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Assessing the distribution of marine apex–predators is pivotal to understanding

community interactions and defining management goals. However, several

challenges arise in both estimates and predictions considering the distinctive

and mutable biological/ecological requirements of these species and the

influence of human activities. Thus, efforts to study apex–predators’ spatial

distribution patterns must deal with inherent uncertainty. Relying on different

data sources (research programs and social media reports), physiographic and

environmental covariates (depth, slope, surface temperature and chlorophyll–

a), and specific source–related detection functions, this study selected a Spatial

Log–Gaussian Cox Process to model the distribution patterns of an

opportunistic apex–predator, the common bottlenose dolphin (Tursiops

truncatus), over 14 years (2008−2021) in the Mediterranean Sea (Italy) using a

total of 955 encounters. Both depth and slope showed a significant (95%

significance) reduction effect in the encounters when deeper and steeper,

respectively. Temperature (parabolic) shows a positive effect (90%

significance), while chlorophyll–a values did not seem to have a significant

effect on encounter intensities within each season. The estimated posterior

mean and the coefficient of variation surfaces for the intensity by season

showed higher intensity in summer near the Tiber River estuary than other

regions. Almost homogeneous predictions were observed in winter, with

marginal greater intensities where lower temperatures and higher

chlorophyll–a concentration were observed. The relatively low variance was

predicted in the more coastal parts of the study area within each season, while

higher uncertainty was instead revealed in the southernmost offshore area. This

study highlighted the persistent presence of the common bottlenose dolphin in

the investigated area both winter and summer, with a coherent distribution
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within each season, and rare transient occurrences in deeper waters (where

uncertainty increases). Thanks to its versatile characteristics, the species seems to

well adapt to different seasonal conditions and maintain its distributional range.
KEYWORDS

distribution modeling, Spatial Log–Gaussian Cox Process, uncertainty, common bottlenose
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Introduction

Multiple roles are recognized for apex predators in the

marine environment, fulfilling key ecological, economic, and

cultural functions (Hammerschlag et al., 2019). Apex predators

are indeed affected by bottom−up processes and can influence

food webs via consumptive effects on prey (top−down effects)

(Heithaus et al., 2008; Steneck, 2012; Kiszka et al., 2022). Hence,

assessing their distribution is pivotal to understanding

community interactions and defining management goals to be

implemented (Hammerschlag et al., 2019). However, several

challenges arise in both distribution estimates and predictions

(Pace et al., 2019; Martino et al., 2021), generated by high

movement ability and large home–ranges covered by these

species, spatio-temporal knowledge gaps and the increasing

use of different data sources to model their distribution

(Watson et al., 2019). Considering also the distinctive and

changing biological and ecological requirements of these

species (Forcada, 2018; Pace et al., 2018), and the influence of

threats related to human activities (Nelms et al., 2021), efforts to

study spatial distribution patterns must deal with inherent

uncertainty (Ansong et al., 2017; Stephenson et al., 2021).

The common bottlenose dolphin (Tursiops truncatus) is a

cosmopolitan marine apex predator inhabiting a variety of

habitats, including nearshore waters, harbors, estuaries, and

deeper waters over the continental shelf worldwide (Wells and

Scott, 2018; Wells et al., 2019). The species range poleward of 45°

in northern Europe and southern New Zealand, but it has been

reported as far south as 53-55°S in South America and as far

north as British Columbia (50°N) (Wells et al., 2019). Different

elements seem to drive its distribution in space and time and

habitat use, being under the influence of environmental [e.g., sea

surface temperature (SST) and bathymetry], ecological [e.g., prey

distribution], social [e.g., inter- and intraspecific interactions/

relationships] and anthropogenic variables [e.g., fishing activities

and boat traffic] (e.g., see Bennington et al., 2020; Diaz Lopez,

2019; Greller et al., 2021; Haughey et al., 2021; Zanardo et al.,

2017 and references herein). Considering their widespread

distribution and prominent presence in the coastal marine

ecosystems, common bottlenose dolphins could have a

significant role in the structure and function of these
02
ecosystems (Diaz Lopez, 2019). However, significant gaps

impede our capability to fully determine several critical

attributes of the function of these predators, particularly their

fine–scale distribution and movements, feeding rates, and prey

selection (Kiszka et al., 2022).

In the Mediterranean Sea (30-41°N), the common bottlenose

dolphin is widespread across the entire basin, occurring

primarily in coastal habitats with depths<100 m (Natoli et al.,

2021), often in correspondence with highly productive systems

with significant ecological importance in the marine life

environment. In the basin, the species shows a remarkable

level of ecological and behavioral plasticity, an erratic

distribution, and variable habitat use and residency degrees

depending on local conditions, resources availability and social

factors (Blasi and Boitani, 2012; Giannoulaki et al., 2017;

Vassallo et al., 2020; Pace et al., 2021). Several studies reported

different distribution patterns, where individuals may present

high site fidelity or, conversely, show movements on a scale of

hundreds of kilometers (e.g., Gnone et al., 2011; Pulcini et al.,

2014; Pleslić et al., 2019; Pace et al., 2021; Labach et al., 2022).

Many environmental factors, physiographic characteristics, and

seasonal patterns appear to drive the observed fine–scale coastal

distribution and seem to best predict suitable habitats for the

species (Blasi and Boitani, 2012; Marini et al., 2015; La Manna

et al., 2016; Laran et al., 2017; Giannoulaki et al., 2017; Vassallo

et al., 2020; Gnone et al., 2022). In addition, the highly

opportunistic, versatile, and resilient nature of the common

bottlenose dolphin diet and foraging strategies (Giménez et al.,

2017; Borrell et al., 2021; Carmen et al., 2021; Natoli et al., 2021)

enable the species to also adjust its behavior as a consequence of

resources’ availability. This opportunistic behavior can be also

applied to resources related to human activities (e.g., fisheries

and aquaculture) (Bonizzoni et al., 2021; Pace et al., 2012; Pace et

al., 2022a; Triossi et al., 2013). All these characteristics may

facilitate the development of discrete geographical units in the

Mediterranean population (Carnabuci et al., 2016; Vassallo et al.,

2020), making distribution assessments more difficult and

increasing the uncertainty when predicting scenarios.

The proximity to human activities in the Mediterranean

coastal areas makes the common bottlenose dolphin susceptible

to various anthropogenic threats (e.g., bycatch, vessel traffic,
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overfishing, contaminants, and noise pollution) (Natoli et al.,

2021). Consequently, the species was included in Annex II of the

EU Habitats Directive (92/43/CEE) as priority species and was

listed as Least Concern in the last IUCN Red List of Threatened

species regional assessment (Natoli et al., 2021). This new

assessment imperatively recommended continuously

monitoring the effects of human–related stressors on the

common bottlenose dolphin to ensure the maintenance of

intra–species diversity and the survival across its range (Natoli

et al., 2021).

Considering the species characteristics and the variations of

the natural and anthropogenic conditions, a large number of

occurrence data is required to support studies investigating

common bottlenose dolphin distribution, as well as a robust

analytical approach capable of coping with heterogeneous data

and the variability of predictors (Martino et al., 2021). Relying

on different data sources (research programs and social media

reports), physiographic and environmental covariates (depth,

slope, surface temperature and chlorophyll–a), and specific

source–related detection functions, this study select a Spatial

Log–Gaussian Cox Process to model common bottlenose

dolphin distribution patterns using 14-years data (2008−2021)

collected in the Mediterranean Sea. Here, to effectively manage

and solve the complex issue of presence-only data, the

suggestions offered by Warton and Shepherd (2010) and, in

the ecological framework, by Renner et al. (2015) were used,

adopting a point processes approach where pseudo-absences

generation is not required. Since anthropogenic pressures (i.e.,

coastal population, fishing and tourism; see Figures S5 and S6 in

the Supplementary Materials; http://dati.istat.it/, https://www.

politicheagricole.it) on the study area were constant within each
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season in the considered time window of 14 years, a spatial

model with a seasonal effect was adopted. Applying the approach

and the methodology developed and tested in Martino et al.

(2021), this study investigates the common bottlenose dolphin

seasonal distribution in a broader area than previously reported

and discusses the flexibility of the species to ecological drivers

and anthropogenic forces.
Materials and methods

Study site

The study area is located in the western Mediterranean Sea,

within the Ligurian and central Tyrrhenian Sea (Figure 1), off the

Tuscany and Lazio coasts (Italy). The area covers almost 60,000

km2 and is a complex marine region including various

environmental features (e.g., continental shelf, slope, canyons,

seamounts) and various habitats (seagrass meadows, hard‐

bottom communities with coastal banks, cliffs, sand, and

mud). The northern section spans mainly over the continental

shelf. It is characterized by shallow waters and coastal shoals

surrounding several islands, which form the Tuscan Archipelago

(i.e., Capraia, Elba, Giannutri, Giglio, Gorgona, Montecristo, and

Pianosa Islands). The Elba, Capraia, and Pianosa Islands area

presents mainly shallow waters within the 100 m bathymetry. In

contrast, the west–southern area of the Archipelago is

characterized by steeper slopes and deep canyons, reaching

more than 500 m depths (Ricevuto et al., 2011). Between

Capraia and Gorgona Islands, the continental shelf is crossed

by the Elba canyon, which descends deeply toward the North–
FIGURE 1

Study area in the Mediterranean Sea, Italy.
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West. The seabed between Elba and Argentario consists of a

single basin, bordered to the west by the Elba ridge, to the east by

the Tuscany coast, and to the north by the Piombino canal and

Elba. The central–southern section of the study area includes the

continental shelf areas off the Lazio coast and, toward the south,

the i s l ands o f Ponza , Pa lmaro la , and Vento tene

(Pontine Archipelago).

Many seamounts are included or border the entire study

area, such as the Santa Lucia and Occhiali seamounts in the

north, the Cialdi, Etruschi, and Tiberino in the middle, and the

Albano seamount in the south (Würtz and Rovere, 2015).

Seamounts attract a rich associated fauna and strongly

influence the distribution of pelagic top predators, which can

find optimal foraging areas around them (Würtz and Rovere,

2015; Bo et al., 2020). The several river mouths present in the

area affect the coastal marine ecosystems as they are major

sources of organic matter for the adjacent marine waters. They

include the Arno river (in the northern part of the study area),

the Tiber river (in the middle of the study area), and the

Garigliano and Volturno rivers (in the southern part of the

study area).

Part of the study area (Figure 1) is included in the

international Pelagos Sanctuary for the protection of Marine

Mammals and is classified as a Specially Protected Area of

Mediterranean Importance (SPAMI) under the Barcelona

Convention Protocol for Specially Protected Areas and

Biological Diversity in the Mediterranean (SPA/BD

Protocol). Additionally, many Marine Protected Areas,

including several Sites of Community Importance and

Special Protection Areas under the Natura 2000 European

network of the Habitat Directive (92/43/EEC), are comprised

in the study area. Twelve Natura 2000 sites are found in the

northern portion (10 SCZ and 2 SCI), including the new

designated Natura 2000 SCI site ‘Tutela del Tursiops

truncatus’ − IT5160021, located just off the Tuscany coast,

for the protection of the common bottlenose dolphin. Two

marine protected areas (MPAs) can be found in the southern

portion of the study area: the MPA Islands of Ventotene and S.

Stefano in the Pontine Archipelago [recently acknowledged by

the International Union for Conservation of Nature (IUCN) as

Important Marine Mammal Area (IMMA, IUCN-MMPATF,

2017)] and the MPA Tor Paterno bank near Rome. The entire

study area is under constant anthropogenic pressures only

partially mitigated by the above-mentioned protective

measures (see section S5 in the Supplementary Materials for

further information on the demographic, fishing and touristic

variations in the study area).
Data sources

Following the approach used by Martino et al. (2021), three

types of sighting data over 14 years (2008–2021) were used
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considering two seasons (summer: April−September; winter:

October−March). Data included: 1) information derived from

conventional visual/acoustic research protocols (adaptive

sampling) using motor/sailing boats (Pace et al., 2019; Pace et al.,

2021; Papale et al., 2021; Pace et al., 2022b) the resulting dataset

was labeled UNIRM; 2) information originated from standardized

monitoring protocols (distance sampling) using platforms of

opportunity within the project “FLT Mediterranean Monitoring

Network” (ISPRA, 2016; Arcangeli et al., 2019; Pace et al., 2019);

the resulting dataset was labeled FERRY-FLT; 3) information

extracted from social media (Facebook and YouTube) using

reports by sea–users (Pace et al., 2019); the resulting dataset was

labeled SM. Detailed elements on SM data collection procedures

and selection are provided in Pace et al. (2019) and Martino et al.

(2021). As the SM dataset also included details on other cetacean

species than the common bottlenose dolphin (see Table S1 in the

Supplementary Materials), this information was used as a proxy to

infer boat densities potentially able to record the animals’ presence

(see the following ”Modeling approach” paragraph). The issue of

estimating boats’ (especially smaller ones) density was here further

developed to explore additional potential sources of information

(see section S3 in the Supplementary Materials) to extend and

enhance what already reported in Martino et al. (2021).
Physiographic and environmental
covariates

The following covariates were initially selected as reasonable

proxies for the species’ ecological needs (La Manna et al., 2016):

salinity, depth, slope, sea surface temperature (SST), and

chlorophyll–a. Salinity was not significant for modeling, thus

only the last four were used. Depth data were downloaded from

GEBCO (General bathymetric Chart of the Ocean – https://

www.gebco.net); the slope was computed from depth data

through the terrain() function of the R package “terra”

(https://www.r–project.org/; Hijmans, 2022); SST and

chlorophyll–a were retrieved from COPERNICUS platform

(https://marine.copernicus.eu/) as monthly average. The

retrieved datasets and data handling procedures are reported

in Martino et al. (2021) and the Supplementary Materials (see

section S1).
Modeling approach

Dolphin sightings were aggregated over time into two

seasons (summer and winter) and viewed as two-point

patterns over space. Therefore, a point process model was used

to describe how those points are generated. To integrate data

from all available sources and manage possible detection bias in

each dataset (see section S2 in the Supplementary Materials), a

Spatial Log–Gaussian Cox Process (LGCP) (Renner et al., 2015)
frontiersin.org
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incorporating different detection functions for each data source

was built (see Martino et al., 2021 for details). It was assumed

that sighting patterns, i.e., locations of dolphin groups in space (

s∈S⊂R2 ) and season t=1, 2 (t is the season), were properly

described by a point process whose intensity function (s,t) is

additive on the log–scale:

log l(s,   t)ð Þ =  XT(s,   t)b +  w(s)

where X(s,t) is a set of covariates detected at location s and time t

with linear effects b to be estimated, and w(s) is a zero–mean

Gaussian process with Matérn covariance function of order 1,

describing the residual spatial variation. Notice that both the

effect of covariates b and the spatial process w(s) are assumed to

be constant and are estimated jointly using data from

both seasons.

The vector X included both time constant (depth and slope)

and time dependent (SST and chlorophyll–a) covariates.

Temperature has been included both as a linear and quadratic

term. To distinguish between a possible seasonal effect and the

spatial effect of the covariate within one season, we created a

standardized version of both temperature and chlorophyll–a as:

sstc(s, t) =   sst(s, t)  −   sst(t)

chlc(s, t) =   chl(s, t)   −   chl(t)

where sst(t) and chl(t) are the seasonal means of surface

temperature and chlorophyll–a over the whole domain of

interest, defined as:

sst(t) =
Z
S
sst(t)ds

chl(t) =
Z
S
chl(t)ds

The model for the log intensity was then formalized as:

log l(s,   t)ð Þ =   b0   +   b1I     (summer)

+   bdepth  depth   (s)

+   bslope  slope(s) +   bsst  sstc  (s,   t)

+ bsst2   sst
2
c (s,   t)   +   bchl  chlc  (s,   t)

+ w(s);  s ∈  S;  t + 1; 2

(Equation 1)

Where b0 is a global mean, b1 a seasonal effect and I

(summer) is an indicator variable for the summer season and

the rest of symbols are explained above.

It was assumed that the above process was observed in three

different ways, conditionally independent given l(s,t). Thus,
Frontiers in Marine Science 05
three observed intensities were defined as:

l  *j (s,   t) =   gj  (s,   t)l(s,   t),                 j = 1,   2,   3   

where gj(s,t) is the detection function (with values between 0

and 1) which determines the thinning of the original process

(Martino et al., 2021). The detection functions were defined

as follows:

For the adaptive sampling (UNIRM) data:

g1  (s) =  
1,   d1  (s) ≤ K

0,     d1(s)   >  K
   

(

where d1(s) is the distance (Km) between point s and the

position of the boat when the groups were sighted. K = 4 Km

was defined as the maximum distance measured between the

location of the first visual sight of a dolphin group

by researchers.

For the distance sampling (FERRY-FLT) data, the half

normal detection function was used, defined as:

g2(s) = exp −
d22(s)
2x2

� �

where, d2(s) is the perpendicular distance (Km) to the ferry track

and x2 is a scale parameter.

Finally, for the SM data, the sighting probability was

assumed to be larger with higher number of citizens’ small

boats, so that the detection function was defined as:

g3(s, t) = F
d3(s, t)
x3

− m3

� �
(Equation 2)

Where Ф is the cumulative distribution function of a standard

normal distribution, d3(s,t) is the log–intensity of small boats at

point s and time t, and μ3 and x3 are location and

scale parameters.

The intensity of the small boats d3(s,t) is unknown.

Following Martino et al. (2021), this function was estimated

using sightings of all cetacean species included in the SM dataset

(see Table S1 and Figure S2 in the Supplementary Materials),

and accounting for seasonality (more small boats in summer

than in winter are expected). The parameters of the detection

function x3 and μ3 were kept constant between seasons (see

Supplementary S2 section for details).

An alternative estimation of the density of small boats d3(s,t)

was attempted using images of Copernicus Sentinel–1 satellite

radar. Such an approach was proposed in Martino et al. (2021) as

a future development but has not been successful in the present

study, as the intensity surfaces derived from satellite data

reported several artifacts (see section S3 in the Supplementary

Materials for details).

The model was fitted in a Bayesian setting using the inlabru

R package (Yuan et al., 2017; Bachl et al., 2019). The approach
frontiersin.org
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allows for the estimation of all model components, jointly

including the parameters in the detection functions, and

therefore accounting for all uncertainties in a coherent way

(see section S4 in the Supplementary Materials for prior

specifications and details about the implementation).

Once the model was fitted, the estimated mean number of

sightings was predicted over the whole area of interest as:

L(t) =
Z
S
l(s, t)ds (Equation 3)

Such an integral can be estimated using Monte Carlo

sampling from the fitted model.
Results

A total of 955 common bottlenose dolphin encounters was

collected by research projects and social media reports (Table 1)

over a period of 14 years, with a higher number documented in

summer (N = 759) than winter (N = 196).

The total research effort in the two research programs

(UNIRM and FERRY-FLT datasets) was 23,920 Km during

summer (21,479 Km by FERRY-FLT; 2,441 by UNIRM) and

3,477 Km during winter (3,010 Km by FERRY-FLT; 467 by

UNIRM). Total effort by season is shown in Figure 2.

Maps showing covariates used within the model are shown

in Figure 3 (depth and slope) and Figure 4 (seasonal sea surface

temperature and chlorophyll–a). Estimated maps of observation

process intensity used in the detection functions are presented in

Figure 5. The estimated value for the posterior means together

with 90 and 95% credible interval (CI) of the model’s fixed effects

are shown in Table 2. Importance or significance of variables can

be deducted by examining the overlap of their 90 or 95% CI with

zero. Both depth and slope showed a significant reduction effect

in the encounters when deeper and steeper, respectively (90 and

95% CI do not contain zero). The seasonal effect (Seasonal(b1)
has fully positive 90 and 95% CI) indicated an increase in the

encounter intensity during the summer season. The two space–

time varying covariates, SST and chlorophyll–a values, were not

significant within each season at the 95% significance level (CI

contain zero). However, the parabolic effect of SST was

significant at 90% level, suggesting a highly variable, but

positive effect of the surface temperature. Spatial field’s
Frontiers in Marine Science 06
parameters are reported in the Supplementary Material (see

S4 section).

The estimated posterior mean and coefficient of variation

(CV) surfaces for the intensity of the common bottlenose

dolphin distribution by season are reported in Figure 6. In

summer, the Tiber River estuary (nearly in the middle of the

study area) showed higher intensity than other coastal regions.

In winter, almost homogeneous predictions were observed, with

marginal greater intensities at the two extremes of the study area

(the Arno estuary in the northern part and Gaeta Gulf in the

south), where lower temperatures and slightly higher

chlorophyll–a concentration were observed. The relatively low

variance was predicted in the more coastal parts of the study area

within each season, while higher uncertainty was instead

revealed in the southernmost offshore area.

Finally, the distribution of the expected number of sightings

by each season over the whole area, computed using Equation 3,

is reported in Figure 7. While the expected number of sightings

is fairly similar during summer and winter, a much larger

variance is observed for the winter estimate.
Discussion

The modeling approach of spatial data integration, able to

carefully consider and minimize datasets biases, has been used in

this study, offering a more precise picture of the seasonal

common bottlenose dolphin distribution in the western

Mediterranean Sea. As Dorazio (2014) pointed out, several

statistical models have been proposed to integrate presence-

only data from different research protocols to obtain reliable

predictions of species distribution. However, these models have

overlooked the effects of imperfect detectability and survey bias.

Recently, Martino et al. (2021) showed that bias in these

estimates, induced by multiple detection mechanisms related

to data collection, could be reduced by correcting for

detectability issues, thus allowing multiple sources of

information to be integrated. In this study, new advancements

with respect to Martino et al. (2021) were presented, testing a

different approach to better define the presence–only (social

media data source) detection function (see section S3 in the

Supplementary Materials) and describing a possible seasonal

effect thanks to a larger amount of data and a more extended

study area. However, the relatively low number of sightings

currently available, highly scattered in time, makes it difficult to

connect to the detailed temporal pattern in the environmental

covariates. The number of sightings per year seems insufficient

to allow a full space-time modeling to capture possible temporal

dynamics in the area.

The model here estimated includes all sources of

uncertainty in one framework, allowing for a rigorous

evaluation of the overall prediction uncertainty. It is known

that when predicting animal distribution, uncertainty – both
TABLE 1 Total number of common bottlenose dolphins recorded by
the two research programs [onboard ferries FLT Net (FERRY-FLT) and
a dedicated survey platform UNIRM)] and by social media.

FERRY-FLT UNIRM Social media

Summer 126 137 496

Winter 22 18 156
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epistemic (i.e., the recognized ignorance due to imperfect

knowledge; Brown, 2004) and stochastic (i.e., always present

when dealing with nature; Walker et al., 2003) – is an

unavoidable factor to deal with. This is obviously a critical

point in the development of conservation and management

measures, as without a proper uncertainty evaluation, weak

and inefficient choices could be made (Stephenson et al., 2021).
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For the distribution of marine apex predators like the common

bottlenose dolphin this is a crucial aspect, as these species can

travel for great distances or reside in specific coastal locations.

These versatile habits entail significant variations in the

environmental characteristics and expose the species to a

large variety of human pressures overlapping their

ecologically important areas.
FIGURE 2

Total research effort by UNIRM (red) and FLT Net (blue) research programs and point location of social media sightings (green dots).
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FIGURE 3

Bottom depth (left panel) and slope (right panel) in the study area.
FIGURE 4

Sea surface temperature (SST) distribution in winter (upper left panel) and summer (upper right panel), and chlorophyll–a log–scale values in
winter (lower left panel) and summer (lower right panel) in the study area.
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This study highlighted that the common bottlenose dolphin

seems to well adapt to different seasonal conditions and

maintain its distributional range, being constantly present

along the coasts of the study area over the investigated 14-

years period and showing differences in the intensities of its

distribution between the two seasons (winter and summer),

while the spatial pattern remain constant. A much larger

variance for the winter vs summer estimates emerged, likely

related to the reduced observation effort in the winter season due

to bad weather conditions. Even not statistically significant, the

lowering temperature and the slight rise of chlorophyll–a

concentration detected in winter seem to increase the

probability of dolphin presence. More specifically, the

chlorophyll–a concentration was higher in two locations, near

the Arno estuary in the north and the Garigliano/Volturno

estuaries in the south of the study area, respectively. Being

responsible for primary production, chlorophyll–a could be

used as an indicator for other biotic features, such as the

zooplankton distribution or plantophagous fish presence (e.g.,
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La Manna et al., 2016). In the southern Mediterranean Sea,

chlorophyll–a was found to be the second strongest predictor for

bottlenose dolphin spatial distribution patterns, representing a

good proxy for prey availability and thus a highly useful

parameter in identifying relevant aggregation hotspots for

dolphins (La Manna et al., 2016). Most likely, it is not by

chance that the main estuaries in the study area were sites

with the greatest predicted bottlenose dolphin densities, as

estuaries have been shown to act as significant habitats for the

genus Tursiops worldwide (e.g., Sprogis et al., 2016; Hartel et al.,

2020). Estuaries are key aspects of the coastal ecosystems because

of their unique characteristics and the variability induced by

mixing and stratifying fresh and saltwater (McLusky and Elliott,

2004; Lin et al., 2013). Such processes are known to trigger fish

aggregations and movements (Krumme, 2004) as they adapt to

these changes, and dolphin paths as well, as they follow their

prey (i.e., prey availability and distribution in turn influence

common bottlenose dolphin distribution; Karczmarski et al.,

2000; Soldevilla et al., 2011; Lin et al., 2013). In addition, other
FIGURE 5

Estimated maps of observation process intensity used in the detection functions (summer: left panel; winter: right panel).
TABLE 2 Estimated posterior means together with 90 and 95% credible interval (CI) for the fixed effects parameters in Equation (1).

Posterior mean 0.025quantile 0.975quantile 0.05quantile 0.95quantile

Intercept ( b0) –3.750 –5.165 –2.237 –4.919 –2.58

Season ( b1) 2.812 2.566 3.059 2.605 3.019

bsst 1.330 –0.219 2.884 0.030 2.623

bsst2 2.068 -0.068 4.225 0.266 3.859

bchl 0.042 –0.121 0.201 -0.093 0.176

bdepth –4.394 –5.450 –3.342 –5.275 –3.509

bslope –0.460 –0.725 –0.205 –0.678 –0.242
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FIGURE 6

Posterior means of the predicted intensity surface for bottlenose dolphin distribution during the summer (upper left panel) and winter (upper
right panel) seasons and the coefficient of variation (CV) for each season (summer: lower left panel; winter: lower right panel).
FIGURE 7

Distribution of the expected number of sightings over the whole area during summer (red) and winter (blue).
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peculiar, fixed features of the study area such as islands,

headlands and seamounts may have played a role in the

constant distributional pattern over seasons here observed, as

they are known to permanently generate eddies, fronts and water

masses circulation, enhancing the amount of available nutrients

and aggregating different species able to attract apex predators

(Johnston and Read, 2007; Bailey and Thompson, 2010; Dinis

et al., 2016).

Bathymetry is considered a proxy for prey availability

indirectly linked to the common bottlenose dolphin

distribution and habitat selection as well (Marini et al., 2015;

Gnone et al., 2022). Here, bathymetry appeared to be the best

predictor of the species distribution in the investigated area: the

probability of sighting a group of common bottlenose dolphin

increased in shallow (coastal) waters and decreased with

increasing depth. This result is in accordance with the

relatively consistent preferences in terms of bottom

topography and water depth observed for the common

bottlenose dolphin in the Mediterranean Sea (Natoli et al.,

2021), although some transient occurrences in deeper waters,

where uncertainty in predictions increases, were detected.

Coastal waters may be more suitable habitats for common

bottlenose dolphin mother–calf pairs than deeper ones, where

females with newborns could form stable resident groups as

observed in the study area near the Tiber River estuary by both

researchers and sea users (Pace et al., 2019; Pace et al., 2021; Pace

et al., 2022a; Pedrazzi et al., 2022).

Marine apex predators are, in general, highly mobile species,

which raises issues in identifying their habitat boundaries for

conservation actions (Cribb et al., 2015; Pace et al., 2018). The

heterogeneous distribution over a wide range of habitats

characterizes these species as indicators to estimate the effects

of human activities on ecosystem functions (Arcangeli et al.,

2015; Carlucci et al., 2016). Coastal dolphins are known to be

affected by different anthropogenic threats such as bycatch,

entanglement in fishing gears or marine litter, physical

disturbance by shipping, unregulated dolphin watching or

coastal development, anthropogenic noise, chemical

contaminants, or overfishing (Natoli et al., 2021). These

multiple pressures are acting in the highly anthropized study

area (Gnone et al., 2022), although it encompasses several levels

of spatial protection measures such as the SPAMI Pelagos

Sanctuary for the protection of Marine Mammals, Marine

Protected Areas, and Natura 2000 sites including the ‘Tutela

del Tursiops truncatus’ − IT5160021 specifically established for

protecting a recognized important site for bottlenose dolphin

just off the Tuscany coast. To date, a complete assessment of

species conservation status and intervention to assure the

favorable status is reached or maintained is mandatory within

the recently established Habitat Directive N2000 IT5160021 site

(Arcangeli et al., 2021). Our findings underline the importance

of the study area for the bottlenose dolphin also well outside the

limit of the N2000 site and call for a reinforcement of effective
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mitigation measures to preserve the species especially along the

whole coastal area. The results shown by our integrative

modeling effort highlight the importance of using all available

data to better understand the distribution of the species (Pace

et al., 2014; Pace et al., 2019; Gnone et al., 2022) and, in turn, the

characteristics of the marine ecosystem they are part of.

Additional efforts to enlarge and reinforce the existing

protective regulations in the study area are urgent priorities

(to encompass at least the whole coastal area), as well as further

investigations and continuous monitoring activities to identify

effective mitigation actions for the local common bottlenose

dolphin population.
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