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Species-rich communities are structured by environmental filtering and a multitude of
associations including trophic, mutualistic, and antagonistic relationships. Graphs
(networks) defined from correlations in presence or abundance data have the potential
to identify this structure, but species with very high absence rates or abundances
frequently near detection limits can result in biased retrieval of association graphs. Here
we use graph clustering analysis to identify five sub-communities of plankton from the
North Atlantic Ocean. We show how to mitigate the challenges of high absence rates and
detection limits. The sub-communities are distinguished partially by their constituent
functional groups: one group is dominated by diatoms and another by dinoflagellates,
while the other three sub-communities are mixtures of phytoplankton and zooplankton.
Diagnosing pairwise taxonomic associations and linking them to specific processes is
challenging because of overlapping associations and complex graph topologies. Our
approach presents a robust approach for identifying candidate associations among
species through sub-community analysis and quantifying the aggregate strength of
pairwise associations emerging in natural communities.

Keywords: plankton, community, graph, association, clustering, sub-community, niches
1 INTRODUCTION

Oceanic phytoplankton and copepods form species-rich communities at the base of the marine food web
(Medlin et al., 2006; de Vargas et al., 2015; Fuhrman et al., 2015). These diverse communities can vary
widely over space, time, and with environmental forcing. Species can be characterized by traits, which
describe their maximal growth rate, trophic role, and biogeochemical function. Ultimately, the traits of
species determine the optimal environmental conditions under which each species grows, and thrives,
which is summarized as the species’ fundamental niche (Hutchinson, 1957). The selection of species
from the broader species pool according to their niches is known as environmental filtering (Lebrija-
Trejos et al., 2010). Associations - relationships and/or interactions - can develop between pairs, or
groups, of co-occurring species and can influence growth rate and biomass to an extent that is not
described by environmental forcing and niches alone. Depending on the intensity or quantity of these
associations, they may have a significant effect on community compositions. In communities with strong
in.org August 2022 | Volume 9 | Article 9435401
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associations between member species, community structure is an
emergent phenomenon as a consequence of species traits,
environmental forcing, and inter-species associations.

Graphical models (sometimes referred to as networks, or
network models) are being developed as a tool to study
ecological communities by identifying and visualizing a wide
range of associations between pairs of taxa (Ings et al., 2009;
Faust and Raes, 2012; Lima-Mendez et al., 2015; Sunagawa et al.,
2015; Poisot et al., 2016; Zhou et al., 2018; Delmas et al., 2019).
These associations can be directly observed interactions, such as
pollination networks (Blüthgen et al., 2008), or inferred from
abundance data using correlations or similar measures of
similarity (Steele et al., 2011; Zhang, 2011; Friedman and Alm,
2012; Faust et al., 2012). A graph is composed of vertices
(sometimes referred to as nodes), representing taxa, and edges,
representing some connection between a pair of taxa.
Consequently, one can define a community graph by
examining the co-occurrence patterns between all pairs of taxa
and determining if there is an association between the pair.

In a diverse community, it may be helpful to know about
more than just pairwise associations. Clusters (referred to here as
sub-communities) of co-occurring and interacting taxa may
result in complex effects on biomass dynamics that are difficult
to predict without detailed knowledge of the many potential
pairwise associations. Knowledge of sub-communities can reveal
information about groups of taxa who interact with the
environment, or other groups, in a similar way (Girvan and
Newman, 2002). Such sub-communities can be prescribed and
defined by features such as functional or size class (e.g.
Trombetta et al. (2020)). Alternatively, taxa can be
automatically assigned to sub-communities using a clustering
algorithm (e.g. Guidi et al. (2016)). Graphs may be directly
decomposed into sub-graphs (Orman et al., 2011) to identify
associations among groups of taxa who are close, or similar, in
some way. These sub-graphs may assist in identifying
interactions among trophic levels, hosts and parasites, or plant-
pollinator relationships.

In the absence of direct evidence of interactions, observational
data (such as abundance or presence-absence data) can be used
to determine co-occurrence patterns and make inferences about
the most significant pairwise associations. Co-occurrences may
be affected by the direct effect of environmental filtering, pairwise
interactions, or approximate equivalence of taxa within
communit ies . Thus , i t i s des irable to account for
environmental forcing in graphical analysis. Sometimes this
has been done directly, by including environmental variables as
vertices in the graph alongside the taxa, highlighting direct
relationships (Steele et al., 2011; Eiler et al., 2012). This
approach provides insight on the effect of environmental
forcing upon the individual, at the cost of information on the
impact of that forcing upon the relationships between taxa.
Others have used community graphs, and sub-graphs, to
investigate the impacts of community structure and species
interactions on processes such as carbon export (Guidi et al.,
2016) by identifying the sub-communities which are strongly
associated with that process.
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Here we use observations of more than 300 plankton taxa
gathered over more than 60 years in the North Atlantic
Continuous Plankton Recorder survey to develop a co-
occurrence graph for marine plankton. Our analysis
documents the community structure of plankton in the North
Atlantic, enabling an investigation into positive and negative
species associations, pairwise trophic interactions, and
interactions among and within sub-communities. Observed
sub-communities emerge as a consequence of environmental
filtering and species interactions, so we analyze the spatial and
temporal overlap between the sub-communities and the realized
niche of sub-communities. We propose solutions to several
challenges that arise when analyzing this kind of data. The
data is sparse, consisting mostly of zero abundances, although
an unknown number of these absences likely represent a failure
to detect a taxon than a true absence. We can screen for potential
interaction between taxa through the co-occurrence graph, and
we propose that interactions between and within sub-
communities can highlight potential interactions more clearly
than pairwise co-occurrences. We show how spatial and
temporal patterns of sub-community abundance can document
significant differences between sub-communities, as well as
similarities that may lead into seasonal succession. Finally, we
demonstrate a negative correlation between niche distance and
association measured by correlation between pairs of taxa, to
quantify the relative importance of niche overlap relative to
interactions in determining community structure.
MATERIALS AND METHODS

2.1 Data
2.1.1 Biological Data
In this study we investigate the planktonic community in the
region of the North Atlantic ocean bounded latitudinally by ~
40°N to 65°N and longitudinally by ~70°W to 10°E, between
1958 and 2014. The biological data are derived from samples
collected by the continuous plankton recorder (CPR) survey in
this region (Hardy, 1939; Richardson et al., 2006; Johns et al.,
2019). The CPR is a plankton sampling device that is towed at a
standard depth of ~7 m (Hays and Warner, 1993) by ships of
opportunity along regular shipping routes (Figure 1). Water
continually enters the sampling device through a small square
aperture (1.27×1.27 cm ≈ 1.61 cm2) and flows through an
expanding tunnel and exits through the rear of the device. As
the device is towed, the flow around the recorder rotates a small
propeller which advances a fine silk filtering mesh within the
device upon which plankton are continually filtered. The roll of
mesh is divided into panels such that a single panel represents 3.1
m3 of water, and is equivalent to 18.5 km travelled (Warner and
Hays, 1994). The relatively large size of the mesh (270 mm)
means that some smaller plankton species are either under-
counted or missed entirely (Richardson et al., 2006). As a
consequence, many smaller plankton groups, notably
nanoplankton and picoplankton, and their relationships are
not included in this study.
August 2022 | Volume 9 | Article 943540

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Siddons et al. Clustered Plankton Community Graph
The raw plankton count data from the CPR has been
aggregated into monthly 1×1 degree boxes (Irwin et al., 2012;
McGinty et al., 2018). The resultant CPR dataset consists of
110,000 samples and identifies 344 unique taxa (172
phytoplankton and 172 zooplankton), most of which are
identified to species-level. The majority of taxa are very rare,
appearing in fewer than 1% of samples. In order to reduce the
sparsity of the data we removed taxa who appeared in fewer than
2.5% of samples, and since our goal is to describe patterns of co-
occurrence and taxa associations, we removed samples which
contained fewer than five unique taxa. The result is a dataset
containing p=59 taxa over n=61,990 samples. Zooplankton
represent 27 taxa within the reduced dataset, 22 of which are
copepods. The copepods have been grouped by diet as either
Herbivore (9), Omnivore (8), or Carnivore (4) according to their
diet following Richardson et al. (2006). One copepod
representing order Harpacticoida was not classified. The five
remaining zooplankton taxa are grouped together. The
remaining 32 taxa are phytoplankton and have been grouped
into diatoms (20) and dinoflagellates (12). A breakdown of taxa
in the reduced dataset is shown in Table S1 in the
Supplementary Material. Taxonomic names follow those used
by the CPR dataset.

2.1.2 Environmental Data
Environmental data were not collected contemporaneously
with biological samples. In order to characterize planktonic
and sub-community niches we combined the CPR data with
environmental data from external sources. Macro-nutrient
concentrations (nitrate, phosphate, silicate), oxygen
saturation, salinity, and mixed layer depth (MLD) were
collected from the World Ocean Atlas 2013 (Boyer et al.,
2013). Sea surface temperature (SST) was collected from
Hadley SST2 (Rayner et al., 2006), bathymetric depth from
GEBCO (https://www.gebco.net), chlorophyll-a from
GlobColour (https://www.globcolour.info), and sea surface
Frontiers in Marine Science | www.frontiersin.org 3
photosynthetically available irradiance (PAR) was obtained
from SeaWiFS (https://oceancolor.gsfc.nasa.gov). All
environmental data is aggregated to the same 1°×1° grid cells
as in the CPR data. Not all data is available across all years of
the CPR dataset. As such, all 10 environmental variables are
averaged over all available years for each dataset to generate
monthly climatology, so that we were not including yearly
variation in only a few of the covariates.

2.2 Inference of Graphical Models
We use a graph (sometimes referred to as a network) to represent
relationships (associations) between different planktonic taxa in
the North Atlantic. We will first compute a matrix of associations,
T̂ = fTijji, j ∈ 1,…, pg from which we will then define a graph. A
graph is defined by G=(V,E) where V={Vi | i=1,…,p} is the set of p
vertices (representing taxa), E={(Vi,Vj) | Tij≠0}⊆(V×V) is the set
of edges (representing inferred relationships) (West, 2001). We
can assign various attributes to V and/or E for example weights or
sign to edges to indicate strength or type of association between
pairs. A graph has an associated adjacency matrix Â with
elements Aij=1 if there is an edge between vertices i and j, 0
otherwise. In this work, vertices will represent the taxa from the
CPR data (1 vertex per taxon). Edges will represent inferred
relationships between the taxa. The inferred graph will be
directed, so that the relationships will have direction and T̂ , Â
will be asymmetric. This direction of the relationships will
indicate dependency. A directed edge from taxon i to taxon j
such that the head of the arrow is at taxon j indicates that (the
abundance of) taxon j is conditionally upon (the abundance of)
taxon i. The degree of a vertex is defined as the total number of
vertices connected to it, d(i)=∑j,j≠iAij+∑j,j≠iAji . The degree of a
vertex accounts for both in-bound and out-bound relationships in
directed graphs, and excludes the vertex itself.

Common methods for inferring graphical models require
knowledge of the pairwise correlations or similarity between
vertices (in this case taxa) (Faust and Raes, 2012), whether
FIGURE 1 | Frequency and location of the CPR samples in the North Atlantic region, from the filtered dataset used in this study. More yellow corresponds to a
higher frequency of CPR observations in a 1°×1° grid cell. Color scale of the frequencies are on a log10-scale.
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directly (Steele et al., 2011; Berry and Widder, 2014) or as part of
a regression method (Meinshausen and Bühlmann, 2006). The
most common correlation metric is the Pearson (sample)
product-moment correlation coefficient. However, this is not
suitable for non-normally distributed data (Calkins, 1974;
Bishara and Hittner, 2012; Puth et al., 2014). For instance,
plankton abundance data are typically approximately log-
normally distributed as a consequence of exponential growth
(Crow and Shimizu, 1987). Furthermore, sparse data, such as the
CPR data, with many zeros resulting from a failure to detect taxa
at low abundance (Mutshinda et al., 2022) (as well as true
absences), are poorly summarized by Pearson correlation. To
demonstrate the limitation of sparseness, we generated normally
distributed data for two random variables with a range of known
correlation values. We then replaced a proportion of the data, for
each variable, with zeros either randomly, or by truncation (e.g.
for 10% zeros, all values below the 10th percentile are set to zero),
for a series of sparsity levels and recalculated the Pearson’s
correlation. The results, shown in Table 1, demonstrate that
the Pearson’s correlation coefficient is damped for zero-inflated
data. In particular, negative correlations are significantly damped
for truncated data. As a consequence pairwise Pearson
correlation will result in biased estimates yielding a clouded
view of correlations.

To overcome the impacts of sparse data, we use the SPRING
package for R (Yoon et al., 2019) to infer the plankton association
graph. SPRING has three constituent components. First, the
mixedCCA package of Yoon et al. (2020, 2021) is used to estimate
the correlation matrix under the assumption that the data is
truncated. Secondly, the estimated correlation matrix is used as
an input to the Meinshausen and Bühlmann (2006) LASSO
regression method to find the significant relationships,
implemented in the Huge package (Zhao et al., 2012). Finally,
the LASSO parameter, which controls the sparsity of the
resulting graph, is selected using the StARS (Stability Approach
to Regularization Selection) method (Liu et al., 2010).

In order to use SPRING we must make the assumption that
sparsity in the CPR data is a result of truncation. Under this
assumption, zeros are assumed to be non-zero and below some
threshold value (perhaps as a consequence of measurement
limitation), but recorded as zero. This is a reasonable assumption
for the CPR data as several processes can lead to false zeros,
including failure to capture individuals displaced by the bow
Frontiers in Marine Science | www.frontiersin.org 4
wave, the large mesh in the sampling silk, and low abundance
leading to sampling variation including a failure to detect the taxa
(Richardson et al., 2006). Furthermore, the semi-quantitative
counting method could result in missed observations.

The first component of SPRING, the mixedCCA package of
Yoon et al. (2020, 2021) recovers correlations from sparse
truncated data using the truncated non-paranormal (tNPN)
model. The idea is to relate a random sample from a truncated
distribution to an underlying multi-variate normal distribution
(N (0, Ŝ ),sii = 1) with a known correlation matrix, Ŝ (referred
to as the latent correlation matrix). This model is derived from,
and is an extension to, the non-paranormal model of Liu et al.
(2009) which relates multi-variate non-normally distributed data
to an underlying multi-variate normal distribution. Yoon et al.
(2020) define a bridge function between the sample Kendall’s Tau
and the latent correlation matrix. We evaluated the ability of
mixedCCA to recover correlations in sparse data (Table 2). We
generated 2-dimensional multivariate log-normal data derived
from 2-dimensional normal distributions with 0-mean and
prescribed correlations. The simulated data was then truncated
such that a prescribed proportion of the data is zero. Pearson and
latent (tNPN) correlations were then computed and compared.
We found that mixedCCA accurately recovered correlations at
all sparsity levels.

The estimated latent correlation matrix computed using the
non-paranormal model assumption was used to compute a
directed graph. A directed graph is defined by a non-
symmetric adjacency matrix. The second component of
SPRING implements a Meinshausen-Bühlmann neighborhood
selection to detect significant associations (Meinshausen and
Bühlmann, 2006). This takes the form of a LASSO regression
(Tibshirani, 1996) which estimates a vector of association
strengths, b j, for each taxon, j:

b j = argmin
b∈Rp ,bj=0

bT Ŝb − 2bTsj + l ‖ b ‖1
� �

(1)

Here Ŝ is the sample covariance matrix with j-th column sj, p =
59 is the number of taxa, l is the penalization parameter and
controls the sparsity of the graph (see below). SPRING uses
equation (1), and replaces the covariance matrix, Ŝ with the
estimated correlation matrix computed with mixedCCA, Ŝ . The
b j vectors form the columns of a matrix, b̂ with elements bij which
defines the graph. A non-zero b ij will indicate that an edge,
TABLE 1 | Effect of different levels of sparsity (proportion of zeros) on the standard Pearson (sample) product-moment correlation coefficient.

Proportion zero 0.1 0.5 0.9

Original Correlation Random Trunc. Random Trunc. Random Trunc.

−0.9 −0.8 −0.53 −0.44 −0.44 −0.072 −0.1
−0.5 −0.46 −0.33 −0.26 −0.31 −0.047 −0.1
−0.1 −0.1 −0.076 −0.044 −0.071 −0.025 −0.036
0.1 0.09 0.074 0.036 0.085 −0.0031 0.047
0.5 0.45 0.41 0.25 0.43 0.046 0.26
0.9 0.81 0.83 0.47 0.87 0.086 0.73
August 2
022 | Volume 9 | Article
The data is generated from amultivariate normal distribution with means 0 and covariance matrix = correlation matrix (i.e. standard deviations = 1), with n=10000 samples. Data is replaced
by zeros either randomly (Random) or by truncation (Trunc.) such that the proportion of zeros in the data matches the sparsity in the combined-column headings.
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representing an association, between taxon i to taxon j i.e.: taxon j
conditionally depends on taxon i.

A global l-value is selected for the whole graph using StARS
(Stability Approach to Regularization Selection) (Liu et al., 2010),
which is implemented in the pulsar R package (Müller et al.,
2016). StARS estimates the optimal l from a l-path, composed
of a sequence of 100 increasing l-values from the complete (all
possible edges) to the empty (0 edges) graphs at the extrema. A
set of graphs for each l-value are computed from 50 sub-samples
of the data, each sub-sample contains 80% of the data without
replacement. The l-value that results in the most stable (results
in the least variation between graphs) non-empty graph is then
selected as the global l.

We ignore the magnitude of the association and define an
unweighted, directed graph from the matrix:

T̂ = sign b̂
� �

:

A common approach to interpreting relationships from such a
matrix is shown in Figure 1 of Faust and Raes (2012), summarized
in Table 3. For example, in the case of Tij=1, Tji=−1 we have
predation or parasitism. In this case, taxon j responds positively to
taxon i whereas taxon i responds negatively to taxon j we could
argue that individuals of taxon j consumes individuals of taxon i
The graph object is then constructed from T̂ and analyzed using the
igraph package for R (Csardi and Nepusz, 2006).

2.3 Sub-Community Detection and
Analysis
Data gaps and variability can result in the failure to detect
pairwise associations and false discovery of relationships
(Lima-Mendez et al., 2015; Yambartsev et al., 2016). For
Frontiers in Marine Science | www.frontiersin.org 5
example, a pair of unconnected taxa who have an association
in common are also likely to be associated. We seek to account
for suchmissed connections, whilst also minimizing the effects of
false connections.

We define sub-communities as edge-dense (relative to the
whole graph) sub-graphs, i.e. groups of vertices who are highly
connected. Sub-communities of taxa within the graph are
identified using the Walk-trap algorithm (Pons and Latapy,
2005). The Walk-trap algorithm partitions a graph based upon
the idea that random walks on a graph are likely to remain (or
become trapped) within densely connected components. The
algorithm computes a distance between pairs of vertices by
estimating the probability that a random walk of length t
starting from vertex i traverses vertex j. First, the graph is
transformed into an undirected graph, with self-connection.
This ensures that an isolated, connected, pair of vertices have
zero distance and be detected as a sub-community. Next,
compute the probability matrix P̂ t here the elements, Pt

ij are
the probabilities of traversing from vertex i to vertex j in t steps.
Finally, compute the Euclidean distance between the i-th and j-th
rows of P̂ t .

The resulting distance, is then used to construct a
dendrogram from which an optimal clustering that maximizes
the modularity (Newman and Girvan, 2004; Newman, 2006) is
selected. Orman et al. (2011) demonstrate that the Walk-trap
algorithm consistently achieves good results in determining
community structure in controlled artificial networks. Here, we
set t = 4, which is the default value for the implementation in
igraph; our testing did not find any significant differences in sub-
community breakdown for higher values of t.

To analyze the behaviour of the resulting sub-communities
(responses to environmental factors, and other sub-
TABLE 3 | Interpretation of the sign of a pairwise association value from T̂ = sign (b̂ ), following Faust and Raes (2012), and number of edges (and pairs) of that
association type in G.

Taxon 1 Taxon 2 Interpretation Edges in G

+ + Mutualism 132 (66 pairs)
+ − Parasitism, Predation 0
+ 0 Commensalism 37
− − Competition 8 (4 pairs)
− 0 Amensalism 8
Total 185
August 2022 | Volume 9 |
TABLE 2 | Effect of different levels of sparsity (proportion of zeros) in the form of truncation on the standard Pearson (sample) product-moment correlation coefficient

and the truncated non-paranormal correlation estimate Ŝ .

Proportion zero 0.1 0.5 0.9

Original Correlation Pearson tNPN Pearson tNPN Pearson tNPN

−0.9 −0.0053 −0.89 −0.0052 −0.89 −0.004 −0.78
−0.5 −0.013 −0.5 −0.013 −0.5 −0.0096 −0.66
−0.1 −0.0059 −0.096 −0.0059 −0.097 −0.0047 −0.073
0.1 0.054 0.086 0.0054 0.084 0.0056 0.096
0.5 0.17 0.48 0.17 0.48 0.16 0.49
0.9 0.48 0.89 0.48 0.89 0.48 0.9
Article
The data is generated from a multivariate log-normal distribution with means 0 and covariance matrix = correlation matrix (i.e. standard deviations = 1) with n=10000 samples. Simulated
data is replaced by zeros by truncation such that the proportion of zeros in the data matches the sparsity in the combined-column headings.
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communities) we need to determine whether or not a given sub-
community is present or not. One approach would be to assume
that the sub-community is present if any of its members are
present in a sample. Alternatively, consider only samples where
all members of sub-community are present for sub-community
presence. The first case would be too broad, and would include
samples which may not be indicative of conditions favorable for
the whole sub-community. Most of the samples would be
included and it may be difficult to differentiate the behavior of
each sub-community. In the latter case, it is likely that too few
samples would be included for any robust analysis, especially for
larger sub-communities. To find a middle ground between these
two cases, a sub-community will be deemed to be present if at
least 30%, with a minimum of 2, of its member taxa (rounded-
down) are present. For example, a sub-community with 10
members would have a presence threshold of floor(10×0.3)= 3
members present. Following this definition we require a
minimum size to sub-communities of five member taxa.
Smaller sub-communities would require a greater proportion
of the members to be detected in a sample for presence and may
be more susceptible to their presence being controlled by a
single taxon.

To test the statistical significance of the detected sub-
communities, we verify that they are significantly edge-dense
relative to the whole graph. We generate an edge-density
distribution by computing edge-densities of random sub-
graphs from the graph. 1,000,000 random sub-graphs will be
constructed by (uniformly) randomly selecting vertices from the
graph such that number of vertices in each random sub-graph
falls within the range of sizes from the detected sub-
communities. We will further test the strength of the sub-
communities by computing the modularity (Newman and
Girvan, 2004) of the graph subject to the resulting sub-
community breakdown. Modularity is based upon the idea that
we would not expect to see community structure in a random
graph. It is a measure of the proportion of edges that connect to
nodes of the same sub-community, minus that proportion if the
edges were random. Modularity values for real-world graphs
with strong community structure typically range between 0.3 to
0.7 (Newman, 2006; Steele et al., 2011). Another strong indicator
of high edge-density is the presence of motifs, or complete (fully
connected) sub-graphs. Presence of such motifs can be
considered to be more strongly indicative of community
structure than edge-density (Watts and Strogatz, 1998). The
most common motif is the triangle, complete sub-graphs of
order 3. Many methods to detect sub-communities make use of
this idea, for example Prat-Pérez et al. (2012); Tsourakakis et al.
(2017). Here we examine the distribution of triangles across the
graph to evaluate the strength of the sub-community breakdown
by calculating the proportion of triangles that are contained
entirely within the sub-communities.

2.4 Niche Distance
One of the major challenges in interpreting community graphs is
determining if the detected associations are real. For example, a
pair of taxa may be associated mutualistically (Table 3), however
this may actually be a consequence of sharing a similar niche, or
Frontiers in Marine Science | www.frontiersin.org 6
being limited by the same resource. We examine the differences
between taxa, or sub-communities, by comparing their niches. A
taxon’s fundamental niche is defined as a hyper-volume in niche-
space where the taxon can persist. To analyze how similarities, or
differences, between taxa affects the community structure, in
particular how they affect the associations between and within
sub-communities, we calculate a matrix of pairwise mean niche
distances. Two taxa with similar niches will have a small mean
niche distance, whereas taxa with very different niches will have
large mean niche distance. To compute niche distance, center
and scale each physical and biological variable (by mean and
standard deviation respectively) for all samples in the data. For
only the samples in which each taxon is present, compute the
mean niche vector by calculating the mean of each scaled
variable. Finally, calculate the niche distance by computing the
standard Euclidean distance between each pair of mean niche
vectors. The result is a symmetric p × p matrix M̂ of niche
distances where Mij=Mji is the niche distance between taxa i and
j. We perform a linear regression for M̂ against Ŝ to determine
what role niche similarity plays in the detected relationships.
From the residual variability we can start to determine whether
the detected associations are real, and to what extent. By
extending the concept of the niche to the sub-community-
scale, we can compare sub-communities. We compute a sub-
community niche by examining the range of environmental and
biological variables over which the sub-community is deemed to
be present (following the procedure for presence outlined above).
We also calculate mean niche distances for the sub-communities
in order to determine how similar the sub-communities
might be.
3 RESULTS AND DISCUSSION

3.1 North Atlantic Plankton
Association Graph
Our graphical model of the North Atlantic plankton community
structure, G, is a sparse directed graph with a vertex set, V,
representing the 59 taxa, and an edge set, E⊆(V×V) , containing a
total of 185 edges between the taxa. Two unconnected vertices:
unidentified species from diatom genus Navicula, and
unidentified species from copepod order Harpacticoida, are
removed from G and excluded from any further analysis. This
results in a reduced vertex set, V, containing 57 taxa with an
edge-density of 5.8% (Figure 2). Mean and median vertex degree
are 6.49 and 6 respectively, degree does not distinguish between
edge direction. The taxon with highest degree is the dinoflagellate
species Ceratium tripos (now renamed to Tripos muelleri) with
14 total edges, affecting eight taxa and affected by six taxa. High
degree taxa are important and act as hub species who have a large
influence on the structure and behavior of the community (Berry
and Widder, 2014). The majority (169) of associations are
positive, most of which form a mutualistic relationship pattern
(Table 3, Faust and Raes (2012)). The remaining 16 associations
are negative, split between competitive and amensal patterns.
Negative associations were not observed between pairs of
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phytoplankton taxa. The ratio of positive associations to negative
associations is consistent with similar studies, for example Lima-
Mendez et al. (2015); Zhou et al. (2018).

3.2 Sub-Communities
The walk-trap community detection algorithm, applied to G ,
detects five distinct sub-communities, G1−G5 , with at least five
members. Each taxon is assigned to at most one sub-community.
Sub-community G2 is entirely composed of phytoplankton
(primarily diatoms), whereas G5 is made-up of only zooplankton.
Two dinoflagellates who are members of G2 , species from the
genera Gyrodinium and Exuviaella, have been observed in similar
sub-community structures (Trombetta et al., 2020). All sub-
communities contain more than one functional classification
Frontiers in Marine Science | www.frontiersin.org 7
(Table 4; Supplementary Table S1). Although the vast majority
of associations are mutualistic, the mixture of herbivorous copepods
and phytoplankton in G1 and G3 combined with the documented
described difficulty in detecting trophic grazing interactions through
our association analysis suggests that there may be undetected
trophic links in these sub-communities.

The most frequently observed sub-community is G1 (45.8% of
all samples). G5 is the rarest (16.1%) (Table 4). Three taxa are
classified as unassigned, however they were within a sub-
community with fewer than five members. Following our
restrictions on sub-community size, this small group is removed
from further sub-community niche and behavior analysis.

The edge-densities for each of the sub-communities range
between 0.192 and 0.452 (Table 4), compared to 0.058 for G
FIGURE 2 | Plankton association graph, G=(V,E) , constructed from the CPR data using SPRING. Blue circles represent diatoms, green squares are dinoflagellates,
up triangles represent zooplankton with the color indicating the copepods diet - yellow, orange, red correspond to herbivore, omnivore, and carnivore respectively,
and uncolored down triangles represent other zooplankton classifications. Black solid arrows indicate a positive effect, red dashed arrows indicate a negative effect.
Arrow direction from taxon x to y indicates that taxon y responds to the presence of taxon x. Vertex layout is determined using the Reingold-Fruchtermann force-
directed algorithm (Fruchterman and Reingold, 1991). Shaded regions, and numeric labels (corresponding to the equivalent sub-graph index, Gi ), indicate sub-
community membership (if any), for sub-communities containing at least five members; as calculated using the walk-trap algorithm.
TABLE 4 | Breakdown of functional classification of sub-community membership, total unique members, proportion of total samples in which each sub-community is
observed, and edge-density for each sub-community.

Class Phytoplankton Copepods Other % Edge-

Sub Com. Diatom Dino. Herbivore Omnivore Carnivore Total Samples Density

G1 1 2 2 0 1 1 7 45.8 0.262
G2 14 2 0 0 0 0 16 33.5 0.192
G3 3 0 4 2 2 1 12 41.0 0.205
G4 0 8 0 1 0 3 12 37.8 0.310
G5 0 0 2 4 1 0 7 16.1 0.452
Unassigned 1 0 1 1 0 0 3 – –
A
ugust 2022 |
 Volume 9 | Article
Phytoplankton are categorized into diatoms and dinoflagellates; zooplankton are first separated into copepods and others, before being broken down by diet (from Richardson et al. (2006)).
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(excluding unconnected vertices). All sub-communities are
significantly denser than the full graph (Figure 3) (p< 0.0005 -
permutation test). Furthermore, we also find that 81.3% of
triangles are contained within sub-communities, and 77.8% of
all edges are between taxa within the same sub-community. This
further indicates that these sub-graphs are edge-dense in
comparison to G. The modularity of the graph given this sub-
community breakdown is 0.59. Combining all of this indicates
that this sub-community breakdown is a statistically significant
breakdown of G.

3.3 Sub-Community Analysis
We identified a negative relationship between pairwise niche
distance and estimated correlation, Ŝ (Figure 4; Table 5). Pairs
of taxa whose abundance patterns are positively correlated are
likely to have very similar niches. The adjusted-R2 values indicate
that approximately 50% of the variability in estimated correlation
can be explained by niche similarity. Niche distance is a good
predictor for correlation strength. Correlations between pairs of
taxa who share sub-community membership are mostly positive
(287/297 pairs) and have similar niches (Table 6). Negatively
correlated pairs of taxa have large mean niche distance.
Correlations for pairs of taxa in different sub-communities are
more variable (Figure 4), 45% of the correlations are negative.

Associations between pairs of taxa within the same sub-
community (Gi!Gi) are always positive. Most of these same
sub-community pairs have low niche distance (120 pairs, 81%,
with niche distance < 1). In contrast, niche distances between taxa
who are members of different sub-communities (Gi!Gj) are more
variable (Table 6). Pairs of taxa with positive associations tend to
have very similar niches in general, more-so for pairs of taxa who
share sub-community membership. In contrast, pairs of taxa who
have distinct niches will typically have a negative association.
Frontiers in Marine Science | www.frontiersin.org 8
The five detected sub-communities are broadly split into
three groups defined by their sub-community niches (Figures 5,
6). G1 and G2 have similar niches defined by a preference for
cooler, more nutrient rich waters. G2 can be described as a cold
diatom group, its membership is predominantly diatoms. G3 and
G4 who also have similar niches, tend to be found in warmer,
more nutrient limited parts of the north Atlantic. G5 has a similar
temperature and nutrient niche to G3 and G4 however it has a
narrower salinity niche and is associated with lower PAR. The
association with lower PAR of G5 matches the seasonality of this
sub-community, we mostly observe this group in the winter
months (Figure 7). A hierarchical clustering of mean niche
distance further supports this grouping of sub-communities
into (G1,G2), (G3,G4), and G5 (Figure 6).

The detected sub-communities are characterized by positive
associations between pairs of taxa with a similar niche. On the
sub-community-scale, niche similarity does not guarantee that
the sub-communities will be closely associated. G1 and G2 have
very similar niches but there is only a single bi-directional
association between taxa from either sub-community
(Figure 2). The same is true for sub-communities G3 and G4.
Members of G5 are only associated with G1 and G3 aside from
associations within G5.

By analyzing the seasonal cycles of each sub-community
(Figure 7) we find that G1 and G2 are both observed most
frequently during the spring bloom. Moreover, the peak month
for observations of G2 precedes the peak for G1 by one month.
We also frequently observe G1 and G2 in the same regions
(Figure 8). Combined with the similar niches, this suggests
that there is a seasonal succession of G2 into G1. A possible
interpretation of this succession is that copepod members of G1

graze upon the diatoms of G2 . Both sub-communities are most
frequently observed in the north-west of the sampling region.
FIGURE 3 | Distribution of edge densities for random sub-graphs of size ∈[7,16] (uniform random) from north Atlantic plankton community graph, G (solid black).
Dashed grey and colored lines are the edge densities for G and each of the sub-communities G1!G5 , respectively. Sub-community line colors match the shaded
regions in Figure 2.
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The diatom sub-community is more cosmopolitan thanG1 and is
frequently found throughout the sampling region.

The dinoflagellate dominated sub-community, G4 has the
largest difference between peak and trough among the seasonal
cycles of all sub-communities (Figure 7). It is most frequently
observed in late-summer to early-autumn. In contrast, G3 which
has a similar niche is observed with relatively constant frequency
throughout the year. G3 is most commonly observed in coastal
waters. In particular, it is frequently observed in the heavily
sampled North Sea region. The dinoflagellate sub-community is
Frontiers in Marine Science | www.frontiersin.org 9
found in similar regions but is more frequently observed in more
open and shelf sea regions. This highlights that despite G3 and G4

having similar niches they are distinct sub-communities. This
contrasts with the similar patterns between G1 and G2. G4 is more
mixed than the heavily diatom dominated G2 and contains both
phytoplankton and zooplankton.

The rarest sub-community, G5 is most frequently observed
during the winter. At the peak of its seasonal cycle, it is only
observed in 25% of samples. It is most often observed towards
the south of the sampling region, which is the least sampled area.
TABLE 5 | Summaries (number of data points in subset n, intercept and gradient of linear model, adjusted-R2 and p-value) of the simple linear models fitted to the
correlation estimate with mean niche distance as predictor variable.

Relationship n Intercept Gradient R2 p

All 1596 0.360 ± 0.00830 −0.202 ± 0.00518 0.488 < 0.0001
Within community 297 0.495 ± 0.0169 −0.195 ± 0.0152 0.359 < 0.0001
Between communities 1299 0.275 ± 0.00844 −0.168 ± 0.00498 0.467 < 0.0001
August 2
022 | Volume 9 | Articl
Correlation is further broken down into relationships that are between taxa within the same sub-community and those that are in different sub-communities. Values are accurate to three

significant figures. Since correlations are symmetric we only consider values from the upper triangular portion of Ŝ .
FIGURE 4 | Relationship between pairwise mean niche distance and pairwise NPN correlation estimate, Ŝ . Black circles indicate that the taxa pair are within the
same sub-community, red triangles indicate that the taxa pair are in different sub-communities. Niche distances were calculated using all 10 environmental variables
described in Section 2.1.2.
TABLE 6 | Breakdown summary of mean niche distance by measurement (correlation or graph association), measurement sign (positive or negative relationship), and
pairwise sub-community membership.

Measurement Measurement Sign Pairwise Membership Count Lower Quartile Median Upper Quartile

Association Positive Same sub-community 148 0.409 0.607 0.889
Association Positive Different sub-community 21 0.629 0.849 1.133
Association Negative Different sub-community 16 2.272 2.597 2.929
Correlation Positive Same sub-community 287 0.579 0.878 1.245
Correlation Negative Same sub-community 10 1.754 1.865 2.034
Correlation Positive Different sub-community 705 0.826 1.120 1.427
Correlation Negative Different sub-community 594 1.565 1.901 2.317
No negative associations between members of the same sub-community were detected. Values are accurate to three significant figures.
Number of relationships, mean niche distance quartiles.
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The tendency to observe this sub-community in winter may
explain why it has a low PAR and narrow salinity niche.

Association graphs have been used to infer interactions or
relationships between species, such as plant-animal pollination
network (Rodrıǵuez-Rodrıǵuez et al., 2017). We recommend
caution when interpreting graphical models, as associations can
arise from true interactions among species, but also as a result of
niche overlap. In short, species may be associated because their
Frontiers in Marine Science | www.frontiersin.org 10
growth is affected in similar ways by resource availability or
environmental conditions, because they share a susceptibility or
resilience to a common predator, or as a direct result of a positive or
negative interaction. Changes in population density and
environment changes may complicate recovery of interaction
networks as interactions change over space and time (Poisot et al.,
2014). We use the correlation between niche distance and
association measures (Figure 4) to infer that about half of the
FIGURE 5 | Sub-community niches. Violin plots (including median (solid), 25% and 75% percentiles(dashed)) for six environmental variables over samples where
each sub-community is determined to be present (samples containing least 30% (rounded down) of a sub-community’s members). Sub-community colors and
numeric-labels match the colored regions and labels of Figure 2.
FIGURE 6 | Dendrogram showing hierarchical clustering of mean niche distances between sub-communities, emphasizing similarity illustrated in Figure 5. Leaf
colors and numeric-labels follow the shaded sub-community regions and labels from Figure 2.
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strength of associations in our analysis is predicted by niche
similarity. The presence or absence of any one pairwise
interaction can’t be directly attributed to a particular cause, but
the considerable residual variation in association strength leads us to
expect that there are some true interactions in our graph and that
the strongest interactions are most likely to be observed. The various
kinds of interactions appear to be highly biased to mutualism with
relatively few negative interactions detected (Table 3). The method
recovers negative associations from simulated data with truncation
and a high level of sparsity (Table 2), so our expectation is that the
observed asymmetry reflects something real about the community.
Facilitative interactions may be more evolutionarily stable than
antagonistic interactions (Bronstein, 2009) which could partially
explain the bias in our results. While it is possible that negative
interactions are rare, we think it more likely that negative
interactions are less likely to be strictly pairwise, perhaps because
Frontiers in Marine Science | www.frontiersin.org 11
of the importance of generalist grazers, and that generalist negative
interactions may be overprinted by niche selection leading to small
magnitude associations that are difficult to detect.
4 CONCLUSION

The marine planktonic community is dynamic and highly
structured. Member taxa are significantly affected by
environmental forcing, which can control which taxa can
thrive. There are complicated interactions between pairs, or
groups, of frequently co-occurring taxa. The combined
workflow of sparse graphical inference and sub-community
analysis can provide insights into some of these effects on the
community as a whole. These methods provide effective
solutions to many challenges typically faced when analyzing
co-occurrence datasets. In particular, difficulties associated with
inference from sparse data can be effectively overcome. Good
quality associations can be inferred using a truncated non-
paranormal assumption. The impacts of false positive and false
negative associations can be mitigated by grouping taxa into sub-
communities, defined as (relatively) dense sub-graphs, based on
the inferred associations using the walktrap algorithm.

The workflow presented here can be broken into three
significant components. Each component was selected for its
accuracy and performance, especially with sparse data. Firstly,
the truncated non-paranormal model can be used to provide an
estimate for pairwise correlations (Yoon et al., 2020). This
method produces a reasonably accurate estimate to underlying
correlations even in very sparse data (Table 2). Secondly, the
correlation estimates are used as input to a penalized regression
to generate the graph (Meinshausen and Bühlmann, 2006; Yoon
et al., 2019). This approach allows for the development of a
directed graph, which provides a more interpretable result
(Table 3). Pairwise relationships are hard to detect, in
particular negative associations are more difficult to detect than
positive. Considering groups of similar, or heavily connected,
taxa can highlight both associated taxa and potentially associated
taxa. We partitioned the graph into sub-communities using the
walktrap algorithm (Pons and Latapy, 2005), which performs
well at detecting sub-communities on a graph (Orman et al.,
2011). The tools used here can be adapted for use with zero-
inflated compositional, or relative, abundance data, by use of a
modified centered-log-ratio transform to the original data,
included as a component of SPRING (Yoon et al., 2019).

Using thesemethods we have developed a graphical model of the
North Atlantic planktonic community. Many features of the
plankton community and component sub-communities were
captured by the truncated paranormal model of Yoon et al.
(2020). We anticipated discovering many pairwise positive-
negative grazing associations, particularly between phytoplankton
and zooplankton, but found none. This may be partially due to the
difficulty in detecting negative associations in truncated data, or
challenges of detecting predator-prey relationships from
observational data. The lack of simple pairwise predator-prey
relationships may be a real feature of a complex food-webs that
FIGURE 7 | Proportion of total samples taken in each month in which each
sub-community is determined to be present (samples containing least 30%
(rounded down) of a sub-community’s members). Facet colors and numeric-
labels follow Figure 2.
August 2022 | Volume 9 | Article 943540

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Siddons et al. Clustered Plankton Community Graph
are best understood by examining the aggregate effects of
interactions that create sub-communities. By quantifying the effect
of niche overlap, or niche similarity, on the strength of the
associations we concluded that abiotic/environmental factors are
not the sole drivers of variance in association strength, or
correlation. Partitioning the graph into sub-communities allowed
us to further detect bulk behaviors of the community. In general,
these sub-communities displayed distinct niches, geographical
extents, and seasonal dynamics, highlighting significant differences
between these groups of taxa. By analyzing seasonal and spatial
trends for these sub-communities, we have identified a potential
seasonal succession from a diatom dominated sub-community into
one that is dominated by copepods.
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FIGURE 8 | Proportion of samples at each CPR sampling site in which each sub-community was determined to be present (samples containing least 30% (rounded
down) of a sub-community’s members). More yellow corresponds to a higher proportion of samples. To highlight spatial extent, only sites which included at least
one observation of each sub-community are shown. Facet colors and numeric-labels follow Figure 2.
August 2022 | Volume 9 | Article 943540

https://www.frontiersin.org/articles/10.3389/fmars.2022.943540/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2022.943540/full#supplementary-material
https://doi.org/10.3389/fmicb.2014.00219
https://doi.org/10.1037/a0028087
https://doi.org/10.1037/a0028087
https://doi.org/10.1890/07-2121.1
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Siddons et al. Clustered Plankton Community Graph
II (Zoophytes), (Paris: Vve Agasse) 104, 515–543. Available at: https://www.
biodiversitylibrary.org/page/9668780.

Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky,
A., et al. (2013). World Ocean Database 2013. (Washington DC:NOAA
Printing Office)

Bronstein, J. L. (2009). The Evolution of Facilitation and Mutualism. J. Ecol. 97 (6),
1160–1170. doi: 10.1111/j.1365-2745.2009.01566.x

Calkins, D. S. (1974). Some Effects of non-Normal Distribution Shape on the
Magnitude of the Pearson Product Moment Correlation Coefficient. Rev.
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