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Accurate estimates of the oceanic particulate organic carbon concentration (POC) 
from optical measurements have remained challenging because interactions between 
light and natural assemblages of marine particles are complex, depending on particle 
concentration, composition, and size distribution. In particular, the applicability of a 
single relationship between POC and the spectral particulate backscattering coefficient 
bbp(λ) across diverse oceanic environments is subject to high uncertainties because of 
the variable nature of particulate assemblages. These relationships have nevertheless 
been widely used to estimate oceanic POC using, for example, in situ measurements of 
bbp from Biogeochemical (BGC)-Argo floats. Despite these challenges, such an in situ 
based approach to estimate POC remains scientifically attractive in view of the expanding 
global-scale observations with the BGC-Argo array of profiling floats equipped with optical 
sensors. In the current study, we describe an improved empirical approach to estimate 
POC which takes advantage of simultaneous measurements of bbp and chlorophyll-a 
fluorescence to better account for the effects of variable particle composition on the 
relationship between POC and bbp. We formulated multivariable regression models using 
a dataset of field measurements of POC, bbp, and chlorophyll-a concentration (Chla), 
including surface and subsurface water samples from the Atlantic, Pacific, Arctic, and 
Southern Oceans. The analysis of this dataset of diverse seawater samples demonstrates 
that the use of bbp and an additional independent variable related to particle composition 
involving both bbp and Chla leads to notable improvements in POC estimations compared 
with a typical univariate regression model based on bbp alone. These multivariable 
algorithms are expected to be particularly useful for estimating POC with measurements 
from autonomous BGC-Argo floats operating in diverse oceanic environments. We 
demonstrate example results from the multivariable algorithm applied to depth-resolved 
vertical measurements from BGC-Argo floats surveying the Labrador Sea.
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INTRODUCTION

Particulate organic carbon in the ocean is associated with non-
living organic detrital material, heterotrophic organisms, and 
phytoplankton. The mass concentration of particulate organic 
carbon (POC) is typically defined operationally as the mass of 
organic carbon which is collected on glass fiber filters per unit 
volume of seawater filtered (Parsons et  al., 1984; Kharbush 
et  al., 2020; IOCCG Protocol Series, 2021). Particulate organic 
carbon in the ocean plays an important role in regulating the 
global carbon cycle as it includes roughly 50 Pg C y-1 related to 
primary production in the euphotic zone, about 5–12 Pg C of 
which is exported to the underlying twilight zone (Middelburg, 
2019). Generally speaking, contemporary ocean carbon models 
struggle to resolve deep ocean particulate carbon, some of which 
is expected to undergo burial and serve as a long-term sink for 
atmospheric carbon dioxide (Boyd and Trull, 2007; Siegel et al., 
2014; Buesseler et al., 2020; Brewin et al., 2021). As a result of 
this uncertainty, the estimated range of carbon sequestration by 
sinking POC is between approximately 5 and 12 Pg C y-1 (Boyd 
and Trull, 2007; Siegel et  al., 2014; DeVries and Weber, 2017), 
or between about 50% and over 100% of global anthropogenic 
emissions of carbon dioxide in 2021 (Friedlingstein et  al., 
2022). A major limiting factor on the development of a better 
quantitative understanding of biological carbon sequestration 
by the global ocean is the limited number of observations of the 
vertical distribution of POC (Siegel et al., 2016).

Traditional measurements of POC throughout the global 
ocean rely on discrete water sampling which has significant 
limitations in terms of the spatial and temporal coverage of 
observation. The estimation of POC from optical measurements, 
conducted either remotely from above the ocean or in situ, 
has the potential to fill this gap in understanding of the global 
distribution of POC (Stramski et al., 1999; Stramski et al., 2008; 
Cetinić et al., 2012; Biogeochemical-Argo Planning Group, 2016; 
Poteau et al., 2017; Stramski et al., 2022). Unfortunately, accurate 
estimates of POC from optical measurements with current 
approaches have fundamental limitations. POC can be estimated 
from chlorophyll-a concentration which, in turn, can be derived 
from optical measurements (e.g., Legendre and Michaud, 1999; 
Stramska and Stramski, 2005); however, this approach is limited 
by the assumption that phytoplankton and co-varying materials 
are the dominant contributor to variability in POC and the 
POC / Chla ratio is sufficiently robust. This assumption may 
be acceptable for many surface waters of the open ocean, but is 
generally not valid across diverse environments including coastal 
waters and ocean layers below the euphotic zone. Furthermore, 
the relationship between POC and Chla is highly sensitive 
to variations in phytoplankton community composition and 
physiological growth conditions leading to large variations in 
the carbon-to-chlorophyll ratio among marine environments 
(e.g., Stramski et al., 2008; Sathyendranath et al., 2009). Single-
component models based on regression analysis between POC 
and the spectral particulate backscattering coefficient bbp(λ) 
(where λ is light wavelength in vacuum and the subscript “p” 
denotes scattering by particles) have also shown usefulness of 
bbp(λ) as a proxy for POC in surface waters in different oceanic 

basins (Stramski et  al., 1999; Loisel et  al., 2001; Stramska and 
Stramski, 2005; Stramski et al., 2008; Allison et al., 2010; Johnson 
et al., 2017) and to depths of 600 m in the North Atlantic (Cetinić 
et  al., 2012). Unfortunately, the coefficients of these predictive 
models can also vary considerably between datasets owing to 
significant variations in particulate matter characteristics across 
diverse water bodies, for example during bloom conditions 
(e.g., Stramski et  al., 1999), in coastal and nearshore waters 
where terrestrial material is likely present (e.g., Reynolds et al., 
2016; Koestner et  al., 2021), or where particulate inorganic 
carbon is relatively abundant (e.g., Balch et  al., 2010). Similar 
single-component models based on the particulate spectral 
beam attenuation coefficient cp(λ) and POC can also be useful 
for specific oceanic conditions (e.g., Bishop, 1999; Stramska 
and Stramski, 2005; Gardner et al., 2006; Stramski et al., 2008; 
Neukermans et al., 2012; Rasse et al. 2017; Koestner et al., 2021). 
Nevertheless, the scope of the current study is focused on optical 
backscattering primarily because of its routine use on underwater 
autonomous vehicles.

The particulate volume scattering function βp(ψ, λ) of 
particles suspended in seawater describes the scattered intensity 
at light wavelength λ as a function of scattering angle ψ per 
unit incident irradiance per unit volume of a small sample of 
seawater interacting with a collimated beam of light. Again, 
the subscript “p” denotes scattering by only particles following 
the removal of contributions of molecular water and dissolved 
salts. For the sake of brevity, we will generally omit the 
arguments λ and ψ unless specifically required. The particulate 
backscattering coefficient bbp is defined as the integration of βp 
in all backwards angles, although experimental estimates of bbp 
often rely on measurements at one or a few scattering angles and 
various assumptions regarding the angular shape of βp. βp, and 
by extension bbp, of a natural assemblage of particles is to first 
order a function of particle concentration and to higher order 
dependent upon the composition, size distribution, and shapes 
of the particles within the assemblage. First order principles can 
be observed in the generally strong correlation between bbp and 
the concentration of suspended particulate matter (e.g., Downing 
et al., 1981; Boss et al., 2009; Neukermans et al., 2012; Reynolds 
et al., 2016; Koestner et al., 2021). Because all suspended particles 
do not contribute to POC uniformly, the influence of particle 
assemblage composition on seawater optical properties such 
as bbp is therefore an important factor when considering the 
development of reliable algorithms for estimating POC from 
optical measurements in variable environments across the global 
ocean (Stramski et al., 2004).

The quantification of particle composition solely from 
in situ optical measurements that are easily obtainable on 
autonomous vehicles has yet to be fully developed. Some 
promising approaches have been identified (Twardowski et  al., 
2001; Boss et  al., 2004; Boss et  al., 2009; Neukermans et  al., 
2012; Cetinić et al., 2015; Koestner et al., 2021); however, to our 
knowledge none have been utilized directly in the formulation 
of algorithms to estimate POC. For the purposes of the current 
study, we focus on the optical proxy for bulk composition which 
is related to the chlorophyll-specific particulate backscattering 
coefficient (i.e., bbp/Chla). This proxy generally describes the 
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relative contributions of chlorophyll-a containing particles (e.g., 
phytoplankton) vs. all particles contributing to backscattering 
and has also been suggested to exhibit some sensitivity to 
phytoplankton community composition under certain oceanic 
conditions (Cetinić et  al., 2015; Barbieux et  al., 2018). This 
proxy has the advantage of being easily obtainable from 
chlorophyll-a fluorescence and backscattering sensors available 
on many autonomous platforms, such as the global network 
of Biogeochemical (BGC)-Argo floats (Biogeochemical-Argo 
Planning Group, 2016; Claustre et al., 2020).

In the current study we seek to compare multivariable 
regression models with the more commonly utilized univariate 
backscattering-based models for the estimation of POC. We 
propose a multivariable algorithm for estimating POC using 
concurrent bbp and Chla measurements based on a multiple 
linear regression analysis. In this multi-component model, 
one component is considered a measure of total particle 
concentration while the additional components are used to 
adjust estimations of POC based on a measure of bulk particle 
composition. The univariate and multivariable models are 
parameterized utilizing a selection of contrasting surface and 
subsurface natural seawater samples representing coastal and 
offshore waters which vary in terms of particulate composition, 
ranging from inorganic- to organic-dominated, including mainly 
organic assemblages dominated by phytoplankton as well as non-
phytoplankton particles. Using an independent dataset, we show 
that multivariable models are superior for estimations of POC 
compared with a univariate model of POC vs. bbp. Finally, the 
models are specifically formulated for application with BGC-
Argo floats and, as a demonstration, are applied to data acquired 
with BGC-Argo floats for the assessment of variability in depth-
integrated POC in the region of the Labrador Sea from May 2013 
until December 2015.

METHODS

Samples
The dataset used for algorithm development and validation 
consisted of over 400 surface and subsurface samples from 264 
discrete locations in the Arctic, Atlantic, Pacific, and Southern 
Oceans (Figure  1). Assembly of this dataset was limited by 
the need for concurrent measurements of POC, chlorophyll-a 
concentration, and spectral backscattering coefficient. The final 
data were collated from samples obtained during 13 research 
cruises that span tropical to high-latitude regions as well as coastal 
to open ocean environments (Table  1), thus encompassing a 
wide range of oceanic particle assemblages and seawater bio-
optical properties. Details of the individual research cruises 
and sampling protocols are described in earlier publications 
(Reynolds et al., 2001; Stramski et al., 2008; Allison et al., 2010; 
Reynolds et  al., 2016; Koestner et  al., 2021), and surface water 
samples from many stations included in the current study were 
recently utilized in the development of global remote sensing 
algorithms for estimating POC from different satellite ocean 
color missions (Stramski et al., 2022). Of the 427 samples, 118 
were collected at depths greater than 25 m (Figure 1).

Particulate Assemblage Characterization
All samples in the current study have been characterized in terms 
of mass concentration of particulate organic carbon (POC) and 
total chlorophyll-a (Chla) obtained through filtration of water 
samples through 25 mm diameter Whatman glass fiber filters 
(GF/F). Sample volumes were filtered at low vacuum (<120 
mm Hg) using pre-combusted filters for the determination of 
POC following standard methodology (Parsons et  al., 1984; 
Intergovernmental Oceanographic Commission, 1994). Nearly 

FIGURE 1 |   Location of 264 stations in major oceanic basins where samples were collected, with grayscale indicating depth of any additional subsurface sampling. 
Note surface water was collected at all stations.
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all samples included high-performance liquid chromatography 
(HPLC) analysis for the determination of Chla. Only few data 
from coastal Alaskan waters (denoted as PB18 and PB19 in 
Table  1) utilized in situ fluorometric measurements with an 
ECO-Triplet instrument (Sea-Bird Scientific) and appropriate 
corrections were made (Roesler et al., 2017).

When available, additional ancillary measurements were used 
to provide further characterization of the seawater particulate 
assemblage. The concentration of dried suspended particulate 
matter (SPM) was measured following standard methodology 
using pre-rinsed and pre-combusted 25  mm diameter 
GF/F filters (van der Linde, 1998). The spectral absorption 
coefficient of particles, ap(λ) [m−1], was determined using the 
spectrophotometric filter-pad technique for particulate material 
collected on 25  mm diameter GF/F filters (IOCCG Protocol 
Series, 2018). Sample filters were either analyzed onboard or 
immediately frozen in liquid nitrogen for transport to the 
laboratory. Absorption measurements were typically made in 
the spectral range 300–850 nm with 1 nm interval using a UV/
VIS spectrophotometer, and depending upon the cruise were 
measured using either the filter transmittance (T) method or 
with the inside sphere (IS) method in which the filter was placed 
inside an integrating sphere (Stramski et al., 2015). Following the 
measurement of ap(λ), sample filters were treated with methanol 
and remeasured to determine the spectral absorption coefficient 
of non-algal particles, ad(λ). The spectral absorption coefficient 
of phytoplankton was then calculated as the difference aph(λ) = 
ap(λ) − ad(λ).

The compositional aspects of particulate matter were 
quantified using three proxies: POC/SPM, aph(410)/ap(410), 
and Chla/bbp. The ratio POC/SPM is a measure based on the 
mass analysis of particles collected on GF/F filters and generally 
describes the relative proportions of organic vs. inorganic matter 
regardless of the nature of the organic matter (e.g., living or 
non-living). The second proxy, aph(410)/ap(410), indicates the 
contribution of phytoplankton to total particulate absorption at a 
light wavelength of 410 nm and provides insight into the relative 

amount of phytoplankton vs. non-algal particles within the 
particulate assemblage. We have chosen to report this parameter at 
a wavelength of 410 nm where both particulate categories exhibit 
significant absorption but away from the peak of phytoplankton 
absorption around 440 nm. The third proxy, ς = Chla/bbp, is the 
inverse of the chlorophyll-a specific particulate backscattering 
coefficient which is retrievable from in situ measurements with 
chlorophyll-a fluorescence and backscattering sensors, and 
serves as a general compositional indicator of the contributions 
of phytoplankton vs. non-phytoplankton particles.

Spectral Backscattering Measurements
More detailed information regarding the processing applied 
to all light scattering data can be found in Reynolds et  al. 
(2016). In brief, spectral backscattering at a scattering angle of 
approximately 140° from incident light direction was measured 
in situ with HydroScat-6 and a-βeta sensors (HOBI Labs, Inc.). 
These measurements typically consisted of 6–11 wavelengths 
from about 400 to 850 nm depending on the research cruise. 
Vertical profile data were filtered and averaged into 0.5 or 1 m 
bins for comparison with data of POC and Chla obtained from 
discrete water samples. To derive bbp from measurements of 
β(140°) obtained within each spectral band, the contribution 
of theoretical pure seawater was removed, a factor of 1.13 was 
applied, and corrections were made for attenuation losses to and 
from the sample volume. The spectral bbp data was fit using an 
ordinary least squares linear regression of log10(bbp) vs. log10(λ) 
to obtain bbp at λ = 550 nm and 700 nm. Data at λ = 442 nm and 
671 nm were not included in this fitting routine due to potential 
effects of anomalous dispersion related to light absorption by 
phytoplankton pigments (Morel and Bricaud, 1981).

POC Algorithm Development
The assembled dataset was randomly split into algorithm 
development and validation datasets which were approximately 
60% and 40% in size, respectively. The range of data included in 
each dataset was approximately the same (depicted in Figure 2 
and Table  2). With the exception of two example contrasting 
samples in both datasets, the algorithm development dataset 
was used exclusively for determining model coefficients while 

TABLE 1 | Summary of samples.

Ocean Sub-Location Cruise(s) Year(s) Depth(s) 
[m]

N

Arctic Chukchi/Beaufort HLY1001 
HLY1101 
MR17-05C

2010 
2011 
2017

1–300 174

SE Beaufort MALINA 2009 1–80 81
S Beaufort PB18 

PB19
2018 
2019

1–17 23

All Arctic All Arctic 2009–2019 1–300 278
Atlantic Meridional ANTXXIII/1 

ANTXXVI/4
2005 
2010

1–140 90

Pacific SE Pacific 
Central Pacific

BIOSOPE 
KM12-10

2004 
2012

1 42

Southern Southern Ocean NBP97-8 
RR-KIWI 8,9

1997 
1998

1 17

ALL ALL ALL 1997–2019 1–300 427

A depth of “1” indicates surface samples which include samples from within the top 5 m.

FIGURE 2 | Normalized non-parametric box plots of five variables in 
development (Dev) and validation (Val) datasets. The features of each box 
plot represent (from bottom to top) lower limit, 25th percentile, 50th percentile, 
75th percentile, and upper limit. Data have been normalized by maximum 
value of each metric from the development dataset. Maximum values are 
0.34 m-1, 816 mg m-3, 16.6 mg m-3, 1988 mg m-2, and 0.69 for bbp(550), 
POC, Chla, ς, and POC/SPM, respectively.
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the validation dataset was used for independent comparison of 
model-predicted and observed POC. Several regression-model 
formulations to estimate POC were evaluated and generally 
referred to as Models A and B, where Model A is a univariate 
model and Model B is a multivariable model. The general form of 
Model A was a robust ordinary least squares regression of POC vs. 
bbp and is generally representative of more common approaches 
utilized to estimate POC from in situ optical measurements 
of backscattering. Various data transforms were evaluated. 
Specifically, we considered a linear model with untransformed 
data, an exponential model with loge-transformed bbp data, and a 
power model with log10-transformed bbp and POC data.

The general form of Model B was an additive multiple linear 
regression equation: POC = k1 + k2bbp + k3ς. k1, k2, and k3 are 
model coefficients and bbp and ς are measured variables. In 
this model, the second term (i.e., k2bbp) can be assumed to be 
a measure of total particle concentration, without information 
about composition. This relationship is generally robust in terms 
of estimating total mass of suspended particulate matter, SPM, 
over a wide range of environmental conditions (Downing et al., 
1981; Boss et al., 2009; Neukermans et al., 2012; Reynolds et al., 
2016; Koestner et al., 2021). The third term (i.e., k3ς) relates to 
some additional adjustment pertaining to a measure of bulk 
particulate composition, ς = Chla/bbp, which is the inverse of 
Chla-specific bbp. Additional formulations were also tested which 
included an interaction term ς   × bbp and log10-transformed 
data. Best-fit coefficients were determined with MATLAB’s 
“regress” function and using a robust fitting bisquare weighting 
function (tuning constant = 4.685). A bias correction function 
was included to improve Model B estimations for low POC 
where Model B tended to overestimate POC. The bias correction 
function was determined with a Model-II linear regression (the 
reduced major axis method) of measured vs. modeled POC 
only when modeled POC was less than 45 mg m-3 and using 
the algorithm-development dataset. Model-II regressions can 
be particularly useful when both independent and dependent 
variables include uncertainties (Ricker, 1973; Sokal and Rohlf, 
1995). The bias function is POC = ε1POC* − ε2, where ε1 and 
ε2 are best-fit coefficients and superscript * indicates initial 
Model B output. This correction was only applied if POC* was 
less than a certain threshold (POCmin) to avoid undesirable 
influence on modeled POC greater than about 35 mg m-3. We 
chose not to include a bias correction for Model A because this 

type of correction has not been typically utilized in existing 
univariate models to estimate POC from optical measurements 
of backscattering, while the multivariable Model B represents a 
novel approach.

Regression models were evaluated using various statistical 
approaches to quantify and visualize uncertainty with metrics 
derived from the validation dataset. Assessment metrics include 
root-mean-square deviation (RMSD), median absolute percent 
difference (MdAPD), median symmetric accuracy (MdSA), and 
median ratio (MdR) (Table 3). Coefficients of the Model-II linear 
regression of model-predicted vs. observed (measured) POC are 
considered as an additional measure of algorithm performance 
and residual plots are also presented for further visual analysis 
of performance.

Biogeochemical-Argo Data
BGC-Argo data utilized in the current study originated from 
a publicly available database published in Sea Scientific Open 
Data Edition (SEANOE) by Barbieux et al. (2017). Specifically, 
861 vertical profiles of quality controlled BGC-Argo data from 6 
floats deployed in the Labrador Sea were utilized which included 
concurrent measurements of depth-resolved bbp at 700 nm and 
chlorophyll-a fluorescence down to about 1 km. Additional 
measurements of photosynthetically available radiation (PAR), 
water temperature, and salinity were also included. Various 
quality control and processing efforts are described in detail in 
Organelli et al. (2017).

For the purposes of the current study, positive spikes were not 
removed from bbp and Chla data; therefore, the potential impact 
of large-sized particles was included. This choice relates to the 
desire to accurately estimate POC which likely includes relatively 
large-sized particles contributing to spikes in bbp, as well as 
small-sized particles. Both bbp and Chla were averaged into 1 m 
bins starting at a depth of 0.5  m below the surface. Following 
application of models to estimate POC based on bbp and Chla, 
any POC data less than 0 mg m-3 was forced to a value of 0 mg 
m-3, and a mean-filter with a window of 3 was used to moderately 
smooth the POC data for parameterization of vertical profiles.

The water column was divided into two zones; the epipelagic 
zone which includes the surface down to 200 m and the mesopelagic 
zone which includes the region from 200 m down to about 1 km. 
The epipelagic was further partitioned into euphotic and sub-
euphotic layers. The mixed layer depth (MLD) was calculated 

TABLE 2 | Summary of datasets.

Dataset bbp (550) [m-1] POC [mg m-3] Chla [mg m-3] ς [mg m-2] POC/SPM [g g-1] N

range; 
median

range; 
median

range; 
median

range; 
median

range; 
median

Development 0.0003–0.34; 
0.0021

11–816; 
96

0.02–17; 
0.33

3–1988; 
148

0.01–0.7; 
0.28

257

Validation 0.0003–0.24; 
0.0011

21–789; 
59

0.01–15; 
0.28

3–1872; 
190

0.02–0.7; 
0.29

172

ALL 0.0003–0.34; 
0.0018

11–822; 
81

0.01–17; 
0.31

3–1988; 
165

0.01–0.7; 
0.28

427
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with the Holte and Talley (2009) algorithm using potential 
density profiles based on temperature and salinity measurements. 
Photosynthetically available radiation immediately below the sea 
surface (i.e., PAR at depth z = 0–) was calculated by extrapolation 
of underwater PAR data to a depth of 0 m using a second order 
polynomial fit (Organelli et al., 2017). The euphotic zone depth 
(EZD) was determined as the depth at which PAR values are 
0.5% of PAR(0–). Most of the actively photosynthesizing and 
productive phytoplankton are present within this euphotic zone 
(Wu et al., 2021). The EZD is a more reliable depth for assessing 
strength of POC export flux as opposed to constant depths 
(Buesseler et al., 2020); therefore, emphasis is placed on metrics 
related to EZD. The depth-integrated POC within the euphotic 
layer (iPOCeu) was calculated as 

== ∫
z=EZD

eu z 0.5iPOC POC(z)dz. 
Likewise, the depth-integrated POC within the sub-euphotic 
layer (iPOCsub) was calculated as 

=
= ∫

z 200

sub z=EZDiPOC POC(z)dz. 
Finally, the depth-integrated POC within the mesopelagic zone 
was calculated as 

=

== ∫
z 1000

me z 200iPOC POC(z)dz, noting that the 
deepest datapoint was usually around 950–1000 m. Similar 
depth-integrated parameters have been useful for interpretation 
of BGC-Argo data in the Norwegian Sea (Dall’Olmo and Mork, 
2014). Finally, an additional measure was also calculated which 
describes the depth at which the integrated POC is a specific 
fraction of the total integrated POC from the surface to 1000 m. 
For example, 50% of the total integrated POC is found above  zi

50

 and it is calculated from X z dz
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parameter is useful because it is normalized and therefore can 
be intercompared between profiles which differ in magnitude 
of POC. Deeper depths of zi

50 indicate vertical profiles which 
include relatively more POC at depth than near the surface.

RESULTS AND DISCUSSION

Particle Composition Proxy
The sensitivity of the particulate backscattering coefficient 
to particle composition underlies the theoretical framework 
of our proposed multivariable regression model. Theoretical 
simulations of the backscattering efficiency of natural 
assemblages of marine particles indicate sensitivity to various 
properties of particles, such as size distribution and composition 
characterized by shape, structure, and refractive index (Bohren 
and Huffman, 1983; Bricaud and Morel, 1986; Stramski et  al., 
2001; Quirantes and Bernard, 2004; Jonasz and Fournier, 2007; 
Xu et  al., 2017; Organelli et  al., 2018). Without accounting for 
these effects, estimates of the concentration of particulate organic 
carbon using backscattering measurements will be limited to 
marine environments exhibiting minimal variability in particle 
composition and size distribution. This is also corroborated 
by observations from previous studies which portray variation 
in relationships between POC and bbp along with expected or 
measured differences in particle assemblages (e.g., Stramski 
et al., 1999; Cetinić et al., 2012; Reynolds et al., 2016; Koestner 
et al., 2021).

In the current study, a composition proxy which is obtainable 
from in situ optical measurements and therefore included in our 
optically-based model to estimate POC is Chla/bbp, hereinafter 
denoted as ς. Figure 3 depicts scatter plots of ς vs. POC/SPM and 
ς vs. aph(410)/ap(410) for the available data from the entire dataset 
utilized in algorithm development and validation. Values of ς 
range from about 2 mg m-2, indicating relatively low chlorophyll-a 
per particulate backscattering and likely non-phytoplankton 
dominated particle assemblages, to over 1000 mg m-2, indicating 
relatively high chlorophyll-a per particulate backscattering 
and assemblages which are likely phytoplankton-dominated 
(Figure 3). There is a positive correlation between ς and POC/
SPM demonstrating that ς can generally represent bulk changes 
in the organic vs. inorganic content of particle assemblages; 
however, this relationship is not strong. The composition term 
ς also represents changes in composition related to relative 
phytoplankton abundance as observed in the positive correlation 
between ς and aph(410)/ap(410), with the latter term representing 
the relative contribution of phytoplankton to the total particulate 
absorption coefficient at a light wavelength of 410 nm. These 
relationships exhibit some noticeable scatter resulting from 
various additional factors influencing ς such as acclimation of 
phytoplankton to various environmental growth conditions 
and phytoplankton community composition. Importantly, 
however, ς can represent large changes in particle composition 
beyond general organic vs. inorganic content; for example, when 
assemblages are organic-dominated with POC/SPM > 0.30, ς 
varies over nearly the entire range of ς and Chla, from about 30 
mg m-2 at low Chla up to 2000 mg m-2 at high Chla (Figure 3). 
Generally speaking, higher values of the composition term ς tend 
to describe particle assemblages which are more organic and 
phytoplankton dominated while lower values (less than about 30 

TABLE 3 | Model-assessment variables.
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mg m-2) tend to represent particle assemblages which are mixed 
or inorganic-dominated likely with small or negligible influence 
of living phytoplankton (Figure  3). Note that the composition 
values in Figure 3 refer to derivations with bbp at λ = 550 nm. 
When deriving ς with longer wavelengths of bbp such as 700 nm, 
ς is typically about 10–30% higher.

POC Algorithms
Table 2 includes a summary of the range of bbp, POC, Chla, ς , 
and POC/SPM within our dataset used for model development 
and validation. Values of bbp and POC span about 3 orders of 
magnitude while Chla spans about 2 orders of magnitude, 
representing a large range of contrasting oceanic conditions 
from oligotrophic Pacific waters to productive coastal waters of 
the Arctic (Table 2; Figure 1). The variability within this dataset 
is particularly useful for the development and assessment of 
an algorithm for estimating POC over a wide range of natural 
conditions. Figures  4–6 describe algorithm development and 
validation analyses. In Figures 4, 5, two datapoints are outlined 
with a square for illustrative purposes and are contained in 
both algorithm development and validation datasets. These 
two samples have relatively similar POC values (about 200 mg 
m-3), but differ greatly in terms of composition and are therefore 
useful in assessing the effectiveness of each algorithm for 
compositionally-contrasting particulate assemblages.

Figure 4A presents POC vs. bbp(550) and includes the single-
component (univariate) regression model referred to as Model 
A. We first focus on algorithms developed with bbp(550) because 
backscattering sensors often utilized in oceanographic studies use 
light at or near this wavelength, including specifically the sensors 
utilized in the algorithm development and validation datasets, 
and this wavelength avoids absorption features associated with 
phytoplankton pigments. The power function model fit the 
algorithm-development dataset better compared with linear and 
exponential formulations, and improvements in statistical metrics 

derived with validation dataset were substantial. However, a 
single relationship does not perform well for the algorithm-
development dataset and the data can be generally separated 
into groups with low ς and high ς (Figure 4A). For comparison, 
Figure  4A also includes four additional backscattering-based 
models from other studies. The Stramski et al., 2008 algorithm 
fits the high ς data quite well, but fails to represent the datapoints 
with low ς. In contrast, the Balch et  al., 2010 algorithm based 
on surface Atlantic waters and Reynolds et al., (2016) algorithm 
based largely on mineral-dominated Arctic samples, fit the low 
ς data well but fail to represent the high ς datapoints. Model A 
also appears ineffective at capturing the two compositionally-
contrasting datapoints (outlined with squares in Figure  4A). 
Despite these shortcomings, Model A is statistically significant 
(p-value< 0.01) and has an R2

adj value of nearly 0.54 (Table 4). 
The best-fit regression coefficients are also shown in Table 4.

Figure  4B illustrates a three-dimensional scatter plot of 
bbp(550), POC, and ς for the algorithm development dataset. 
Several formulations of a multivariable regression model were 
attempted and the best approach is shown in Figure 4B using a 
three-dimensional mesh grid, referred to as Model B. This grid 
displays estimations of POC based on Model B’s input values of ς 
and bbp(550), and is colored by ς value. The exact formulation of 
Model B is shown in Table 4 and utilizes log10-transformed data 
with an interaction term (i.e., ςk4logbbp) and a bias correction term. 
There are improvements in the agreement between modeled 
and measured values for Model B as compared with Model A 
for various scenarios such as when ς is low and bbp increases 
or when ς is high and bbp increases (Figure  4). Moreover, the 
two compositionally-contrasting samples outlined with square 
symbols now appear much closer to the modeled values in 
Figure  4B as compared with Model A in Figure  4A. The R2

adj 
value suggests that about 73% of the variance in observed values 
is adequately explained by Model B, whereas only about 54% 
of the variance in observed values of POC is accounted for by 
Model A (Table 4).

Figure  5 depicts results from a validation analysis which 
quantitively examines improvements in estimations of POC from 
multivariable Model B compared with Model A when using an 
independent validation dataset covering a similar range of oceanic 
conditions as the algorithm development dataset. Figures 5A, B 
depict modeled vs. measured POC data for the two regression-
models with various statistical metrics displayed. Visually, it can 
be seen that most low and high ς data are far from the reference 
1:1 line for Model A estimations of POC (Figure  5A). The 
Model-II linear regression line between log-transformed values 
of modeled and measured POC indicate general bias and poor 
agreement with the 1:1 line for Model A over the full range of 
measured POC. Substantial improvements in validation results 
are seen for Model B in Figure  5B. Overall there is minimal 
bias and good agreement between the regression line and the 
1:1 line, and all statistical metrics indicate good performance 
for Model B. Values of MdAPD and MdSA are about 40% lower 
and RMSD is almost 50% lower for Model B as compared with 
values from Model A. Generally, we observe uncertainties less 
than about 30% for Model B estimations of POC. Uncertainties 
in POC estimations can be further examined by looking at 

A B

FIGURE 3 | Scatter plots of (A) ς vs. POC/SPM with color indicating value of 
Chla and (B) ς vs. aph(410)/ap(410) with color indicating value of POC/SPM. 
Composition parameter ς = Chla/bbp is calculated with bbp at light wavelength 
λ = 550 nm. The Pearson correlation coefficient r based on log-transformed 
data and number of samples N are displayed.
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residual plots for modeled POC as a function of measured POC in  
Figures 5C, D. The residuals (expressed in percent) are generally 
similar throughout the range of measured POC for Model B. In 
contrast, the residuals of Model A estimations have a pattern of 
decreasing residuals with increasing measured POC values. The 
spread of residuals is smallest for Model B with average percent 
residuals close to 0%. Finally, the two example datapoints 
indicated with a square are quite close to 0% residual for Model 
B while one of these datapoints approaches the bounds of the 
95% limit of residuals for Model A (Figures 5C, D). This suggests 
that datapoints which may be outliers in a typical formulation 
such as the univariate backscattering-based Model A, and which 
represent highly contrasting environmental conditions and 
particulate assemblages, can be estimated with a significantly 
higher degree of certainty when using a multivariable model 
such as Model B. Note that for both regression models, many of 
the outlier data originate from samples collected in the Arctic 
(triangles in Figure 5).

In the next step of our analysis, Models A and B were 
reparametrized for use with bbp at λ = 700 nm which is typically 
measured with backscattering sensors deployed on BGC-Argo 
floats. For this purpose, we used a range of bbp(700) = 0.0001–0.03 
m-1 representative of the range of values typically encountered 
by these profiling floats (Organelli et  al., 2017). The regression 
model development and validation are summarized in Figure 6 
and we observe similar results as seen for the models which 
utilize bbp at λ = 550 nm in Figures 4, 5. The model coefficients 
are also presented in Table  4. With the more limited range of 
bbp(700) data likely to be encountered by BGC-Argo floats that 
are typically deployed in the deep ocean, the univariate Model 
A for bbp(700) shows some improvements in terms of statistical 
metrics compared to Model A for bbp(550) (e.g., RMSD and 

MdSA are reduced to 128 mg m-3 and 35% from 142 mg m-3 
and 47%, respectively). However, Model B utilizing bbp(700) is 
clearly superior to Model A utilizing bbp(700) (Figures 6C, D). In 
particular, RMSD of Model B is less than 70 mg m-3, uncertainty is 
less than 25% as assessed with MdAPD and MdSA, aggregate bias 
is minimal (e.g., MdR = 0.99), and the slope of the fitted Model-II 
regression line for log-transformed modeled vs. measured POC 
is 0.99 (Figure 6D).

Briefly, we recall that the multivariable Model B includes 
an interaction term (Table  4). As such, some multicollinearity 
is inherent to Model B which can contribute to uncertainty in 
model coefficients. The 95% confidence bounds of each model 
coefficient are shown in Table  4. Model coefficients k1 and k2 
for Model B have higher uncertainty than k3 and k4, particularly 
for the model parameterized with λ = 700 nm (Table  4). 
Generally, multicollinearity is an issue if model coefficients are 
not statistically significant. The only model coefficient which 
may not be considered statistically significant is k2 when Model 
B is parameterized with λ = 700 nm (p-value = 0.06). All other 
coefficients have p-values much lower than 0.00001. Nonetheless, 
validation of Model B has shown that it is effective at estimating 
POC with an independent dataset (Figure 6).

Particulate Organic Carbon Within the 
Labrador Sea Region
Model A and Model B were applied to depth-resolved bbp and 
Chla derived from fluorescence measurements acquired with six 
BGC-Argo floats surveying the region of the Labrador Sea from 
May 2013 until December 2015. Figures 7–9 describe analysis of 
this BGC-Argo dataset with emphasis placed on estimations of 
POC from multivariable Model B. Figure 7 depicts a summary 

A B

FIGURE 4 | Two regression models for estimating POC based on measurements of bbp at λ = 550 nm. (A) POC as a function of bbp(550) color coded by 
composition value ς. A linear regression trendline representing Model A from the current study is shown with a solid black line. Regression lines from other studies 
are indicated in legend where St08 denotes Stramski et al., 2008 (λ = 555 nm), Ba10 denotes Balch et al., 2010 (λ = 532 nm), Ce12 denotes Cetinić  et al., 2012  
(λ = 532 nm), and Re16 denotes Reynolds et al., 2016 (λ = 550 nm). Note that Re16 refers to the analysis of mineral-dominated particle assemblages and Ce12 
refers to downcast and includes a factor of 0.88 to adjust bbp(700 nm) to the value at λ = 532 nm. (B) Three-dimensional scatter plot of POC, ς, and bbp, also color 
coded by ς value. A grid is used to show estimations from Model B. Two datapoints are marked with a square in all panels and represent samples which have similar 
POC but contrasting composition. N = 257.
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TABLE 4 | Regression models for POC.

Model Formulation λ 

[nm]

k1 k2 k3 k4 ε1 ε2 POCmin 
[mg m-3]

R2
adj N

A POC [ mg m-3] = k1bbp
k2 550 1215.0 

[886.10–1666.1]

0.4541 

[0.4024–0.5058]

– – – – – 0.54 257

700 1985.9 

[1393.8–2829.5]

0.5037 

[0.450–0.5574]

– – – – – 0.60 232

B POC* [mg m-3] = k1 bbp 
k2 ςk3 ςk4 log bbp

 POC
POC * POC* POC

POC* POC* POC
min

min
=

× − <
≥







ε ε1 2,
,

550 206.16 

[114.33–371.75]

0.3615 

[0.2408–0.4822]

0.6623 

[0.5180–0.8066]

0.1504 

[0.0908–0.2100]

2.013 34.9 34.4 0.73 257

700 89.423 

[28.997–275.77]

0.1881 

[–0.0099–03861]

0.7591 

[0.5378–0.9804]

0.1934 

[0.1086–0.2782]

1.636 21.2 33.4 0.72 232

Descriptions of Model A and Model B including formula and coefficients (k1, k2, k3, and k4) determined from regression analysis utilizing bbp data at light wavelength λ = 550 nm and 
700 nm. The 95% confidence interval bounds are shown below coefficients and determined using the Wald method. Composition term ς [mg m-2], calculated as Chla/bbp, where bbp

 

 is in units of m-1 and Chla is in units of mg m-3. R2
adj = 

1
2
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−
−


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


−

−
∑
∑

N 1
N K

(O P )

(O O)
i i i

i i

,  where O is observed, P is model-predicted value, N is the number of samples, and K is number of model 

coefficients.

A B

DC

FIGURE 5 | Validation of (A, C) Model A and (B, D) Model B from Figure 4 by comparison of modeled and measured POC data. Data are color coded by ς 
value described by color bar in (D). Statistical metrics described in Table 3 are displayed in each panel. Two datapoints are marked with a square for discussion 
purposes. (A, B) Modeled vs. measured POC. Statistical metrics derived from this comparison are shown. Model-II linear regressions of log10-transformed data 
are displayed with a dashed line and equation is shown, while a 1:1 dotted line is plotted for reference. (C, D) Residual plots from data in panels above. Percent 
residuals are defined as 100 % x (Modeled POC – Measured POC)/Measured POC. Black dashed line represents mean residual value while gray dashed lines 
represent approximate 95% confidence limits of residuals (i.e., mean ± 1.96 standard deviations).
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of this analysis. Floats generally profiled every 1–10 days and 
remained just south and west of Greenland in waters which 
were approximately 1–4 km deep (Figure 7A). Example vertical 
profiles of Model B-derived POC are shown for 14 November 
2014 and 29 May 2015 in Figures 7B, C. Typically late autumn 
and winter months have relatively low surface POC (about 
50–60 mg m-3) which is uniform within the surface mixed layer 
while POC and ς values below the MLD decrease to minimum 
values of around 1–2 mg m-3 and 5–10 mg m-2, respectively, in 
the deep mesopelagic zone (Figure 7B). In late spring months, 
surface values of POC are higher (around 200 mg m-3) and ς 
remains relatively high throughout the epipelagic zone and 
into upper portions of the mesopelagic zone (Figure 7C). Late 
spring months also tend to have higher values of POC within the 
mesopelagic zone with minimum POC values of about 7 mg m-3 
in some cases (Figure 7C). Often around May and June, there 
are also instances of relatively high ς (i.e., greater than 300 mg 
m-2) at depths below 200 m possibly indicating the presence of 
sinking phytodetritus and/or phytoplankton which are unlikely 
to still be actively photosynthesizing given they are well below 
the EZD (Figure  7C). Interestingly, while the integrated POC 
within the euphotic zone (iPOCeu) is similar for the two example 
profiles shown for 14 November 2014 and 29 May 2015, the 
sub-euphotic integrated POC (iPOCsub) is over 5 times and the 

mesopelagic-integrated POC (iPOCme) is about two times as 
large in May as they are in November (Figures 7B, C).

A summary of EZD and zi
50 determined as the average 

data from each day is shown in Figure  7D, while total iPOC 
(i.e., iPOCeu + iPOCsub + iPOCme) from each float is shown in 
Figure 7E. As autumn turns to spring in 2013 and 2014, there 
is a deepening of EZD and zi

50, followed by a relatively quick 
retreat around May 2014 and 2015 which accompanies a notable 
increase in total iPOC (Figures 7D, E). This is consistent with 
expectations in these northern latitudes as the surface ocean 
warms, available solar energy increases, and nutrient mixing 
leads to increased primary production in late spring. Typically, 
however, the highest values of zi

50 are around 400  m and are 
seen earlier in the year, around March, and indicate that vertical 
profiles of POC are skewed towards deeper depths during this 
time.

Figure 8 displays the three depth-integrated POC measures 
from each float during the entire time series. Within the euphotic 
zone, there are visible seasonal patterns with generally larger 
values of iPOCeu (about 5–7 g m-2) observed in late spring into 
early autumn and minimum values (about 1–3 g m-2) observed 
in early winter. It is worth mentioning that these floats are 
encountering notable differences in terms of magnitude of 
iPOCeu most likely as a consequence of horizontal heterogeneity 

A B

DC

FIGURE 6 | (A, B) Similar to Figure 4 and (C, D) similar to Figures 5A, B except regression analysis utilizes bbp data at λ = 700 nm and for bbp (700) < 0.03 m-1.
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which highlights some challenges to interpret data from multiple 
floats (Figure 7A). For example, iPOCeu determined with float 
6901527 is about 6 g m-2 in March 2015 while values are less 
than about 1 g m-2 as determined from measurements on float 

6901524. Despite these differences, general patterns are still clear 
within the Labrador Sea region.

Beneath the euphotic zone, it is expected that net primary 
production is null or very low and therefore temporal 

A B

D

E

C

FIGURE 7 | Analysis of BGC-Argo data from six floats deployed in the Labrador Sea region and active from May 2013 through December 2015. (A) Map of region 
where floats were vertically profiling. Bathymetric contour lines are color-filled as indicated. Tracks are colored by float identifier with monthly tick marks. Stars 
indicate starting location while squares indicate ending location, and a large circle indicates approximate location of floats in March 2014. Panels (B) and (C) depict 
example vertical profiles of POC derived from Model B and potential density of seawater σ

θ
 (referenced to surface pressure) for two different dates. (D) Summary 

of daily averages of the euphotic zone depth (EZD) in black and zi
50 (with an inverted y-axis) in blue derived from BGC-Argo data (see text for details). (E) Total 

integrated POC within top 1 km of water column (i.e., iPOCeu + iPOCsub + iPOCme) derived from each BGC-Argo float as indicated by color in (A).
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dynamics in terms of POC will be driven mostly by vertical and 
horizontal transport as well as microzooplankton grazing and 
remineralization (e.g., Siegel et  al., 2014). When considering 
the sub-euphotic zone, defined as from EZD down to 200 m, we 
find that values of iPOCsub can be very high in May and June, 
often 5–15 g m-2. Unlike iPOCeu, the highest iPOCsub values in 
May and June are not sustained into early autumn (Figures 8A, 
B). Values of iPOCsub generally decrease from July through 
March with values rarely exceeding 5 g m-2 (Figure 8B). Some 
of the seasonal trends observed in iPOCsub can be explained by 
deepening of the EZD, however the EZD is fairly consistent from 
about July to November (Figure 7D). This decrease in iPOCsub 
which generally doesn’t coincide with decreases in production 
from above may possibly be explained by more efficient grazing 
activities once microzooplankton populations stabilize in early 
summer as water temperatures warm (Head et al., 2003).

Regarding deeper vertical transport to the mesopelagic zone, 
it appears as though there are only minimal increases in iPOCme 
over 10 g m-2 coinciding with higher POC within the epipelagic 
zone around May through July (Figure  8). Typically, values of 
iPOCme in the Labrador Sea region are consistently about 5–10 
g m-2 throughout the year and iPOCme is mostly featureless 
with the exception of a major event in March 2014 observed 
by four of the five floats profiling at the time recording iPOCme 
values upwards of 15–25 g m-2 (Figure  8C). The location of 
these floats is highlighted in Figure 7A and shows that they are 
generally near the continental shelf in mid-March 2014. This 
enhancement of POC in the mesopelagic zone does not appear 
to come from the surface waters directly above as it generally 
precedes increases in iPOCeu and iPOCsub which are likely related 
to late spring biological production in the region. This peculiar 
increase of iPOCme in March 2014 may be explained by eddy-
driven subduction of earlier spring surface production further 

south or nearshore as terrestrial runoff increases with warming 
temperatures (Lacour et  al., 2015). Modeling simulations have 
shown that mesopelagic POC can have notable transport by an 
eddy-driven subduction mechanism, particularly in the region 
of the Labrador Sea (Ohmand et al., 2015). Similar observations 
have also been made by BGC-Argo floats operating in the 
Southern Ocean (Llort et al., 2018). It is unlikely that this March 
2014 iPOCme anomaly is an artifact of measurements as it is 
observed by multiple floats (Figure 8C). More work is needed to 
validate these results and verify that some of the most significant 
increases of POC within the mesopelagic zone in the Labrador 
Sea region appear to precede production of POC observed in the 
epipelagic zone during late spring.

Figure 9 portrays various ratios of the three depth-integrated 
POC parameters over time to better depict some of the seasonal-
trends observed in Figure  8. With the exception of May and 
June for all three years of available data, there is typically 1–10 
times more POC within the euphotic layer of the epipelagic 
zone than the sub-euphotic layer (Figure  9). The efficiency of 
vertical transport of POC into the mesopelagic zone does not 
appear strong in May and June as the proportion of POC within 
the epipelagic zone is often 1–3 times the amount within the 
mesopelagic zone. As expected from observations of high iPOCme 
in March 2014, depth-integrated POC within the epipelagic zone 
is about 20–80% of the amount in the mesopelagic zone in March 
2014. The ratio of epipelagic-integrated POC to mesopelagic-
integrated POC shows that March 2015 also exhibits a similar 
trend of relatively high POC within the mesopelagic compared 
with epipelagic zone (Figure 9). Generally, however, for most of 
the year there are similar amounts of POC within the epipelagic 
and mesopelagic zones as indicated by a ratio of about 1 in 
Figure 9.

Figure 10 includes a comparison between iPOCeu and iPOCme 
derived from univariate Model A and multivariable Model B. For 
iPOCeu, there are seasonal differences in Model A vs. Model B 
estimations. Compared with Model B estimates of iPOCeu, there 
tends to be underprediction of Model A estimates by about 
50%, while in winter there is slight overprediction of Model A 
estimates (Figure 10). This is likely attributable to the ability of 
multivariable Model B to better account for overall changes in 

A

B

C

FIGURE 8 | Three parameters describing depth-integrated particulate 
organic carbon (POC) for six BGC-Argo floats sampling in the Labrador Sea 
region detailed in Figure 7A. Parameters refer to POC integrated within  
(A) euphotic and (B) sub-euphotic layers of epipelagic zone, and  
(C) mesopelagic zone. See text for more details regarding calculation of 
depth-integrated POC parameters.

FIGURE 9 | Ratios of depth-integrated POC parameters described 
in Figure 8.
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composition of particles (Figure  6). In the mesopelagic zone, 
there is consistently an overprediction of POC from Model 
A, which is commonly two to three times as high as Model B 
estimations of POC (Figure  10). We believe the lack of both 
a bias correction for low POC and a composition variable in 
Model A consistently leads to higher estimations of POC in the 
mesopelagic zone.

Values of total integrated POC within the upper 1 km of water 
column were previously reported in the Norwegian Sea using 
BGC-Argo data from 2010–2012 (Dall’Olmo and Mork, 2014). 
There, it was found that total iPOC values in the most productive 
months of May and June were typically about 5–10 g m-2. In the 
present study focused on the Labrador Sea region, values of total 
iPOC in May and June 2015 were about 20–30 g m-2 (Figure 7E). 
This difference can generally be related to geographic locations 
and may also be partially explainable by uncertainties in 
backscattering sensor calibration (e.g., Barnard, 2021; Erickson 
et al., 2022) or methodological differences, e.g., Dall’Olmo and 
Mork (2014) focused on small particles excluding large-sinking 
particles and also utilization of a univariate bbp-based model 
for POC. Of note, May 2015 in the Labrador Sea was reported 
to experience some of the most significant positive anomalies 
on record in terms of surface chlorophyll-a concentration and 
consequently primary production based on satellite observations 
at the time (Frey et al., 2015).

In the current study, a significant portion of iPOC is 
associated with mesopelagic zone (e.g., nearly 60% of profiles 
contain iPOCme/iPOC values which are 0.4–0.6 and about 40% of 
profiles contain iPOCme/iPOC values greater than 0.5); therefore, 
it is important to compare current estimates with previously 
reported values in the mesopelagic zone. POC determined 
with large volume in situ filtration pumps at depths of around 
800 m were about 1.2 mg m-3 and 3.0 mg m-3 in the oligotrophic 
Pacific Ocean waters near Hawaii and productive waters near 
the Oyashio Current, respectively (Bishop and Wood, 2008). It 
is recognized, however, that these types of POC measurements 
based on large volume in situ filtrations can be 5 to 200 times 
lower than measurements using smaller diameter filters with 
discrete water samples retrieved using Niskin bottles which 
are utilized in the current study (e.g., Gardner et  al., 2003). 
Recent efforts to investigate uncertainty in mesopelagic POC 

measurements using data from the Atlantic meridional transects 
found that POC within the mesopelagic zone was 7 ± 3 mg m-3 
(Sandoval et al., 2021). These values are generally consistent with 
the range of values established in the current study, which are 
about 9 ± 4 mg m-3 (mean ± 1 standard deviation) considering all 
measurements from depths greater than 500 m while minimum 
values of POC from each profile are approximately 6 ± 3 mg m-3. 
In conclusion and considering differences in methodological 
approaches for determining POC, optically-based estimates 
of POC at mesopelagic depths using Model B are consistent 
with previously published measurements based on filtration of 
seawater.

CONCLUDING REMARKS

Light scattering by natural assemblages of marine particles is a 
complicated phenomenon which depends on properties such 
as particle concentration, size distribution, and composition. 
The interplay of these effects can produce scattering results 
which can make the inversion problem, i.e., inferring particulate 
properties such as POC from scattering measurements, 
especially challenging. By accounting for particle concentration 
and composition in a multivariable algorithm for estimating 
POC from measurements of bbp and Chla, uncertainty of POC 
estimates were reduced compared with a univariate algorithm 
based only on bbp (e.g., from about 47% to 28% in terms of 
MdSA) when analyzing a large database of contrasting surface 
and subsurface natural seawater samples encompassing both 
coastal and offshore waters from major oceanic basins. The 
multivariable algorithm (referred to as Model B in the present 
study) is particularly useful for highly contrasting samples 
in terms of abundance of phytoplankton versus all types of 
particles contributing to backscattering. For example, percent 
differences between model-derived and observed POC of two 
compositionally-contrasting samples with similar POC are –7% 
and –10% for the multivariable algorithm while a univariate 
algorithm results in percent differences of –60% and 130%.

Considering the potential application of this multivariable 
approach to BGC-Argo floats which profile through the water 
column down to depths of 1 km, the model has been specially 
formulated for use with backscattering and chlorophyll-a 
fluorescence sensors often available on these floats. Studies 
utilizing BGC-Argo data are becoming increasingly more 
common (e.g., Dall’Olmo and Mork, 2014; Poteau et  al., 2017; 
Johnson et  al., 2017; Bellacicco et  al., 2019; Briggs et  al., 2020; 
Wang et al., 2020), but algorithms to estimate POC from BGC-
Argo floats have been relatively simple univariate algorithms 
based on particulate backscattering coefficient alone. More 
advanced approaches which incorporate vertical variability in the 
relationship between bbp and POC have been utilized for studying 
POC distributions with BGC-Argo; however, these approaches 
still appear limited in terms of reliance on univariate algorithms 
based on bbp and restricted regional or seasonal applicability 
(Bol et  al., 2018; Galí et  al., 2022). In the present study we 
show that these types of simple algorithms are inadequate for a 
database of contrasting samples collected across diverse oceanic 
environments.

FIGURE 10 | Percent difference between Model A and Model B estimates of 
iPOCeu and iPOCme from all float profiles described in Figure 7. For example, 

iPOCeu percent difference (black) is determined as 
A B
eu eu

B
eu

iPOC – iPOC 100%iPOC ×   , 

where superscript “A” or “B” denotes which regression model was used. 

Note, data is not differentiated by individual float.
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Improvements are unequivocable when using a multivariable 
POC algorithm owing to inclusion of a particle composition proxy 
as an additional predictor variable. Hence, it is recommended 
that such improved algorithms, such as the multivariable 
Model B presented in this study, are used for application with 
measurements taken across diverse environments characterized 
by variable particle assemblages resulting from temporal (e.g., 
seasonal or diel) or spatial (e.g., vertical or horizontal) variability. 
We expect, for example, this new multivariable regression model 
can be useful for large-scale biogeochemical modeling studies 
aimed at understanding and constraining the global biological 
carbon pump. As a demonstration, the multivariable regression 
model was applied to BGC-Argo data from the Labrador Sea 
region. It was found that sustained increases of POC in the 
euphotic zone throughout summer are not observed in the 
immediate depths below the euphotic zone, a peculiar pulse of 
POC in the mesopelagic around March 2014 precedes increases 
in the epipelagic in late spring, and mesopelagic-integrated POC 
is typically over 50% of total POC integrated within the top 
1000 m of the water column. We also demonstrated that estimates 
of POC from the univariate backscattering-based regression 
model and the multivariable regression model applied to BGC-
Argo float measurements show large differences. Based on the 
comparison of performance of univariate and multivariable 
models using an independent validation dataset containing 
data from various oceanic environments (Figure 6), we expect 
that the comparisons of POC retrievals from the BGC-Argo 
floats deployed in the Labrador Sea region are also affected by 
higher uncertainties in univariate model retrievals compared to 
multivariable model retrievals.

The particle composition proxy used in the present study 
combines the Chla and bbp variables, which has been constrained 
by the current state of available measurements of chlorophyll-a 
fluorescence and backscattering on typical underwater 
autonomous platforms. Although the use of this composition 
proxy was found to provide significant improvements in 
model estimations of POC, the advent of new in situ optical 
sensors specifically aimed at advancing the characterization of 
composition and size distribution of natural particle assemblages 
is encouraged. One potential avenue for such advancements is 
supported by recent experimental efforts demonstrating that 
relatively simple measurements of polarized light scattering 
at a single wavelength and just a couple of scattering angles 
can substantially aid in the characterization of particle 
size distribution and composition, with particularly useful 
relationships for assessing particle composition across contrasting 
marine environments (Koestner et  al., 2020; Koestner et  al., 

2021). Recent successes with miniaturized underwater active 
camera systems (Picheral et al., 2022), hyperspectral radiometers 
(Organelli et al., 2021), and beam transmission sensors (Terrats 
et  al., 2020) have shown that further advancements of sensor 
payloads on autonomous platforms are possible and can greatly 
expand usefulness of autonomous observations of the subsurface 
ocean.
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