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Global commercial catches of squid have increased greatly in the last few years.

However, approximately a quarter of the squid catches are still unidentified. In

the southeastern Gulf of Mexico (SGoM), the squid catches are not recorded

most of the time and are unidentified. This lack of knowledge limits the

evaluation of the populations and prevents the establishment of conservation

strategies. In this study, we used morphological and molecular (DNA

barcoding– cytochrome c oxidase subunit I gene) identification tools to

analyze the species composition of the family Loliginidae based on their

paralarvae (PL), their abundance distribution by size class, and their genetic

structure on the Yucatan Shelf, SGoM. A total of 134 PL were also collected

from three oceanographic cruises held in 2015, 2016, and 2018. A total of 56

adults were collected from three ports of Yucatan. Both adults and PL were

identified as Doryteuthis pleii (Blainville, 1823). The highest abundances of PL

were detected from the West and the Central zones of the Yucatan Shelf at 50-

and 15-m depth isobaths at 163 and 21 km from the coastline, respectively. The

abundance was higher (316 PL•1,000 m-3) in the early summer (June 2018),

medium (213 PL•1,000 m-3) at the end of summer and early autumn, and very

low (24 PL•1,000m-3) in late autumn. A high haplotype and nucleotide diversity

(Hd= 0.77; p= 0.002) with no structured population (Fst < 0) was also found,

suggesting a continuous gene flow throughout the Yucatan Shelf. This

information establishes the basis for a future comprehensive understanding

of their biological cycle and population dynamics.
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Introduction

Squids are relevant species for several fisheries around the

world (FAO, 2020). Over the past two decades, the commercial

catch and trade of squid have remained at the relatively high

levels that have marked its almost continuous growth worldwide,

while many coastal human populations obtain a significant

proportion of their protein intake from locally caught

cephalopod species (Arkhipkin et al., 2015; FAO, 2020).

The bulk of the global squid catch comprises species from

two families, the Ommastrephidae and Loliginidae (Arkhipkin

et al., 2015). However, approximately a quarter of the squid

catches are still unidentified and/or are usually reported as

common squid “Loliginidae” and/or “various squids”

categories (Rodhouse, 2005). This is also true for the

southeastern Gulf of Mexico (SGoM), where the loliginid

squid fishery is mostly obtained incidentally as a by-catch

from the shrimp and sardine fisheries, while catches per unit

of effort are not recorded most of the time (Solıś-Ramıŕez et al.,

1998; Comisión Nacional de Pesca (CONAPESCA), 2018). The

lack of reliable information limits the evaluation of the stocks

and impedes the establishment of local management and/or

conservation strategies (Ward, 2000; Olmos-Pérez et al., 2018).

Loliginid squids are demersal species, usually occupying

coastal marine waters in tropical and temperate regions

worldwide (Jereb and Roper, 2010). Like other cephalopods,

loliginids have a zooplanktonic larval stage known as paralarvae

(PL) (Young and Harmnan, 1988). Most PL are distributed in

the first 200 m, so their catch is more efficient than adults and

they are good indicators of the species richness of a region (De

Silva-Dávila et al., 2018).

The taxonomy and systematics of the adults of the

Loliginidae family are complicated due to the lack of

taxonomic stability (subfamily to subgenus levels), inconsistent

identification diagnosis, the existence of cryptic species, and

natural hybridization (Brakoniecki, 1996; Vecchione et al., 2005;

Jereb and Roper, 2010; Granados-Amores et al., 2013).

Moreover, there is a lack of PL descriptions for tropical species

(Sweeney et al., 1992; Vecchione et al., 2005), and there are

important morphological differences between PL and juveniles,

which do not allow morphological identification through their

ontogenetic development (De Silva-Dávila et al., 2013; Kim et al.,

2019). These constraints prevent unraveling loliginid life

histories, particularly in tropical areas of the western Atlantic

region (Rodhouse, 2015), such as the Gulf of Mexico (GoM).

At least five loliginid species inhabit the GoM, that is,

Doryteuthis (Amerigo) pealeii (Lesueur, 1821), D. (Doryteuthis)

pleii (Blainville, 1823), Lolliguncula (Lolliguncula) brevis

(Blainville, 1823), D. (Doryteuthis) roperi (Cohen, 1976), and

Sepioteuthis sepioidea (Blainville, 1823) (Judkins et al., 2009;
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Jereb and Roper, 2010; Judkins et al., 2010; Judkins et al., 2017).

Ecological information available relies on adult collections

created for taxonomic identification (Barrientos and Garcıá-

Cubas, 1997; Dıáz-Santana-Iturrios et al., 2019; Bravo-Muñoz,

2020), to describe their distribution, abundance, fishing

prospects (Judkins et al., 2009; Dıáz-Santana-Iturrios et al.,

2019), and on fishing reports aimed to analyze the exploitation

state of squid populations (Arreguıń-Sánchez and Arcos-

Huitrón, 2011). Although there are descriptions of loliginid

hatchlings, the information on their presence in the GoM is

scanty (Sweeney et al., 1992).

Molecular tools have facilitated the identification of

cephalopod species at any developmental stage (Allcock et al.,

2015; Dıáz-Santana-Iturrios et al., 2019; Castillo-Estrada et al.,

2020; Santana-Cisneros et al., 2021). This can be done using

molecular markers such as the cytochrome c oxidase subunit I

(COI) gene, which serves as a universal DNA barcode for

organisms (Hebert et al., 2003). This gene can also provide

information about many ecological traits, such as genetic

diversity, population structure, genetic connectivity,

phylogeographic analysis, and gene flow (Cowen and

Sponaugle, 2009; Hellberg, 2009; Bucklin et al., 2011). This

information is fundamental for the studies of population

ecology and fisheries management (Ibáñez and Poulin, 2014;

Sales et al., 2017; Roura et al., 2019).

Based on the above, in this study, we identified loliginid PL

collected in the SGoM and compared them with the adult species

reported in the fishing landings in the Yucatan Peninsula to

know if they are the same species/populations. This information

will aid in the understanding of the species composition and

genetic structure of loliginids in the SGoM useful to support

further fishing programs and/or management of this fishery.
Materials and methods

Study area

The SGoM is dominated by a large continental shelf that

extends 200 km to the north offshore the Yucatan Peninsula and

is 600 km long in an East–West direction. The study area

(Figure 1) comprises the complete length and breadth of the

Yucatan Shelf (YS), also known as the Campeche Bank, where

the main fisheries of the region take place (Botello et al., 2010).

In this area, there are three climatic seasons: the rainy season

(June–October)—when tropical depressions occur, the dry

season (March–May), and the anticyclonic (“Nortes”) season

(November–February), with cold fronts in which the water

column is mixed, homogenizing environmental conditions

(Lara-Lara et al., 2008; Enriquez et al., 2013).
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Field sample collection

Zooplankton samples were collected during three

oceanographic cruises held from 2nd to 20th November 2015

(GOMEX-4, G4), 25th August to 8th September 2016 (GOMEX-

5, G5) both onboard of the R/V “Justo Sierra” of the Universidad

Nacional Autónoma de México, and from 5th to 18th July 2018

(GOMEX-6, G6) onboard the O/V Alpha Helix of the Centro de

Investigación Cientıfíca y de Educación Superior de Ensenada. A

permit for the mentioned collections (PPF/DGOPA-070/16) was

issued by “Comisión Nacional de Acuacultura y Pesca.”

The sampling design consisted of 18 transects perpendicular

to the Yucatan coast, separated horizontally from each other by

35 km. Each transect comprised five sampling stations, and these

were located to follow five different isobaths: 15, 50, 100, 150,

and 200 m. The study area was also divided into three zones

according to the oceanographic conditions on the shelf: West

(influenced mainly by the Campeche Canyon Current, CCC),

Central (as a transition zone and influenced by submarine

groundwater discharges near the coast), and East, influenced

by the Cabo Catoche upwelling (Enriquez et al., 2013) (Figure 1).

In each sampling station, surface trawls (10-m depth) were

carried out at a constant speed of 2.5 knots using a standard

Bongo structure (0.6-m diameter, with 333-µm mesh nets), and

equipped with mechanically calibrated flowmeters (Sea Gear),

used to estimate the volume of filtered water (Sameoto

et al., 2000).
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The samples of the G4 and G6 cruises were fixed in 96%

ethanol with a complete replacement of the fixative after 24 h.

The G5 samples were fixed in a 7% buffered formaldehyde

solution. The G5 samples were not considered for molecular

identification but were deposited at the collection of the

Zooplankton Laboratory of the Centro de Investigación y de

Estudios Avanzados of the IPN Unit Mérida. In addition, 34%

(26 PL) of the G6 samples were included in the

biological repository.

Adult loliginid specimens from the Yucatán coast were

sampled in September and November 2019 in Sisal, Progreso,

and El Cuyo ports where the by-catch fauna of the local artisanal

sardine fishery is landed. Moreover, these ports are in the West,

Central, and East zones of the studied area, respectively. Adults

were sampled in only one vessel per port, and in each case, a

tissue sample of ~1 cm3 was dissected from the third left arm,

fixed in 96% ethanol for molecular identification, and tagged.
Morphological and
molecular identification

Loliginid PL were extracted from the entire zooplankton

samples without fractionation. Some of the best-preserved

specimens were photographed in dorsal and ventral views to

keep a visual record of their main taxonomic characteristics

(dorsal head and mantle chromatophore patterns) and were
FIGURE 1

Study area and zooplankton sampling stations in the Yucatan Shelf, Southeastern Gulf of Mexico (SGoM). Red dots represent the ports where
adult organisms were sampled. The dotted lines represent the three zones: Western (— purple), Central (—orange), and Eastern (—gray).
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identified to the most precise taxonomic level according to the

criteria of Hanlon et al. (1992) and Vecchione et al. (2001).

Adults from the landings were identified according to Jereb and

Roper (2010) and Young et al. (2019).

The full body of G4 and G6 loliginid PL, and the adult samples

(<1 g) were used for genomic DNA (gDNA) extraction using the

Quick-DNA™ Universal kit (Zymo Research©) according to the

manufacturer’s protocol for total DNA isolation from solid tissues.

The DNA concentration and quality were checked in a UV-visible

Spectrophotometer QQIAxpert System de Qiagen. The genetic

barcode identification was done with the mitochondrial

cytochrome c oxidase (COI) gene, amplified using the universal

metazoan primers LCO1490 (5’-GGTCAA CAA ATC ATA AAG

ATA TTG G-3 ‘) and HCO2198 (5’-TAA ACT TCA GGG TGA

CCA AAA AATCA-3’) (Folmer et al., 1994). Polymerase chain

reactions (PCRs) were carried out using 0.25 ml of a mix of the two

primers (10 mM), 12.5 ml of DreamTaq Green PCR Master Mix

(Thermo Scientific©), 1 ml of gDNA (5–300 ng ml−1), and the

remainder of nuclease-free water to obtain a final volume of 25 ml.
Amplification conditions were: initial denaturation at 95°C for

3 min, followed by 40 cycles of denaturation at 95°C for 30 s,

annealing at 50°C for 30 s, and extension at 72°C for 1 min, with a

final elongation at 72°C for 5 min in a C1000 Touch Thermal

Cycler (BIORAD™). Amplicons were sequenced in both senses

using the Sanger et al. (1977) method by Macrogen Inc., Seoul,

South Korea. DNA sequences were aligned with MUSCLE (Edgar,

2004) in MEGA7 software (Kumar et al., 2016), and aligned

sequences were manually curated. The filtered sequences were

compared with the Barcode of Life Data (BOLD) using their

Identification System for COI-accepted sequences (https://

boldsystems.org).

To corroborate the identity of the DNA sequences, we used

published sequences of each loliginid species whose geographical

distribution is within the study area (Table S1): D. pealeii, L.

brevis, S. sepioidea, and sequences of D. pleii for North America

(northern GoM and the northwestern Atlantic Ocean), western

GoM—Tamaulipas, and for Brazil. The sequence of Dosidicus

gigas was used as an outgroup. These sequences, together with

the new sequences obtained from our analysis, were collapsed

with CD-HIT-EST (t=0, c=0.98, n=5) to eliminate redundancies

(Niu et al., 2010; Fu et al., 2012). The collapsed sequences were

aligned with MUSCLE (Edgar, 2004) and formatted to nexus

with Seqmagick (https://github.com/fhcrc/seqmagick).

The best evolutionary model was determined using the

jModelTest2 (Darriba et al., 2012), using the Bayesian

information criterion (BIC) for the Bayesian inference

analyses. According to jModelTest2, we selected the GTR + I

+ G model. The phylogenetic tree was inferred using Mr. Bayes

v. 3.2 (Ronquist et al., 2012). The tree was based on MCMC

(Markov chain Monte Carlo) sampling, with 3,000,000

generations, a sampling frequency of 1,000, a consensus rule of

50%, and four chains (one cold and three hot), until achieving an
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average standard deviation of split frequencies >0.01. The 25% of

the first trees sampled in the MCMC run were discarded as

burn-in, and a consensus tree was obtained with the remainder.

The resulting tree was converted to the Newick format with

AfterPhylo.pl and was exported to the Interactive Tree of Life

(iTol) (Ciccarelli et al., 2006 https://itol.embl.de/) for

its visualization.
Size structure and abundance
distribution of loliginid paralarvae

The dorsal mantle length (ML ± 0.01 mm) of 123 PL was

measured, except for 11 PL that had no mantle and were not

considered for this analysis, using the NEO PiWeb reporting

plus Basic software, imaging ZEN and AxioVision connected to

a digital camera AxioCam ERC Rev.2 under a binocular

microscope ZEISS SteREO Discovery V8. To estimate the fresh

ML based on the preserved PL (PPL) sizes, a shrinkage

correction factor (SCF) of 25.8% was added to the computed

values (Villanueva et al., 2016) because the size of fresh PL

decreases with fixation and preservation (Goto, 2005).

Since the abundance of PL at the species-specific hatching

size is a precise indicator of a recent hatching event (Yatsu et al.,

1999; Zeidberg et al., 2012), we used the ML of fresh and of PPL

for size-frequency analysis. Considering that the hatching size

reported for D. pleii is 1.5-mmML (McConathy et al., 1980) and

that the general hatching size interval of 0.1–2.5 mm is likely for

the newly hatched in several cephalopods (Villanueva et al.,

2016), those PL from 2.6- to 4.0-mm ML were considered older

than recently hatched. The total abundance per sampling station

and the abundances by size interval by the sampling station were

standardized as the number of PL in 1,000 m3 offiltered seawater

(PL•1,000 m-3) (Smith and Richardson, 1977; Diekmann et al.,

2006). The abundance distribution of PL at the sampling stations

per cruise was plotted using the R programming language (R

Core Team, 2019).
Genetic analysis

Genetic diversity indices [haplotype number (h), haplotype

diversity (Hd), and nucleotide diversity (p)] (Nei, 1987) were
estimated using the DnaSP v5 software (Librado and Rozas,

2009). To test the genetic population differences between zones,

we performed a genetic structure analysis (Fst) and the analysis

of molecular variance (AMOVA) with 10,000 permutations

using Arlequin v. 3.5.2 (Excoffier and Lischer, 2010). Finally, a

haplotype network was generated to visualize the relationships

among haplotypes using the median-joining method

implemented in Network Software V 10.1.0.0 (Bandelt

et al., 1999).
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Results

During the three oceanographic surveys, we collected a total

of 134 loliginid PL, whereas 56 adult specimens were sampled

from the fishing landings in the three ports of Yucatán (Table 1).
Morphological and molecular
identification

Using the morphological identification approach, we

identified 70 PL at the species level, 38 at the genus level

(Doryteuthis spp.), and 26 at the family level (Loliginidae). All

the adults were identified to species level. D. pleii was the only

species found for both PL (Figure 2A) and adults (Figure 2B)

according to the following morphological traits.

PL—(Figures 2A–C) Body form as bullet-shaped with well-

developed terminal fins; well-developed ventral arms (arms IV >

I) and tentacle clubs with four rows of suckers on the manus

(Figure 2D). The chromatophore arrangement in the ventral

head (in a roughly diamond-shaped quadrangle posterior to

each eye) was initially observed but later faded with the fixation.

Chromatophore pattern in the dorsal head, in well-preserved

specimens, is 2 + 2 + 2, forming a hexagon and two central

chromatophores in the lower dorsal mantle (McConathy et al.,

1980; Hanlon et al., 1992).

Adult—Body long, fusiform. Mantle long, slender, cylindrical,

the posterior end acutely pointed (Figure 2E), mature males

present a striped pattern along the ventral surface of the mantle

(Figure 2F). Fins are rhomboidal, longer than broad, usually 60%

ML, and their sides fairly straight. Edge of vane straight (often

slightly curved in females), thick, and ribbed or rod-like (especially

in mature males). Suckers on ventral buccal lappets. Eyes not

large; diameter of the externally visible eyeball 14%–19% ML,

diameter of dissected lens 2%–7% ML. Left ventral arm

hectocotylized in mature males by a modification of distal half

to a fourth of arm that extends to arm tip; one-half to three-
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fourths (42–82) of suckers in a dorsal row much smaller than half

the size of their ventral counterparts; modified (small) suckers on

small, narrow, triangular pedicels (Figure 2G) (Hanlon et al., 1992;

Vecchione & Young, 2010; Dıáz-Santana-Iturrios et al., 2019;

Migkuavacca and Simone, 2020).

We extracted DNA from 45 PL previously identified

morphologically at the species level, two identified at the genus

level, and eight identified at the family level. All adult samples

were used for the molecular identification. DNA sequences were

successfully obtained from 39 PL (71% of the DNA extractions:

30 from morphologically identified PL at the species level, 1 at

the genus level, and 8 at the family level) and 56 adults (100%).

In the remaining 16 PL, we did not obtain DNA samples of good

quality, probably due to poor conservation of the samples. Thus,

their identification was only based on morphological

characteristics, such as the 26 PL of the G6 samples selected

for the biological collection and the 53 PL of the G5 samples

fixed in formalin (Table 1).

The BLAST analysis revealed that the sequences from the PL

(39) and the adults (56) had 99.76%–100% similarity (99%–

100% coverage) with the sequences of D. pleii (Table S2). The

sequences obtained in this study were phylogenetically clustered

with the D. pleii sequences from North America and western

GoM but were separated from the Brazil sequences (Figure 3).

The number of PL and adults and their final identification, either

morphologically or molecularly, are shown in Table 1.

Therefore, with both identification approaches, D. pleii was the

only loliginid species found for the SGoM during November

2015, August–September 2016, and July 2018 in surface-

collected zooplankton samples (Table 1, Figure 2).
Size structure and abundance
distribution of loliginid paralarvae

In G4 (November 2015), the total loliginid PL collected

accounted for 24 PL•1,000 m-3, during G5 (August–September
TABLE 1 Number of paralarvae and adults of loliginids from the southeastern Gulf of Mexico (SGoM) and level of identification by morphological
and DNA barcoding approach.

Specimen Survey Number Morphology Identification DNA Barcode

Family Genus Species Species

Paralarvae G4 4 0 1 1 2

G5 53 15 36 2 0

G6 77 3 0 37 37

Total 134 18 37 40 39

Adults Sisal 25 0 0 0 25

Progreso 15 0 0 1 15

El Cuyo 16 0 0 0 16

Total 56 0 0 0 55
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FIGURE 2

Doryteuthis pleii paralarvae collected in the Yucatan Shelf. Ventral and dorsal views of paralarvae of (A) 0.8 mm (B) 1.4 mm, (C) 3 mm of mantle
length. (D) Tentacle club with four rows of suckers on manus of a 3 mm paralarvae. (E) Ventral and dorsal (265 mm ML), (F) hectocotylus (red
arrow indicating modified suckers and blue arrow the regular ones) and (G) ventral mantle with the striped pattern along the surface of a male
adult from Progreso port of Yucatan.
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2016), they increased to 428 PL•1,000 m-3, and abundance

during G6 (July 2018) reached a maximum of 974 PL•1,000

m-3. However, only those PL measured (in good morphological

conditions) and their standardized abundance were included for

size structure analysis. The loliginid PL from the three cruises

recorded a size range between 0.88 and 4.15 mm ML (2.04 ±

0.74, n= 123) after applying the SCF (Figure 4A). The total

abundance of hatchlings (≤2.5-mmML) (for the entire period of

study) was 380 PL•1,000 m-3, representing 75% of total

abundance (this percentage increases by 16% if the SCF is

not applied).

The loliginids collected in November 2015 had a range size

of 1.76–2.26-mm ML (2.05 ± 0.21, n= 4) and all were hatchlings

(Figures 4A, B). In this cruise (November 2015), the lowest PL

abundance recorded was 24 PL•1,000 m-3, from which 4

PL•1,000 m-3 were Doryteuthis spp. and 20 PL•1,000 m-3 were

identified as D. pleii occurring mainly at the Central zone at 20–

50 m deep and between 24 and 120 km from the coastline

(Figure 5A, B, 6A, B).
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In August–September 2016 (G5), the size range was 1.25–

3.52 mmML (1.91 ± 0.48, n= 51) (Figure 4A) of which 88% were

hatchlings, but this percentage dropped by 8% in the PPL

(Figure 4B). Total PL abundance in this cruise was 213

PL•1,000 m-3, of which 63 PL•1,000 m-3 were identified only

at the family level, 141 PL•1,000 m-3 as Doryteuthis spp., and 9

PL•1,000 m-3 as D. pleii (Figures 6C, D). Hatchlings represented

42% of the total abundance occurring more in the West zone,

over the isobaths of 20–50 m (Figure 6C). The zones with the

highest abundance are in the range of 20–150 km from the

coastline (Figure 5B).

In July 2018 (G6), the largest size range for loliginid PL was

registered. The PL measured from 0.88- to 4.15-mm ML (2.14 ±

0.9, n= 68) (Figure 4A) of which 65% were hatchlings

(Figure 4B). The highest abundance (316 PL•1,000 m-3) was

also recorded on this cruise. From these, 13 PL•1,000 m-3 were

identified as Loliginidae, and 303 PL•1,000 m-3 as D. pleii

(Figures 6E, F). Hatchlings representing 56% of the total

abundance occurred with the highest abundance at the West
FIGURE 3

D. pleii phylogenetic tree comparing representative sequences of the species in other geographic regions and the sequences of other three
loliginid species that occur in the same distributional area. Dosidicus gigas is used as an outgroup. The posterior probability values are plotted
on each resolved branch.
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zone between the isobath 20–50 m and 44 m of depth and

162 km away from the coastline (Figure 5, 6E).
D. pleii paralarvae genetic structure

All the 91 COI sequences analyzed (35 PL and 56 adults)

corresponded to D. pleii, distributed in 39 haplotypes (Table S2).

Based on the values calculated by Goodall-Copestake et al.

(2012), there was a high haplotype diversity (Hd= 0.77) and

nucleotide diversity (p = 0.002). These values varied slightly

among sampling zones, with a general high haplotypic and

nucleotide diversity (Table 2). The AMOVA with 1,023

permutations showed no differences among populations

(Table 3), the fixation index among the three zones had a

negative value (Fst= -0.0035, p= 0.67) which should be taken

as zero and indicates that there is no population structuring.

This is consistent with the haplotype network results, where we

did not find any formed haplogroup, with the presence of a

central haplotype has the highest frequency (n= 44), shared by

the PL and adults from the three zones (Figure 7).
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Discussion

Morphological and DNA barcoding
identification

In the GoM, there are five loliginid species reported (D.

pealeii, D. pleii, L. brevis, D. roperi, and S. sepioidea) (Judkins

et al., 2009, 2010; Jereb and Roper, 2010; Judkins et al., 2017).

However, based on the morphological characteristics and

molecular analysis of PL and adults reported herein, D. pleii

(Blainville, 1823) was the only species of the Loliginidae family

recorded during our surface sampling. In the Northwest

Atlantic, D. pealeii (the most closely related species to D. pleii)

migrate to shallow waters to reproduce in spring (Jereb and

Roper, 2010). As this season was not sampled in our study, it is

reasonable that we could not register this species. Other factors

to consider in explaining the absence of the other loliginid

species are the differences in PL distribution and egg size. In L.

brevis, PL are most abundant near the bottom in inshore coastal

waters with a salinity of approximately 26 UPS and can already

tolerate very low oxygen concentrations. Sepioteuthis sepioidea

(the Caribbean reef squid) has a distribution mainly limited to
B

A

FIGURE 4

Loliginidae paralarvae. (A) Mantle length (ML) data dispersion by cruise carried out at the southeastern Gulf of Mexico. (B) Size structure of
paralarvae during November 2015, August-September 2016, and July 2018. Frequency of preserved paralarvae (PPL) and frequency of fresh
specimens were calculated with the shrinkage correction factor (SCF). The percentage of newly hatched organisms (<2.5 mm ML) with the SCF
is shown.
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coral reefs, and turtle-grass flats (Thalassia testudinum), where

they laid small clusters of three-to-four eggs in large, gelatinous

capsules under rocks or in conch shells (Jereb and Roper, 2010).

Doyteuthis roperi has been described as associated to islands

(Vecchione and Young, 2010); nevertheless, Diaz-Santana-

Iturrios et al. (2019) considered that this species could be

synonymous to D. pleii since they are very similar

morphologically and the morphometric differences are the

result of intraspecific variability.

Furthermore, in the phylogenetic analysis with the new

sequences from the present study, we found evidence supporting

Sales et al. (2013; 2017) that D. pleii from the northwestern Atlantic

and Gulf of Mexico represents a genetically distinct species from D.

pleii in the southwestern Atlantic.
Abundance distribution of loliginid
paralarvae according to ML

The hatching size in loliginids varies according to species

(Guerra et al., 2001). The hatching size reported for D. pleii was

1.5-mm ML in a range of temperatures between 21°C and 23°C

(Mc Conathy et al., 1980), being one of the loliginid species with

the smallest reported hatching size. In the YS, we found PL with

less than 1-mm ML size at a temperature range of 21°C–29.8°C.
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The smaller PL with MLs <1.0 mm representing a low

proportion of the PL collected probably reflects the effect of

the temperature since squid are known to display different

growth strategies depending on temperature (Jackson and

Forsythe, 2002; Rosa et al., 2012), with warmer temperature

resulting in smaller hatchlings (Vidal et al., 2002; Villanueva

et al., 2003). In addition, the small size could be affected by the

shrinkage that occurred during the fixation and preservation of

the PL; the use of the SCF determined by Villanueva et al. (2016)

provides a better approximation of the probable size of our

collected PL previous to the fixative solution application. When

applying the SCF adjustment, the percentage of PL smaller than

2.5-mm ML dropped to 16%. Similarly, Martıńez-Soler et al.

(2021) analyzed the PL community in the mouth of the Gulf of

California, Mexico, and observed an overall decrease (11%) in

the percentage of PL recently hatched after applying the same

SCF. However, the high proportion of specimens with sizes <2.5-

mm ML in our study, suggests that hatching occurs over the

north YS mainly in the Central and Western zones. Due to the

limited information about the shrinkage percentage that

occurred by fixation in loliginids, the SCF we used here must

be considered with caution as it was estimated using five

cephalopod species of families Octopodidae, Eledonidae,

Megaleledonidae, and Sepiolidae (Villanueva et al., 2016),

which are very different from our PL from YS.
B

A

FIGURE 5

Horizontal distribution of Loliginidae PL abundance by size class (0.1–2.5 mm ML and 2.6–4.15-mm ML), (A) depth range and (B) distance to
coastline per survey performed at the Yucatan Shelf, Southeastern Gulf of Mexico.
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B

C D

E F

A

FIGURE 6

Distribution of the abundance of loliginids by cruise and size group in the Yucatan Shelf, Southeastern Gulf of Mexico (A, B) November 2015,
(C, D) August-September 2016, and (E, F) July 2018. The dotted lines represent the three zones: Western (— purple), Central (—orange), and
Eastern (—gray). Red crosses represent sampling stations.
TABLE 2 Doryteuthis pleii haplotype diversity from the Yucatan Shelf, SGoM.

Location N h Hd ± SD p ± SD

All localities 91 39 0.77 0.002 0.0023 0.0003

West 49 23 0.78 0.004 0.0023 0.0004

Central 26 13 0.76 0.008 0.0021 0.0004

East 16 9 0.767 0.013 0.0029 0.0008
Frontiers in Marine Science
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 frontiers
N, number of sequences; h, number of haplotypes; Hd, haplotype diversity; SD, standard deviation; and p, nucleotide diversity.
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The PL abundance (with sizes close to their species-specific

hatching size) has been used as an indicator of the reproductive

activity of adults (Martıńez-Soler et al., 2021). In the YS, the PL

abundance showed an important variability, with higher

abundance in early summer (June 2018), medium at the end

of summer and early autumn (August–September 2016), and

low in late autumn (November 2015). This PL abundance

pattern could be related to the maturity season of the species.

The maturity and lifespan of D. pleii vary by region due to

environmental factors (Jackson and Forsythe, 2002; Perez et al.,

2006). Mature squids have been found year-round with two

seasonal peaks: spring and autumn in the Caribbean Sea (during

late spring to early summer and autumn in northeastern

Venezuela), and in summer and winter in the southern

Brazilian waters (Perez et al., 2002; Jereb and Roper, 2010).

The life span of D. pleii in the northwestern GM encompasses 6

months (Jackson and Forsythe, 2002) and an annual cycle in the

southern Brazilian waters (Perez et al., 2006). In the SGoM, it has

not been determined yet, but considering the temporal

abundance of hatchlings of D. pleii, and using the D. pealeii

egg size, spatial distribution, and hatching time between 15 and
Frontiers in Marine Science 11
20 days (Summers, 1983) as the closest species reference,

together with the results of this study, we infer that the

spawning event for D. pleii may occur during the spring

season (March–May) and that the hatching may take place

during the summer and early autumn (June–October) were

the highest abundance took place in the Central-Western

region. The East zone is mainly influenced by the Cabo

Catoche upwelling and the Yucatan Current. Thus, the small

number of PL (11 PL•1,000 m-3) recorded in this area suggests

that hatching could be transported to the Central and West

zones or contrastingly advected far from the shallow YS to the

northern Gulf of Mexico, favoring the connectivity of

the species.
D. pleii genetic structure

Dispersion plays a fundamental role in structuring

populations (Weersing and Toonen, 2009). The biological and

ecological characteristics of organisms affect their dispersal

ability and the gene flow among their populations (Ibáñez and
TABLE 3 Analysis of molecular variance of the cytochrome c oxidase subunit I region of D. pleii mtDNA, from the Yucatan Shelf, SGoM.

Source of variation df SS Variance components Percentage of variation p Fst

Among populations 2 1.265 -0.00244 -0.35 0.67058 -0.0035

Within populations 88 61.504 0.69891 100.35 – –

Total 90 62.769 0.69647 – – –
frontier
df, degrees of freedom; SS, sum of squares; Fst, fixation index.
FIGURE 7

D. pleii haplotype network of PL and adult specimens from Southeastern Gulf of Mexico. Circles represent a unique allele. Red dots are the
calculated average vectors.
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Guarneros-Narváez et al. 10.3389/fmars.2022.941908
Poulin, 2014). The loliginids PL exhibit a “merobenthic”

dispersal (Boletzky, 2003), which can affect their horizontal

distribution along the continental shelf (Roura et al., 2016).

However, they could travel hundreds of kilometers

(Roberts, 2005).

The period that D. pleii remains as a planktonic PL is still

unknown, but loliginids remain between 2 and 3 months as part

of the plankton (Garcıá-Mayoral et al., 2020). In addition, the

smaller the hatchling, the broader the latitudinal distributional

range of the species (Villanueva et al., 2016). As a result of its

high dispersal capacity, loliginids should keep genetic

homogeneity through an increased gene flow (Weersing and

Toonen, 2009; Ibáñez and Poulin, 2014; Roura et al., 2019). In

the present study, we observed that D. pleii had a high haplotype

and nucleotide diversity, according to the values proposed by

Goodall-Copestake et al. (2012), with no population structuring.

The haplotype network presented a star shape also found in this

species (Sales et al., 2017) and other loliginid species (Olmos-

Pérez et al., 2018; Roura et al., 2019; Garcıá-Mayoral et al., 2020)

where many unique haplotypes radiate from few common

haplotypes. This pattern indicates high gene flow, which

suggests that there are no barriers preventing the spread of

this species along and across the YS. In contrast, Sales et al.

(2017) reported a subpopulation of this species in Campeche

(Southern GoM), which has a low haplotypic diversity (Hd=

0.396) and does not share haplotypes with the other populations

throughout the distribution of the species (North Northwestern

Atlantic, Northern Gulf of Mexico, SGoM–Campeche,

Southwestern Atlantic). Our study does not clarify whether the

YS population shares haplotypes with the Campeche population

or with the rest of the populations around, but it is consistent

with the high haplotype diversity of the species and differs from

the low haplotypic diversity of Campeche specimens reported

for Sales J.B. de et al. (2017).

Based on our results, we encourage further surveys to

explore different seasons in which the presence of other

species in the area might be revealed and to relate the

oceanographic influence on the PL distribution and their

dispersal capacity, to explain the genetic structure of D. pleii

on the YS. It is also the key to analyze the relation of the greatest

upwelling pulse, which occurs mainly in the eastern region of the

YS, since it is reported that loliginid PL is positively related to

them (Moreno et al., 2009; Roura et al., 2016; Ruvalcaba-Aroche

et al., 2018; Roura et al., 2019).
Conclusions

This study reports for the first time the species composition

of PL of the family Loliginidae, their abundance distribution by

size class, and the genetic structure of D. pleii on the Yucatan
Frontiers in Marine Science 12
Shelf, SGoM. Based on morphological and molecular

identification, the only species of loliginid identified was D.

pleii. The highest abundance of PL reported here was found in

the West and Central zones of the YS. We suggest that the

spawning event of D. pleii may occur from May to September.

Genetic analysis indicates that there is a high gene flow

throughout the Yucatan Shelf, SGoM. This knowledge

establishes the basis for a future comprehensive understanding

of their biological cycle and population dynamics for the design

of strategies for management and conservation.
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