. + Jan. + Feb.)/3

7. ‘Nan out’ landmass: Uniquely fill land areas with NaNs to

indicate a lack of relevant oceanic data here and so

exclude them from the analysis.
2.4 Data clustering

To find and define clusters, we applied a density estimation

and model-based clustering method that is implemented by

(finite) Gaussian mixture models (GMM) in R v4.1 (R Core

Team 2018). This technique reveals latent structures within the

dataset by seeking an optimal number of Gaussian distributions

that sufficiently represent the dataset (Hastie et al., 2001). The

distributions are fitted iteratively with maximum likelihood

implemented by Expectation Maximization (EM) methods.

For each point of the dataset, the probability of it belonging to

a certain cluster of distributions is estimated (expectation, E-

step) using each distribution’s current mean, its covariance

matrix, and a hidden mixing probability coefficient as fitting

parameters . The expectation step is then repeated
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(maximization, M-step) until convergence (stabilization of the

model) occurs (Hastie et al., 2001; Scrucca and Raftery, 2014).

The optimum model (= best number of clusters) is selected by

the Bayesian Information Criterion (BIC) index which is known

to be robust against overfitting (Press et al., 2007). The E-M-step

is somewhat analogous to calculating the distance of each point

to the cluster center for a data point in KMeans. In fact, KMeans

is a special, simplified case of GMM (Press et al., 2007). GMM

however has advantages over KMeans: The number of clusters

does not have to be known à priori; GMM takes clusters of

various shape, volume, and orientation and is not sensitive to the

initial placement of cluster centres, whereas KMeans only

accepts spherically shaped clusters. Given that it is based on

probability, GMM cluster boundaries are not sharp (i.e. either a

point belongs to a cluster or not) but soft, meaning that there is a

certain probability that a data point is part of a cluster.

To assess whether to include or exclude variables as input

parameters, the variable selection algorithm clustvarsel v2.3.4

(Scrucca & Raftery, 2018) is run before the actual clustering. It

examines the differences of BIC indices depending on whether a

variable has clustering properties or not. Based on this, a variable

is accepted or rejected. A large positive BIC difference indicates

high clustering properties (Scrucca and Raftery, 2014). The

algorithm accepted all input variables as input parameters,

hence this step will not be further discussed. The main steps of

the clustering process are listed below.
1. The input parameters were scaled to avoid bias towards

extreme values and obtain zero mean and unit variance.

2. A variable selection algorithm (‘clustvarsel’ v2.3.4)

(Scrucca and Raftery, 2018) was applied on the input

parameters to identify an optimal subset based on their

clustering properties.

3. According to its result, all variables were accepted as

input for the clustering.

4. The Gaussian mixture modelling algorithm ‘mclust’

v 5.4.6. (Fraley & Raftery, 2003; Scrucca et al., 2016)

was applied on the entire input variable dataset.

5. The mclust result was exported as a text file along with

the clustering uncertainties of each point.

6. Boxplots were created using ‘ggplot2’ v3.3.5 (Whickham,

2016) and the ‘RcolourBrewer’ (Brewer, 2013) library.
3 Results: The Atlantic seabed areas

The statistical analysis revealed nine clusters derived from

the input variables. We named the clusters ‘seabed areas (SBAs)’.

In the following the expressions ‘clusters’ and ‘SBA’, will be used

as synonyms, whereas cluster will be used as a technical term,

SBAs will be referred to in an interpretational context. The
frontiersin.org
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shapefile containing the SBA outlines will be published on the

iAtlantic Geonode (geonode.iatlantic.eu/).

A map showing the nine SBAs found in the analysis is shown

in Figure 1. The majority of the SBAs are located in the deep sea

in Areas beyond national jurisdiction (‘ABNJs’) and only two

SBAs define coast-adjacent and continental shelf regions.

To understand what distinguishes the SBAs and what are

the dominating factors, a look at the boxplots below is of use

(Figure 2). They give quantitative information, outlining the

characteristics of each cluster and indicating which parameter

describes the respective cluster in the first order. The boxes

contain 50% of the data. The ‘whiskers’ (straight lines below

and above the box) denote minimum and maximum data

values, respectively, such that box and whiskers include 95%

of the data. The larger the box, the wider is the value span or

variation of the respective input variable across a cluster. The

median (central horizontal line inside the box) is another
Frontiers in Marine Science 06
important measure when interpreting boxplots. It shows the

middle quartile of the data set and, opposite to the mean or

average, it is not sensitive to outliers. A mean value (dot inside

the box) that is far away from the median indicates a bias

towards the direction of displacement. The most illustrative

boxplots are presented below (Figure 2). The complete set of

boxplots for all input variables can be found in the

Supplementary Material F1. A summary of the cluster

statistics is listed in Tables A1, A2 of the supplementary

material. A detailed boxplot assessment and boxplots

including extreme values are given in the Supplementary

Material F2, T1.

Although we see from the box-plots that there is seldom a

single environmental variable that describes a particular SBA, we

can make some general statements about their most defining

characteristics. Table 1 presents a short outline along with the

area covered by each SBA.
FIGURE 1

Atlantic Seabed Areas as identified by the Gaussian Mixture Model analysis along with cluster probabilities. Areas of saturated colors have a
probability of >98% of being classified correctly. Especially at the cluster boundaries, probability decreases.
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3.1 Cluster probability

As the clustering is based on the probability of any one 1/12°x

1/12° cell being classified into one of the nine SBAs, a ‘hard

boundary’ - map showing all cells in the colour corresponding to

their most probable cluster could be misleading if many cells had

quite similar probabilities for a number of clusters. To test how
Frontiers in Marine Science 07
robust the classification is, we examined the absolute values of the

dominant cluster probability, hereafter referred to as probability.

A cumulative curve of the classification probabilities [plotted as

“probability = 1 – uncertainty” as of Fraley & Raftery (2003)] is

shown in Figure 3. On Figure 1, the grey colours illustrate

probabilities of less than 98%, those were excluded. We see

from Figure 3 that more than 85% of the cells are assigned to a
FIGURE 2

Boxplots outlining the SBA characteristics. The boxes comprise the groups’ interquartile ranges, i.e. between the upper (75%) and lower (25%)
quartiles and contain the central 50% of the data. The ‘whiskers’ (straight lines below and above the box) denote minimum and maximum data
values, and together with the boxes make up 95% of the data set. The remaining 5% are extreme values, which for better visibility are not shown
here. They can be found in boxplots of the supplementary material F2. The colored lines/grey dots inside the boxes indicates the groups’
median/mean, whereas the grey dashed line is the overall data set’s median.
TABLE 1 SBA description summary ordered by area covered (from smallest to largest).

SBA Depth (quartile
range) in [-m]

Area
[km2]

Description

1 2064 - 3063 3,998,145 SBA I: Oxic, mostly flat with regionally thick sedimented coverage current influenced regions with low seasonal change

2 2443 - 4090 11,967,939 SBA II: MAR spreading center including abyssal ridges, trenches, seamounts and continental slopes as well as the Gulf
of Mexico.

3 4385 - 5135 14,990,027 SBA III: Deep, cold, fresh and oxygen-depleted abyssal plain with increased bottom current velocity

4 300 - 1395 5,216,720 SBA IV: Shallow, warm, nutrient-rich and saline deeper shelf/upper slope zones with thick sediment cover, strong
currents and strong local and seasonal changes

5 3236 - 4135 6,002,183 SBA V: Small and regional, cold and fresh deep water influenced areas in North and South Atlantic at medium depth,
with locally increased currents and current seasonal change

6 4473 - 5347 15,508,117 SBA VI: Central deep Atlantic cool, nutrient-depleted area with very weak currents, covering some abyssal elevations
and sinks

7 4720 - 5268 3,472,998 SBA VII: Small and regional, deep, flat, sedimented oxic region with strong currents and high seasonal current change

8 3563 - 4640 16,128,258 SBA VIII: Wider region around MAR covering new seafloor, faults and fracture zones, with extremely low sediment
cover, no currents, very low oxygen and temperature

9 39 - 119 5,945,256 SBA IX: Nutrient-rich, fresh, warm water continental shelf regions with thick sediment cover and strong seasonal
fluctuations
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dominant cluster with a probability of > 95% (uncertainty < 0.05).

Only around 2% of the cells lie in a transition zone of 40-60%

probability. Figure 1 shows that these higher-uncertainty cells

mainly lie at SBA boundaries, presumably reflecting the regions

where environmental variables are in transition between one SBA

and another. The cells which are classified with 0 uncertainty

generally lie in the centre of an SBA patch, classified as belonging

to just one SBA.
3.2 Landscape diversity

To highlight the diversity of the Atlantic sea floor landscape,

we ran a moving window analysis based on landscape ecology

principles (e.g. Swanborn et al., 2022) that automatically

identifies areas where several cluster boundaries meet. Regions

of high diversity are at the same time those with the highest

classification uncertainties. To be confident that our search for

areas of high landscape diversity is not weakened by these

poorly-classified cells, we included only points with

classification probabilities of >= 98% in the analysis. This still

amounted to about 80% of the data but significantly reduced the

data density in cluster boundary regions.

The diversity analysis was executed using the package

‘landscapemetrics’ (Hesselbarth et al., 2019). A major part of it

is based on FRAGSTATS (McGarigal et al., 2012), a program

that automatically quantifies landscape structure and has been

implemented in R by Hesselbarth et al. (2019). In combination

with a moving window, we used patch richness (PR) index, a

simple diversity indicator that counts the number of different
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patch types within a given area (McGarigal et al., 2012). A patch

describes the local area covered by a single SBA: Hence, the more

patches of different SBAs in an area, the higher the PR and local

diversity. As we did not want to fix patch sizes in advance by

defining a search radius, we chose a cell-wise moving window

approach with a window size of 3x3, including only one cell and

its direct neighbours. This approach catches even the smallest

region of high diversity. The PR index expresses the numbers of

different neighbours of a cell, with a minimum to maximum

count of one to four neighbours.

Figure 4 is a heatmap showing the patch richness as a result

of the diversity analysis. Regions of large densities of high SBA

diversity are highlighted as indicated by the red colours. The

highlights must be understood as a count of the different

neighbours per area – the more cells with a high number of

different neighbours in a region, the more intense the yellow/red

colour. The highlighted areas are well spread across the central

Atlantic basin, less in the Northern Atlantic. They correspond in

parts with the latest EBSAs as defined by the Convention of

Biological Diversity (CBD) 2019. Most of them are associated

with and around SBA II, which is the sparsest of all SBAs, hence

with most cluster boundaries. Many of the highlights are found

around small-scaled patches. Only few are in the vicinity of one

large patch of a single SBA, which is why in the region > 55°,

where large patches prevail, there is less patch diversity. We

chose two regions on Figure 5 for a detailed inspection to

highlight what this patch richness means in terms of

landscape variability.

Figure 5 shows the Namibia abyssal plain and Cape Basin, as

well as the southern edge of Walvis ridge, with red outlines
FIGURE 3

A plot of cumulative frequency of observed probabilities in the classification of individual grid cells into one of the nine SBAs. The lines indicate
the 98% probability threshold that includes 79% of the data. Over 85% of the cells are classified with > 95% certainty.
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FIGURE 4

Atlantic Seabed Area diversity density. A patch richness analysis map highlighting areas of high SBA diversity. The boxed areas of Walvis ridge
and Falkland Plateau are discussed in more detail below in Figures 5 and Figure 6.
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indicating regions of high SBA diversity. SBA III prevails, along

with several patches of SBA VII and seamounts covered by SBA

II. Besides the presence of seamounts, the input data suggest

deep and cold abyssal plain under the influence of strong

currents. The oxygen is slightly higher within the Walvis ridge

EBSA than in the Subtropical Convergence Zone EBSA and the

Namibian abyssal plain in between. Also, currents are locally

stronger, e.g. south of the Walvis ridge line and weaker in the

deeper basin. Here, the highlighted areas along Walvis ridge

correspond to the Walvis Ridge EBSA patch, but not so well to

the Subtropical Convergence Zone EBSA further south.

Figure 6 shows the Falkland escarpment north of the

Falkland plateau and the Tehuelche fracture zone south of the

plateau. At the escarpment, the highlights mainly include SBAs

II & III and some small patches of SBA V. At Tehuelche fracture

zone, these are SBAs II, V and VIII. The input data indicate

higher current speeds and increased seasonal change north than

south of the plateau and especially along the Falkland

escarpment which can be associated with the influence of the

Malvinas current and the Argentine gyre (Yu et al., 2018).
4 Discussion

4.1 How the SBAs relate to existing data
and publications

The unsupervised clustering of the Atlantic seabed

environment resulted in nine seabed areas, with characteristics
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summarised in Table 1. To interpret the SBAs, we compared

them to published oceanographic patterns such as large currents,

upwelling systems and water-mass formation zones as well as to

predicted seamounts (Yesson et al., 2011a; Yesson et al., 2011b),

and hydrothermal vent locations (Beaulieu and Szafrański,

2020). Many of the SBAs are influenced by currents, water

masses and water formation zones. A striking example for this

is SBA VII which is confined to one region: the major spreading

path of NADW through the North Atlantic deep abyssal plain

(e.g. Gary et al., 2011). High oxygen concentrations, cold water,

very strong currents and high seasonal change support the

interpretation as a highly ventilated region (Figure 1 in

Rahmstorf, 2006). The partitioning into a Northern and a

Southern compartment of SBA V can be related to the

influence of Labrador Sea Water (LSW) formation taking place

in the deep convection zone of the Labrador basin (Koelling

et al., 2022), which spreads out into the central Atlantic Ocean as

part of the North Atlantic Deep Water (NADW), as well as to

Antarctic Bottom Water (AABW) in the Weddell Sea (Figure 1

in Rahmstorf, 2006). This is underpinned by the expert

knowledge-based GOODS classification whose authors found a

strong division into North and South Atlantic, too

(Supplementary Material Table T4, IOC, 2009; Morato

et al., 2021).

SBA IV encloses the Atlantic’s deeper shelf zones and

regions of strong local (boundary) current systems with a high

seasonal variability, such as the East Greenland current or

overflow areas such as the Greenland-Scotland-ridge complex

(Mauritzen, 1996; Rahmstorf, 2006; Våge et al., 2011; Semper
FIGURE 5

Patch richness near Walvis ridge. The outlines are the highlighted regions as found by the patch richness analysis. The map also shows EBSAs
(green stripes) as of CBD 2019. For SBA color legend, please refer to Figure 1.
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et al., 2020). Similar to this but in shallower regions is SBA I,

strongly influenced by water formation zones in the Labrador

and Greenland Sea as well as by the boundary and overflow

currents. SBAs I, IV and VII show an increased oxygen

concentration, emphasising the influence of mixing processes.

Lower oxygen concentrations in moderate depths (SBA V) may

be attributed to enhanced biological productivity (e.g. (Sigman

and Hain, 2012; Schmidtko et al., 2017), oxygen depletion during

the spreading of water masses, like e.g. the AABW on its way up

North (Menezes et al., 2017) or oxygen minimum or even dead

zones (Diaz et al., 2013; Rabalais, 2021). SBA II sticks out as it

seems to be mainly defined by topography, covering areas of

rough terrain and corresponding well with the spreading center

of the MAR. It is the patchiest of all SBAs. In major parts, SBA II

agrees with listed hydrothermal vent fields (Beaulieu &

Szafrański, 2020) and seamounts (Yesson et al., 2011a; Yesson

et al., 2011b).
4.2 Comments on the seascapes,
GOODS and EMUs

We further compared the SBAs to the seascapes described by

Harris and Whiteway (2009), to the GOODS biogeographic

provinces (IOC, 2009) and to the Ecological Marine Units

(‘EMUs’) found by Sayre et al. (2017). The latter have also

been used by Morato et al. (2021) to assess their suitability for a

species distribution model (SDM). Harris and Whiteway (2009)

used a clustering approach (isoclass) on seafloor data which is
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most similar to ours. Sayre et al. (2017) also used a similar

technique (KMeans), applied in 3D on the water column. Their

EMUs are three-dimensional entities, vertically comprising

water column layers rather than separating the seafloor from

the water body above which makes it difficult to directly

compare to our seafloor-only zones. The same applies to

GOODS, which moreover is purely expert-based and hence

subjective. Table A3 in the supplementary material lists the

SBAs we found against the classes of Harris and Whiteway

(2009), Sayre et al. (2017) and GOODS to give an approximate

conversion. Also, only major matching areas are included; those

that have minor overlap are left out to avoid confusion. In Table

A4, the input parameters and methods of all aforementioned

classifications are listed.

When comparing the SBAs we identified to the seascapes by

Harris & Whiteway (2009), some (esp. SBAs III, V, VII) can be

‘translated’ into one single seascape (10), others (e.g. SBA VIII)

correspond to more than one seascape (5, 7 and 9). This might

be because we used additional non-morphologic parameters like

current speed, POC flux, etc., higher resolution data (1/12° for

SBAs, 1/10° for seascapes), and more recent data. We have not

included primary production in the classification, as it is a

variable mostly determining the ocean surface and the upper

water column until a depth of around -350 m (CMEMS, 2021).

Instead, we used POC flux to the sea floor. On the other hand,

Harris and Whiteway (2009) did not take into account seasonal

variability, a measure we considered crucial for currents, salinity,

temperature, and oxygen concentration. They further excluded

salinity, arguing that its variation at seafloor depths is very low.
FIGURE 6

Patch richness at Falkland fracture Zone. The outlines are the highlighted regions as found by the patch richness analysis. For SBA color legend,
please refer to Figure 1.
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This may be correct in the deeper parts of the Atlantic, but our

results show that salinity values and seasonal variability do play a

role, for example, in the shallower SBA IX region, a region that

was excluded on their seascape map. In addition, the seascapes of

Harris & Whiteway (2009) were defined on a global scale and,

depending on the principal parameters that defined the

respective seascape, those may have varied across the global

ocean compared to the Atlantic basin. Another difference is that

we applied a different clustering technique, one which allows for

cluster shapes other than only spherical.

The other two mentioned classifications GOODS (IOC,

2009) and EMU (Sayre et al. (2017)) follow different

approaches: GOODS is a purely expert-based (subjective)

classification without automated or computer-based process.

EMUs are three-dimensional entities, vertically comprising

water column layers rather than separating the sea floor from

the water body above.

The non – comparability of marine classifications is,

according to Lecours (2017), a significant drawback regarding

their use. Table A3 in the supplementary material shows that,

except for the smaller SBAs I and VII, all SBAs correspond to

more than one biogeographic region. As both EMUs and the

GOODS areas have a large extent, several of those regions are

almost as large as the entire Atlantic basin. Nevertheless, in

marine spatial planning or MPA network designation processes,

for example, it might be extremely useful to consult more than

one classification to illuminate several aspects of the same area

(e.g. Lecours et al., 2017).

The use of ocean landscape maps with regard to

conservation targeted decision making is pointed out by

Lecours (2017) as being somewhat like the classic problem of

comparing apples and pears: There is a lack of uniformity

concerning input data selection, standardised clustering

techniques and algorithms. Furthermore, quality assessment

widely differs and there is no method yet to combine the

uncertainties and errors that occur during a mapping process

into one ultimate uncertainty estimation. Visualising mapping

results in e.g. interactive GIS is a first step to tackle those

challenges, but in the long run, standardising determining

variables, methods and error estimation might become

inevitable (Lecours 2017).
4.3 Seabed areas and marine life

It is difficult to state whether the environmental clusters

identified here contain distinct species assemblages: in addition

to physical conditions, life-history traits and biological

interactions will influence biogeographic patterns. Even if the

physical environment is similar, species and assemblages

may differ.

While individuals may not be the same, species with similar

traits and functional behaviour could populate areas with
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comparable physical environments (e.g., burrowing fauna in

heavily sedimented areas or filter-feeders in complex, rocky

environments) (e.g. McGill et al., 2006; Zeng et al., 2020).

From a biodiversity management perspective, such spatially

explicit delineation of potential ecosystem functions (and

therefore services) is of high value even if the exact species

occupying the particular environment are not known.

Quantitative metrics like the patch richness index to calculate

diversity can discover those regions automatical ly

and objectively.

Morato et al. (2021) have made steps towards integrating

biogeographic province maps into environmental niche

modelling (e.g. species distribution models (SDM) or habitat

suitability models (HSM)). In their work, they compare the two

seafloor bioregion models EMU and GOODS to an SDM.

Although their results show only very little to hardly any

agreement of the SDM’s with the bioregions’ boundaries, they

still outline a valuable approach and a possibility of

implementing those kinds of classifications into species

prediction related work. Nevertheless, to effectively predict and

relate species to environmental conditions, classifications and

data at a finer scale must be available (Lim et al., 2021). The

combination of high-resolution classifications and SDMs or

HSMs is a very promising task, capable of supporting marine

area-based management and spatial planning work (Lim et al.,

2021; Morato et al., 2021).

At the same time, it is crucial to keep in mind that the map

presented here is based on the current environmental

conditions. As a result of climate change, seabed environments

will change (e.g. rising temperatures, reducing oxygen content of

the bottom waters), and so may the SBAs. The SBAs may change

in shape and extent, or in characteristics. A next step may be to

create similar marine landscape maps based on future

predictions of the seafloor environment under different climate

scenarios, in order to provide policy-makers with a forward look

in addition to the comprehensive description of the present-day

situation presented here.
4.4 Automatically finding areas of
interest - interpretation of the patch
richness analysis in relation to EBSAs

The results of such patch richness analyses ought to make it

easier to identify potential areas of interest. Because they are

based on a multivariate cluster analysis, they combine complex

ensembles of multiple influencing parameters, a process which is

challenging for a human brain but simple for machine

algorithms. The highlights shall draw our attention to areas

where special conditions prevail, and which might be worth to

have a closer look at. In the case of the Falkland region

(Figure 6), the Falkland plateau seems to be a barrier between

two areas that are under the influence of different variables as
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shown by the altered composition of neighbouring SBAs. The

highlights in Figure 5 mostly cover seamounts or other subsea

features, which, with regard to theWalvis Ridge where highlights

and EBSA largely correspond, confirms that this is an area

of significance.

From Figures 4–6, we see that landscape diversity hotspots

are often found on and around seamounts or regions of strongly

varying topography. This is perhaps not surprising as they are

the regions where the physico-chemical conditions in the ocean

are known to change significantly over small spatio-temporal

extents. It is for this reason that research has often been

concentrated there (e.g. Clark et al., 2011). Over the Atlantic

basin, the identified regions of high landscape diversity

correspond in parts with the latest EBSAs. As EBSAs need a

certain amount of ground-truth data for their definition, our

landscape diversity map could be useful to concentrate research

in presently unstudied areas which may harbour significant

landscape diversity.

EBSAs are defined on a solid data basis which is why there

may be a bias towards well investigated regions. This may be the

fact in the Walvis ridge region (Figure 5) – with Walvis ridge

itself being significantly more examined than the surrounding

environment. The EBSA patch covers the entire Walvis ridge

and the area around Cape basin but only some of the nearby

seamounts – besides other reasons probably due to insufficient

existing data. It is not easy to find proof for this assumption. A

search in Google scholar in April 2022 however yields over 300

hits for publications containing Walvis Ridge in their title, over

500 containing Cape basin and 25 for Vema seamount, but none

for e.g. Malloy seamount. This could be an indicator for

unbalanced data distribution and research effort between

these areas.

Furthermore, EBSA definition is based on multiple criteria

where (biological) diversity is just one of them. In addition to the

sea floor, the water column is taken into consideration, too. It is

hence obvious, that the EBSAs only partially agree with the

highlights: For example in areas like the Labrador Sea, whose sea

floor is defined by only one SBA, the water column however is

highly dynamic due to deep water convection, making it a

unique spot and EBSA candidate (CBD 2021). On the other

hand, there are numerous highlights that are not within existing

EBSAs or MPAs, like e.g. in the basins of Guiana or

Newfoundland. This might be due to a lack of ground truth

data needed for EBSA designation. It may also be because some

regions we highlighted fail on other EBSA criteria. It has to be

noted, though, that currently, some regions still lack EBSA

expert workshops and do hence not have any EBSAs at all,

like e.g. the Argentine basin. Also, to date, the North-East

Atlantic most recent EBSAs have not been published yet, so

there is a lack of coverage here, too. Nevertheless, the highlights

of diversity in combination with the SBA map pinpoint towards

regions of interest and can help finding and defining new

research areas, e.g. to support cruise proposals or contribute to
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marine protection-based decision making, regarding location

and extent of potential MPAs or new EBSAs. They may be able

to support entire stages of EBSA identification without

introducing too much subjectivity.
Methodological constraints, potential
errors and data limitation

Despite the fact that multivariate clustering techniques are

more objective than hierarchical methods, unsupervised

analyses can still bear error sources that may not be visible at

first sight but must be considered when using them.

Resolution
Although a density estimation and model-based clustering

approach seems suitable for this kind of high dimensional and

complex data, it is the input data quality that needs to be looked

at. The most prominent quality-reducing factors are differences

in resolution, especially when dealing with multiple data sources.

This holds true for vertical as well as for horizontal resolution. At

depths > 1000 m, CMEMS model data products have a very low

vertical resolution of about 450 m (Lellouche et al., 2019). Hence,

they only give a very rough approximation of the conditions

prevailing in those depths or at the seafloor. Local small-scale

(vertical) variations (e.g., in temperature, caused, for example, by

hydrothermal vent fields) or the few-meters thick bottom

boundary layer will not be resolved. Given that ground truth

seafloor data are scarce in the deep sea, we considered for our

analysis the last depth level as defined by CMEMS to be

representing seafloor conditions. This induces a huge vertical

uncertainty, which cannot be resolved with the present data and

models. Bathymetry, on the other hand, is a seafloor layer by

nature, and can have a much higher vertical resolution. Tozer

et al. (2019a) state +/- 150m for the satellite data, but e.g.

bathymetry acquired from multibeam systems may reach an

order of metres to tens of metres. Hence in places, we are

aligning data from nominally different depths: those directly at

the seafloor (e.g., bathymetry), and the others in a vertical range

between seafloor level and 450 m above it (CMEMS model data).

Horizontal resolution is another constraint and mainly

attributed to limited data availability. For this analysis, we re-

sampled all data layers to the CMEMS physical data product

resolution of 1/12° (around 8 km at the equator (Lellouche et al.,

2019)), which required downscaling the CMEMS biological

product and upscaling the bathymetry data. Another option

would have been to upscale all data to the lowest resolution,

which in this case was ¼° (of the CMEMS biological product).

However, we dismissed this option, as the information loss

would have been intolerably high considering the fact that

oxygen and phytoplankton are the only data of this low

resolution. Notably, even 1/12°, or 8 km, is a very coarse scale

which does not resolve small scale variations or features that
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might be of importance, like e.g. submarine volcanoes or small

oxygen dead zones. Local hydrodynamic and morphologic

conditions are important drivers for food flux and organic

matter transport to the seabed. These processes however

typically operate at the scale of an offshore bank or seamount,

i.e. at a resolution of maximum several hundreds of metres, and

might hence not captured within this study.

Both downscaling from low to high resolution as well as the

reverse can be critical; this is because high-resolution data

naturally inherit more parameter variance that is passed on

when resampled to coarser resolution than data that was

collected at a coarse resolution in the first place, thus affecting

the analysis. To at least partially accommodate this in our

analysis, we scaled the data and chose model-based clustering,

as it is robust towards different variances (e.g., Scrucca

et al., 2016).

An approach to obviate these deficiencies could be using

nested classifications, running multiple cluster algorithms on the

existing classes as performed in Hogg et al. (2016). This would

refine the original clusters and split them into smaller parts, but

would, of course, not change the initial data resolution. Such

nesting of classifications, on an ocean basin scale, would however

result in complex clusters with multiple hierarchical levels which

would be unwieldy to analyse.

Higher resolution ocean models (e.g. VIKING20X (Biastoch

et al., 2021) or INALT (Schwarzkopf et al., 2019)), if available

down to the km-scale on a basin-wide or even global scale, would

significantly improve this kind of seabed clustering. To date,

such models usually have a very fine resolution at the sea surface

which also becomes coarse towards the seafloor. In our approach

we preferred the CMEMS product, even though it has the same

limited vertical resolution at depth. However, because CMEMS

used an assimilation towards observational data (despite the fact

that these are sparse at depth) we aimed at a more realistic

representation of the hydrography.

Variable selection
Another limitation which may influence the classification

result is the predictor variable selection itself. This issue has been

widely discussed (e.g., Harris andWhiteway, 2009; Howell, 2010;

Watling et al., 2013) and several determinants have been agreed

as being good representatives of the ocean environment. In this

study, we focussed on morphological and hydrographical

parameters, largely leaving out biologic measures, as our aim

was to define submarine landscapes (e.g. Pearman et al., 2020).

However, the ocean and its inhabitants form a coherent system

and likewise, human impacts (e.g., mining, fishing, etc.) have a

severe influence on these ecosystems. Hence, in the future data

selection will have to be expanded to encompass the full range of

factors that affect the seafloor habitat. A more holistic approach,

also with respect to marine protected area designation, would

not only be to include a larger span of environmental data, but

also information on natural resources abundances, fishing
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grounds, etc., such as bottom-trawling fishing activities that

negatively impact the benthic environment (Eggleton et al.,

2018; Ferguson et al., 2020). Visalli et al., 2020 for example

worked out a data-driven spatial planning tool aiming to

highlight priority regions in the ABNJ for protection. For the

whole-Atlantic approach targeted here, the data layers necessary

for this extended type of analysis are, sadly, simply not available

at present.
Conclusion

This work presents a marine landscape map of the Atlantic

seafloor based on an unsupervised, multivariate statistics cluster

analysis. We found nine seabed areas in total, each of them being

unique and differently defined by oceanographic and

morphologic determinants. Unsupervised cluster analyses have

the advantage of providing an objective view on the ocean

environment, stepping away from human-defined hierarchical

categorisations towards an unbiased understanding of seafloor

ecosystem coherence.

Generally, depending on the clustering technique applied

and the selection of input parameters, the results can be very

different, highlighting the complexity and variability of the

ocean. As there is not the one ‘true’ arrangement of marine

bio-physio-chemical-morphologic regimes, verification can only

take place via ground truthing – and even this may not catch the

entire complex diversity. Hence, depending on the purpose, a

combination of several existing models may be more useful than

one single classification. Automated landscape analyses can help

to understand the classifications better, and subsequent

quantitative metrics will help to identify biodiversity hotspots

and vulnerable habitats by pointing out new complex regions of

interest. Studies like this and in combination with other, also

smaller-scaled classifications can be used e.g. for protection-

targeted decision making. Our SBAs for example have been

implemented into the designation process for the new NACES

MPA and acts as one of the knowledge bases to the local

prevailing conditions.

A valuable future task would be to assess whether species

distribution patterns can be further related to the SBAs we

found. Also collating more ground truth data and a detailed

assessment of the diversity highlighted regions shall support

decisions about protection objectives.
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