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Introduction

With the continuous progress of science and technology, especially the advent of the

era of the Internet of things, the electronic industry has become an emerging science and

technology development industry (Qin et al., 2011). Electronic technology has a large

number of applications in many application fields, such as aerospace, navigation, vehicle

and so on. In the marine environment, many application scenarios such as ship

positioning, marine environment monitoring and satellite communication are

inseparable from the support of electronic equipment (Dong and Shi, 2017; K. K. Ku

et al., 2008). The development of electronic technology is of positive significance to the

development of marine electronic devices such as marine floats and underwater sensor

network (Figures 1A, B). At present, due to the miniaturization and high integration of

integrated circuits, the electronic industry has gradually entered the nano devices

category. Integrated circuits use nano semiconductor materials (Nanowires, nanorods,

nanopores, nanostar particles, nanostar particle aggregates, etc.) and nano

semiconductor fabrication technology leads to nano electronic structures such as metal

wires, which causes unknown pollution influence to marine environment. Particularly, in

addition to the traditional integrated circuit technology, 3D integrated circuits and

transient electronics, as cutting-edge technologies, the impact of their waste nano

materials on the marine environment has attracted increasing attention.

3D integrated circuits mainly use silicon through-hole technology to stack and bond

multilayer integrated circuit chips or wafers (The thickness of each layer is about 20 ~ 100 m
m), and realize 3D integration with the help of the third dimension (Topol et al., 2006), which

can greatly accelerate the growth of chip scale. Compared with traditional integrated circuits

(Lee and Chakrabarty, 2009; Knickerbocker et al., 2008), 3D integrated circuits can shorten
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the internal interconnection length of the chip (About 30 ~ 100 m
m), reduce power consumption (Zhang et al., 2001; Li and Wu,

2010), and have more I/O resources and stronger computing power

(Li and Wu, 2010). In the current research, most researchers are

committed to solving its thermal problems, yield, layout and wiring

design and testing (Jung et al., 2012; Bazargan et al., 2000), and there

are few relevant studies on marine pollution caused by its waste

nano materials. Most 3D integrated circuit devices are similar to

traditional electronic devices. However, due to the increased

number of device integration and wafer stacking, there are more

toxic and harmful substances such as lead, cadmium, mercury and

PVC plastics per chip. Once these substances enter the marine
Frontiers in Marine Science 02
environment, they will bring a certain degree of marine pollution

and eventually endanger human beings, marine animals and plants.

On the other hand, different from the 3D integrated circuit, the

main feature of transient electronics is that its electronic structure

can be partially or completely degraded into the surrounding

environment in a controlled manner within a specified time

(Hwang et al., 2012). Transient electronics does not focus on the

improvement of device performance, but more considers the actual

application requirements. From the perspective of environmental

protection, the research of transient electronics mainly focuses on

the degradability of electronic products under the condition of

meeting the basic functions of the products (Ji et al., 2018; Yu et al.,
B
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FIGURE 1

Marine electronic devices and advanced electronic technology (A) ocean buoy (B) Underwater sensor network (Shams et al., 2021) (C)
Dissolution process of transient electronic in water (Mahajan et al., 2018) (D) 3D monolithic integration in flexible printed transistors (Kwon et al.,
2019) (E) A Novel bonding method based on metal film (Hu and Chen, 2016).
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2018). The degradation of electronic devices can greatly reduce the

emergence of harmful substances in e-waste. The image of

dissolution process of transient electronic in water is shown

in Figure 1C.

This paper focuses on the analysis of the current cutting-edge

electronic technology, the pollution of nano materials of 3D

integrated circuit devices and transient electronic devices to the

marine environment, and the possible impact of a marine

atmospheric environment on electronic products. Combined with

reality, this paper analyzes the feasible measures to reduce the

pollution of marine electronic wastes, and puts forward the

possibility of combining 3D integrated technology with transient

electronic devices to establish a 3D transient microsystem.
Analysis of influencing factors of
electronic devices

3D-integrated circuit

3D-integrated circuits have been the development direction

under the background of the nano integrated circuit. It can greatly

improve the integration of chip with advantages of high density, low

power consumption, large bandwidth, etc. It is noted that nano

semiconductor materials such as silicon, germanium, gallium

arsenide, silicon carbide and indium phosphide, as well as metal

materials such as gold, copper, iron, lead and aluminum and some

non-metallic materials such as resin and plastic, are used for

construction of 3D integrated circuits. Once the waste

nanoparticle materials flow into the marine environment, the

pollution problem is characterized by wide sources, long residue

time, transfer and enrichment along the food chain, difficult to

detect and recover after pollution, and heavy metal materials will

harm marine organisms to oxidative stress, cause DNA damage,

protein modification, lipid peroxidation, and even biological death

(Wu et al., 2016). The plastic shell of electronic equipment flows

into the marine environment and will be broken and degraded into

small-size plastic with a particle size of less than 5 mm under the

action of wind, waves, ocean current and solar radiation

(Thompson et al., 2004). This substance will produce biological

toxicity to marine organisms and affect the eating preference and

reproduction of the organisms (Jeong et al., 2017; Ory et al., 2018).

When it enters the deep sea, it will make the marine composition

more complex and the biological environment more demanding

(Kershaw et al., 2015). While causing physical pollution, it may also

cause compound pollution, which will eventually affect the marine

biological ecological chain through material circulation.
Transient electronics

The transient electronic device is an electronic device that can

degrade itself within a certain time range (Kang et al., 2020).
Frontiers in Marine Science 03
Through relatively mature flexible electronic device processing

technology and transfer printing technology, its performance can

be comparable to that of ordinary devices. There are many

transient electronic devices, such as field effect transistors (Acar

et al., 2012), energy collectors (Li et al., 2019), energy storage

batteries (Chen et al., 2016), induction antenna (Jamshidi et al.,

2015). These transient electronic devices mainly include

substrates, electrodes, dielectric layers, active layers

(interconnect wires or semiconductors) and packaging layers

(Loh et al., 2016). At present, the thickness of each layer of

transient electronic chip using xi10 technology is generally

between 100 and 900 nm. The substrate and packaging layer

play the role of carrier and support in transient electronic devices.

Their main materials are natural polymer materials such as silk

protein (Tao et al., 2014; Jia et al., 2017; Ji et al., 2018), rice paper

(Hosseini and Lee, 2015), synthetic polymer materials such as

polyanhydride (Choi et al., 2020), polycaprolactone (Li et al.,

2018), Polyoxymethylene (Feig et al., 2018), graphene oxide and

so on. Generally, this part of materials can be completely

absorbed by the water body without affecting the marine

ecological environment. Electrodes, dielectric layers and active

layers are the basis for the realization of transient electronic

functions. Electrodes generally use metal materials, such as Mg,

Ag, Cu, Al, Fe, Au, graphene and indium-tin oxide (ITO). The

most common transient dielectric materials are semiconductor

materials such as Si and Ge and oxides such as silica, zinc oxide

and magnesium oxide (Corbet et al., 2014; Hwang et al., 2015;

Kang et al., 2015). Among them, monocrystalline silicon can be

dissolved in aqueous medium (Si + 4H2O ! Si(OH)4 + 2H2) at

near neutral pH, and monocrystalline silicon with 100 nm

thickness can be completely dissolved in phosphate buffered

saline within 20 days (Choi et al., 2020). Compared with Si, Ge

has a similar hydrolysis mechanism (Ge + O2 + H2O !
H2GeO3 ) , and the pa t t e rn a r r ay o f Ge squa r e s

(3mm×3mm×100nm) can be dissolved in a few hours at pH 10.

ZnO films can be dissolved into hydroxide (ZnO + H2O ! Zn

(OH)2) or zinc ions under different thickness conditions. The

interconnection conductor material is mainly soluble metal with

good performance. Semiconductor materials are also widely used

in active layers, such as monocrystalline silicon (Kang et al.,

2018), black phosphorus (BP) (Song et al., 2018).

Contamination of transient electronics is manageable

compared to conventional electronics. Although the marine

atmospheric environment has a certain corrosive effect on

transient electrons, it is generally difficult to achieve the

triggering conditions of transient electrons. For example, the

memristor device prepared by Liu et al. (Liu et al., 2019) has a

high temperature of 180°C for its degradation triggering

condition, such a temperature cannot be reached under

natural conditions. The triggering methods that are highly

sensitive to the marine environment are wet chemical reaction

and light responses. But these can be avoided by adding proper

encapsulation, or using a well-protected metal or plastic case.
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3D transient microsystem

The advantage of the 3D integrated circuit lies in its high

integration, low power consumption and high performance, but

a very important but unsolved problem is the pollution problem

after the devices flow into the marine environment. An attractive

method is to combine 3D integration technology with transient

electronic devices and use degradable materials to prepare 3D

transient microsystem devices, so that the new devices have the

advantages of 3D integrated circuits and transient electronic

devices at the same time, that is, reduce the impact on the marine

ecological environment on the premise of smaller volume and

higher performance. However, due to the current problems of

transient electronics, such as simple structure, low process

integration, and certain requirements for the research and

development of new materials, it is difficult to directly apply to

three-dimensional integrated circuits. At present, in the research

of flexible printed circuits, researchers have adopted the strategy

of multi-dimensional nanomaterials and structure design to

improve the integration and stability of circuits. Kwon et al.

(Kwon et al., 2019) adopt a dual-gate configuration in the 3D

transistor-on-transistor structure for the improvement of their

electrical characteristics. This method can effectively increase the

density of printed transistors. Meanwhile, by interconnecting

these 3D integrated dual-gate transistors, the authors propose a

3D universal logic gate and its array as a new facile route to

design printed digital circuits that are essential for emerging

flexible electronics applications. The image of 3D monolithic

integration in flexible printed transistors is shown in Figure 1D.

In the work of Hu et al. (Hu and Chen, 2016), Sn/In and Cu are

selected as the bond materials due to their low melting point and

good ductility. And a novel bonding method using metal thin

films is proposed. This bonding approach achieves ultra-fine

pitch, less reliability issue factors and a simple process which can

be applied in the flexible substrate 3D stacking. The image of the

novel bonding method based on metal film is shown in

Figure 1E. These works have a certain reference value for 3D

transient microsystem.
Discussion

Conventional printed circuit boards of electronic devices are

developing towards thin lines, small holes and micro spacing, and

are becoming more and more sensitive to corrosion (Ahmad, 2006;

Ghosh, 2017). The main influencing factors of the marine

environment on electronic products include temperature,

humidity, sea salt particles and dust. Temperature is an important

factor in improving the corrosion reaction. When the temperature

is higher than 40°C, it has a great influence on the corrosion

reaction rate of electronic materials. At the same time, due to the

high integration density of electronic circuits, they have certain heat

dissipation problems. Once the heat accumulation is formed, it is
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components. Moist air is conducive to the growth of mold. Mold

contains a lot of water, which greatly reduces the insulation

performance of electronic equipment. The acidic substances

secreted in the metabolic process of mold interact with insulating

materials to degrade the insulation performance of equipment. and

will affect the reliability of the device. The main components of sea

salt particles are 75% sodium chloride and 10% magnesium

chloride. The dust contains water-soluble components such as

sulfate ion, nitrate ion and hydrochloric acid ion. When marine

particles and dust are attached to chips or electronic devices,

corrosion reaction will occur more easily under certain

temperature and humidity conditions (Xiao et al., 2017; Cengiz

and Cansoy, 2015). Once the package is damaged and corrosive gas

infiltrates, it is very easy to form an adsorptive thin liquid film

(Schneider and Buttry, 1993; Wadsak et al., 2000) in PCB vias, pads

and pollutant residues, resulting in electromigration corrosion and

galvanic corrosion of pads or plug-in pins (Wang et al, 2017),

affecting the service life of devices.

The impact of the marine environment and advanced

electronic devices is interactive. Therefore, while considering

the marine pollution of advanced electronic products, it is also

necessary to consider the corrosivity of the marine environment

to the products. Aiming at the specific environment of the ocean,

improving the reliability of advanced electronic devices and

reducing the output of e-waste have a certain positive

significance for the marine environment. Therefore, for the

research of advanced electronics, while considering the degree

of marine pollution caused by its materials, it is also necessary to

improve the reliability and stability of electronic devices, achieve

a good forward cycle, and reduce the impact on the marine

environment as much as possible while meeting the functional

requirements of marine electronics. For the 3D transient

microsystem, the design of its degradation mechanism needs

to consider not only the corrosion effect of marine complex

atmospheric environment on degradable materials, but also the

stability of the device itself, which can work stably and reliably at

a given time. Although its design and integration are difficult, we

look forward to the emergence of related devices in the future.
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