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Reconstruction of ocean
temperature and salinity profiles
in the Northern South China Sea
using satellite observations
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Based on historical temperature and salinity (T–S) profiles, the correlation

between the sea surface temperature (SST) anomaly, sea surface dynamic

height (SSH) anomaly, and temperature profile anomaly is constructed by

regression analysis. A three-dimensional temperature field is reconstructed in

the northern South China Sea by satellite SST and SSH, with daily temporal and

0.25°×0.25° spatial resolutions. The three-dimensional salinity field is also

reconstructed based on the correlation between salinity and temperature.

Compared with the observational T–S profiles, the reconstructed T–S field

reflects the characteristics and structure and accurately describes the

mesoscale variability of the ocean temperature field. The new expanded T–S

field can be used as the initial field in numerical models and be assimilated into

numerical reanalysis and prediction systems, improving their output.

KEYWORDS

northern south china sea, reconstruction of t–s profiles, regression analysis, satellite
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1 Introduction

The northern South China Sea is a large marginal sea in the tropics with a maximum

depth of over 5000 m and a variable temperature and salinity (T–S) structure with many

mesoscale eddies, which mainly come from the unstable changes in the process of

Kuroshio intrusion and wind stress curl changes (Wang et al., 2003; Su, 2004; Wu et al.,

2007; Yuan et al., 2007; Hu and Hou, 2010). The T-S profiles of this region is the key

database to study the eddy variation and other ocean processes.

At present, the availability of T–S observation profiles from Argo (Array for Real-

time Geostrophic Oceanography), CTD (conductivity-temperature-depth), XBT

(expendable bathythermograph), and ocean stations is increasing, especially the

massive Argo observation profiles have played an essential role in the ocean
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observation system. For example, Nan et al. (2011) analysed the

vertical structures of three long-lived anticyclonic eddies in the

northern South China Sea by in situ measurements. Hu et al.

(2012) demonstrated the penetration of nonlinear Rossby eddies

into the South China Sea with cruise data. But real-time

observation is still challenging, and the spatial resolution is low.

However, with the continued development of satellite

remote sensing technology, sea surface temperature (SST) and

sea surface dynamic height (SSH) datasets provide many real-

time observations with high spatial resolution on the sea surface.

For example, based on these satellite observations, detailed

statistical characteristics of mesoscale eddies, including eddy

census statistics, kinematic properties, shapes, nonlinearity and

propagation characteristics, have been provided in many studies

of the global ocean (Chaigneau et al., 2009; Chelton et al., 2011;

Li et al., 2014; Li et al., 2016), especially for eddy-active regions

like the South China Sea (Chen et al., 2011; Hu et al., 2011; Chen

et al., 2012; Hu et al., 2012). However, satellite observations

cannot provide any subsurface information. Therefore, the

combination of in situ and satellite observation has become an

effective method to reconstruct a more detailed ocean T–S field.

As early as the end of the 1980s, several methods for inverting

T–S profiles by mapping sea surface information (SST or SSH)

have been proposed. Hurlburt (1986) has constructed a numerical

oceanmodel to transform simulated altimeter data into subsurface

information dynamically. Studies and applications of satellite

observations for inferring sea subsurface information matured

using statistical methods (Carnes et al., 1990; Hurlburt et al., 1990;

Carnes et al., 1994; Gavart and Mey, 1997; Pascual and Gomis,

2003), which are mainly based on empirical orthogonal functions

(EOFs). These researchers showed that the deep sea or oceanic

temperature and salinity profiles obtained by the combined

inversion of SST and SSH is much better than the results using

SST or SSH alone. Furthermore, Bruno and Santoleri (2004) used

coupled pattern analysis to build the relationship between

temperature profiles and sea surface information to rebuild the

temperature field. The EOF and coupled pattern methods are

simple and clearly reflect the physical concepts, but both require

observation data with a certain continuity in time and space,

which is limited in the actual ocean. Regression analysis is a data

analysis method based on mathematical and statistical principles

(Fox et al., 2002; Guinehut et al., 2004). First, a lot of statistics are

mathematically processed, then a mathematical function

expression (regression equation) with strong correlation is

established by determining the correlation between the target

variable and some independent variables, finally it is generalized

to predict the possible changes of the dependent variable in the

future. In this study, the regression analysis method was used to

establish the mapping relationship between SST, SSH and

temperature and salinity profiles using historical T–S profile

observation data after strict quality control and fine processing

for the northern South China Sea over a recent 30-year period.

Then, the T–S profiles were reconstructed and examined.
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Compared with EOF and coupled pattern methods, althothg the

regression analysis method lacks clear physical concept, it does

not require time-space continuity of historical observation data,

and the calculation method is simpler and more maneuverable

(Fox et al., 2002).

This study is organised as follows. The historical and satellite

observations used in this study are introduced in Section 2. In

Section 3, the reconstruction of T–S profiles in the northern

South China Sea based on the regression analysis method is

described in detail. The results are examined using observed

data, both in general and in case analyses. Finally, conclusions

are summarised in Section 4.
2 Data and methodology

2.1 Historical argo profiles observations

The historical T–S profile data used in this study are based

on the WOD18 (World Ocean Database, 2018) produced by the

NODC (National Oceanographic Data Center), which mainly

includes high-resolution CTD, XBT, DRB (drifting buoy), PFL

(profiled buoy) andMRB (anchor buoy) data (Boyer et al., 2018).

These data were supplemented by Argo float data obtained from

the China Argo Real-time Data Center. The spatial range is from

110°E to 125°E, 15°N to 25°N, and the time range is from 1

January 1993 to 1 January 2018. The distribution of the Argo

stations is shown in Figure 1, and they are spread throughout the

northern South China Sea. Furthermore, quality control for this

extensive profile dataset is essential to improve the accuracy of

the results (Chaigneau et al., 2011). Thus, a valid database is

constructed in several steps as follows:
1. Extract the required data including temperature,

salinity, longitude, latitude, depth and date in the

defined spatial and time range;

2. Delete data with NaN (not a number) values;

3. Select the data with a temperature between 0°C and 35°

C and salinity between 31 psu and 36 psu;

4. Delete stations with less than three values in the vertical

direction;

5. Construct a database with the standard vertical layer by

linear interpolation for depths of 0, 5, 15, 20, 25, 30, 35,

50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450,

500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400

and 1500 m.
Although the WOD18 data provides very high vertical

resolution data, it was found in the process of data screening

that the profiles change very little at depths below 500m and the

profiles above 500m are highly variable. Furthermore, most ocean

processes and phenomena are concentrated above 1500m, such as

eddies, material transport. Therefore, we divided a total of 20
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layers between the sea surface and 500m, which is basically the

same as WOD18 data. However, the deep water layer with no

obvious change were divided into 10 layers from 500m to 1500m,

which would not affect the overall research results, and reduce a

lot of calculation in the regression statistical analysis.
2.2 Climatic T–S data

The climatic T–S data based on the WOA18 (World Ocean

Atlas, 2018) from NODC were regarded as an initial field and

compared with the reconstructed results (Garcia et al., 2019).

The WOA18 dataset provides standard layer data that have been

objectively analysed. The spatial resolution is 1°, and the

temporal sampling includes both annual average and monthly

average versions. Comparing the reconstructed fields to these

data can indicate T–S anomalies caused by eddies in the three-

dimensional structure because the WOA18 data are excessively

smoothed, and the eddy signals are significantly suppressed.
2.3 Test T–S data

The test T–S data were obtained from GTSPP(Global

Temperature and Salinity Profile Plan) and Argo datasets. A

total of 18.174 million T-S observation profiles have been

provided by GTSPP from 1990 to 2014. The datasets mainly

include XBT, which has strong timeliness and can be

downloaded from NODC website. The Argo dataset includes

the global Argo dataset and the Chinese Argo dataset, which

collectively provide more than 1.4 million T-S observation

profiles and can be downloaded from the China Argo Real-
Frontiers in Marine Science 03
time Data Center website. These test data were subjected to strict

quality control and then interpolated to the standard layer for

the test. The observation profiles used for the test were not used

during the reconstruction process and were strictly independent.
2.4 Satellite observations

The SST data used in this study are from a dataset provided

by American Remote Sensing Systems (ARSS) that combines

several observations from the optimal interpolation MW

(microwave) and IR (infrared) sensors (Gentemann et al.,

2010), including the TRMM (Tropical Rainfall Measuring

Mission) Microwave Imager, AMSR-E, AMSR-2 (Advanced

Microwave Scanning Radiometer), WindSat and MODIS

(Moderate Resolution Imaging Spectroradiometer). The spatial

resolution is 9 km, and the temporal sampling is 1 day.

Moreover, the SSH data from DUACS (Data Unification and

Altimeter Combination System) DT2014 from 1993 to 2018

with a spatial resolution of 0.25° and temporal sampling of 1 day

(Pujol et al., 2016) were used in this study. It is provided by

AVISO (Archiving, Validation and Interpretation of Satellite

Oceanographic) and the datasets combined data from several

altimeters, including T/P (Topex/Poseidon Satellite), ERS-1&2

(European Remote Sensing satellites 1&2), Jason-1&2, EnviSat

(Environmental Satellite) and GFO (Geo Follow-On), which

could be downloaded from the Copernicus Marine Environment

Monitoring Service (CMEMS). And the sea level anomaly (SLA)

data used in this study from multi-satellite altimeter is also

provided by AVISO and has the same resolution as the SSH data,

which could be downloaded from the CMEMS (Taburet

et al., 2019).
FIGURE 1

Distribution of observed T–S profile stations in the northern South China Sea.
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2.5 Reconstruction of temperature
profiles by SST and SSH

At present, there are three regression models for retrieving

three-dimensional temperature field from sea surface

information: The polynomial of SST, the polynomial of SSH,

and the polynomial of the combination of SST and SSH are used.

The third polynomial is a good combination of the two satellite

observation data of SST and SSH. Previous studies have pointed

out that the three-dimensional ocean temperature profile

obtained by the joint inversion of SST and SSH is better than

the profile obtained by the inversion of SST or SSH alone

(Guinehut et al., 2004), so the polynomial combined with SST

and SSH is directly used in this paper.

First, the sea surface dynamic height at each location can be

calculated from its T–S profile as:

h =
Z H

0

n T , S, Pð Þ − n 0, 35, Pð Þ½ �
n 0, 35, Pð Þ dz (1)

where n is the seawater specific volume, n(0,35,P) is the

specific volume of seawater at 0°C temperature and 35 psu

salinity, and H is the sea depth. Then, the correlation between

the SST, SSH and the temperature profiles are established by

regression analysis, expressed as:

Ti,k(SST , h) = Ti,k + aT3i,k (SST − Ti,1) + aT4i,k (h − hi)

                     + aT5i,k SST − Ti,1

� �
h − hi
� �

− hSSTi

� �
(2)

WhereTi,k(SST,h) are the values of the reconstructed

temperature for extended grid point i and depth k,hSSTiis the

weighted mean of the product, (sstj − Ti,1) (hj − hi), j is the

observation index, i is the location index, and aT3i,k ,a
T4
i,k and aT5i,k

are regression coefficients, they can be calculated by statistical

method (Fox et al., 2002). The regression coefficients in equation

(2) are obtained at monthly timescale, by comparing the

monthly static climatic fields calculated from WOD18 to

monthly-averaged satellite observations, the 3D T/S fields at

daily time scale can be reconstructed by satellite daily resolution.

It is important to note that we only took one kind of

polynomial of the structure, but the regression coefficients in

each layer were determined by the plenty of T–S data, which are

different in each layer. Therefore, the temperature field extended

from Equation (2) is relatively independent in each vertical layer,

which can better reflect the different variation characteristics of

the actual temperature profile.
2.6 Reconstruction of salinity profiles
by temperature

The correlation between the temperature and salinity can be

expressed using Equation (3) by regression analysis:
Frontiers in Marine Science 04
Si,k Tð Þ = Si,k + aS1i,k T − Ti,k

� �
(3)

where Si,k is the average salinity, Ti,k is the average

temperature and Si,k(T) are the values of reconstructed salinity

for grid point i and depth k , and aS1i,k are the regression

coefficients. Equation (3) was used to reconstruct the daily

salinity profile data.
3. Results and discussion

3.1 Construction of the static climatic
T–S field

Based on theWOD18 data, the historical temperature profile

observations in the northern South China Sea were gridded and

pre-treated using Equation (4) to form a static climate

temperature field product with a horizontal resolution of 0.25°

and a time scale of 1 month. It should be noted that the spatial

resolution of 0.25° was seleted to be consistent with the satellite

data, so as to complete the reconstruction.

Tc
i,k = TWOA18

i,k +o
j=N

j=1
wi,j T0

j,k − TWOA18
j,k

� �
(4)

where TWOA18
j,k are the WOA18 temperature interpolated to

the required position and depth, T0
j,k are the observation data,

Tc
i,k are the results at the new grid i and depth k . The wi,j , N

weights are calculated using Equation (5),

CiWi = Fi (5)

where wi,j are weight coefficients, Ci is the covariance matrix

and Fi is the matrix of initial errors between the grid point and

the observation point. The calculation of Equations (5) is

explained very clearly by Fox et al. (2002), which determined

the wi,j and then completed calculation of Tc
i,k.

The monthly vertical distribution of the northern South

China Sea temperature profiles using these static climate field

products is shown in Figure 2. Compared with the results from

WOA18, the obtained temperature profiles are slightly different,

especially at depths below 600 meters, where temperatures are

about 0.3°C higher than the WOA18 temperatures. However, for

depths above 600 meters, the temperature of the static climatic

field is similar to WOA18. Figure 3 shows the vertical

distribution of the temperature profile standard deviations.

The values increase from the sea surface with increasing depth

and reached a maximum of about 1.8 to 2.2°C near the

thermocline in different months. Then temperature standard

deviations gradually decrease with increasing depth and

approach the minimum of about 0.2°C when the water depth

exceeds 1000 meters.

Static climatic salinity fields were generated at each grid

point based on Equation (3) for different water depths in the
frontiersin.org
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northern South China Sea. Similar to the temperature profiles,

Figure 4 shows the monthly vertical distribution of the salinity

profiles. The results were about 0.1 psu higher than the WOA18

data above 1000-meter depths and are highest near 400 meters.

The two datasets are fairly consistent when the water depth

exceeds 1000 meters. Figure 5 shows the vertical distribution of

the salinity profile monthly standard deviations. The maximum

standard deviation is about 0.3 psu at the surface. The salinity

standard deviation drops sharply from the sea surface to about

400 meters depth and then maintains a low value of about 0.02

psu to the deepest data points.
3.2 Reconstruction of an expanded
three-dimensional T–S field

3.2.1 Expanded three-dimensional T–S field
and statistical tests

Based on Equation (2), the temperature static climate field in

Section 3.1 was expanded to a three-dimensional temperature

field with a spatial resolution of 0.25° and a daily time scale using

the daily SST and SSH datasets. The three-dimensional salinity

field with the same time and space resolution was also formed
Frontiers in Marine Science 05
using Equation (3). Finally, the T–S observation data from

GTSPP and Argo datasets in the northern South China Sea for

a recent 20-year period were collated as a historical observation

dataset for statistical testing.

The daily expanded three-dimensional T–S field data were

interpolated to each observation position to obtain the

corresponding expanded profiles, and the root–mean–square

errors between the expanded results and the observation profiles

were calculated month by month. Figures 6, 7 show the vertical

distribution of the monthly errors of the expanded temperature

and salinity profiles, respectively. The results show that the

errors in monthly temperature are larger in the upper ocean

and are over 1.0°C near the thermocline (100–200 meters),

decreasing sharply with increasing depth below the

thermocline. The errors reached their largest values (1.55°C) at

a depth of 75 meters in July. Furthermore, the errors in monthly

salinity are larger near the sea surface, reaching about 0.70 psu

from June through October. With increasing depth, the values

gradually decrease and then remain small below 200 meters. The

T-S errors are close to the existing products called CORA (China

ocean reanalysis), which was devoloped by similar method and

its average errors of temperature (salinity) are 1.14°C (0.18 psu)

(Han et al., 2011). In the future work, the integration of other
FIGURE 2

Monthly temperature profiles in the northern South China Sea. The blue and red lines represent the static climatic field and the WOA18 data, respectively.
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FIGURE 3

Vertical distribution of monthly static climatic temperature field standard deviations in the northern South China Sea.
FIGURE 4

Monthly salinity profiles in the northern South China Sea. The blue and red lines represent the static climatic field and WOA18 data, respectively.
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data products may be an effective method to reduce the salinity

profile errors at the sea surface (Yang et al., 2015; Bao

et al., 2019).

3.2.2 Test of single stations
Stations 20110303 and 20110822 in Figure 8 were selected

for further study. The expanded T–S profiles are compared with

the observed data in Figure 9. The results show that the

expanded profiles are very close to the observed profiles,

proving that the expanded field can be effectively applied in

this region. Furthermore, the spatial distribution of maximum

temperature errors along the vertical showed in Figure 8, which

revealed that the maximum errors increase near the coast of

South China Sea.

3.2.3 Cross-validation tests
The cross-validation tests were used for this work to

strengthen the validation of the reconstruction. The WOD18

database was randomly divided into two parts in a ratio of 3 to 1,

three quarters of them were used for the reconstruction method,

and anothor part was kept for validation of the method.

Figures 10, 11 show the vertical distribution of the monthly

errors of the expanded temperature and salinity profiles,
Frontiers in Marine Science 07
respectively. The distribution of the errors results is similar to

Figures 6, 7. The difference is that the errors obtained by cross-

validation tests are generally small. For example, the temperature

errors are generally less than 1.2°C (0.8°C) in summer (winter).

The salinity errors are less than 0.2 psu overall, except in

summer when it can reach 0.6 psu at the sea surface. The

smaller errors may be due to the different databases used

for validation.

Stations 20160808 and 20130216 in Figure 8 were selected

for further study. The expanded T–S profiles are compared with

the observed data in Figure 12. The results show that the

expanded profiles are close to the observed profiles, proving

that the expanded field can be verified by cross-validation tests.
3.2.4 Comparison analysis of a temperature
cross-section

An observation section between Taiwan Island and Luzon

Island was selected to test the expansion results. The position of

the observation section is shown in Figure 8. The starting

position of the observation section is (118.0°E, 21.5°N), and

the end position is (124.0°E, 16.5°N). The observation date is 19

March 2000. In the observed temperature section (Figure 13A),

there is a cold eddy causing the isotherm to bulge upward near
FIGURE 5

Vertical distribution of monthly static climatic salinity field standard deviations in the northern South China Sea.
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122.0°E and a sinking isotherm caused by a warm eddy near

120.8°E and 123.3°E. Compared to the WOA18 climatic

temperature section in March (Figure 13C), the expanded

temperature section (Figure 13B) better reflects the internal

variation characteristics of the mesoscale eddy. The two warm

eddies in the observation section are well described, and the cold

eddy is also shown. In addition, the structure of the upper mixed

layer is further resolved.

3.2.5 Structure and variation of the
temperature profiles affected by the luzon
warm eddy

The Luzon Warm Eddy (LWE) was first recognised as an

anticyclonic ring centred at about 117.5°E, 21°N in summer (Li

and Pohlmann, 2002). Yuan et al. (2007) used altimeter data to

identify the ring as an anticyclonic eddy generated off the

northwestern coast of Luzon Island and gave the LWE its

name. The LWE is a seasonal phenomenon closely related to

sea level anomalies (SLA). Figure 14 describes the variation of

SLA during the LWE, and a black square was seleted as the target

area. The results show that an anticyclonic eddy gradually

formed a ring from 15 September 2006 through 5 November

2006, with high SLA in the target area. It then moved westward
Frontiers in Marine Science 08
and finally disappeared on January 15, 2007 and the SLA in the

target area decreased accordingly.

Figure 15 shows the time series of temperature profiles

corresponding to the target area in Figure 14 based on the

observation data and expanded temperature field, respectively.

Similar to the observation data, the results for the expanded

temperature field clearly show the variability of these

temperature profiles. Because of the significant influence of the

LWE, the upper-ocean temperatures were up to 28°C, and the

thermocline depths were about 150 meters before November

2006. After the LWE had disappeared, the thermocline uplifted

gradually, reaching 100 meters, and the upper-ocean

temperatures were reduced to 22°C. In addition, the subtle

time-scale changes were only reflected by observation data.
4 Conclusions

The mapping relationship between sea surface and

subsurface temperature information was established by the

linear regression analysis method using the historical Argo

profile observations (WOD18). Daily three-dimensional

temperature fields with a spatial resolution of 0.25° in the
FIGURE 6

Vertical distribution of expanded temperature field monthly errors in the northern South China Sea.
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FIGURE 7

Vertical distribution of expanded salinity field monthly errors in the northern South China Sea.
FIGURE 8

Two observation stations and a temperature cross-section. The numbers are dates and the background color is the spatial distribution of
maximum temperature errors along the vertical.
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northern South China Sea were reconstructed based on the SST

and SSH datasets derived from ARSS and CMEMS, respectively.

First, we selected valid data from WOD18 to construct a

static climatic temperature field in the northern South China Sea

and described their monthly vertical distributions. The results

showed that these constructed temperature profiles were similar

to the results fromWOA18 and the standard deviations between

them were relatively small, reaching a maximum of about 1.8°C

near the thermocline and decreasing in other layers. The static

climatic salinity fields were established next and were also close

to the results from WOA18 with maximum standard deviations

of about 0.3 psu at the surface.

An expanded three-dimensional T–S field was also

reconstructed in the northern South China Sea. The T–S

observation data from GTSPP and Argo datasets were selected

as a statistical test field. The results showed that the monthly

errors in the expanded temperature (salinity) profiles remained

small and the maximum was less than 1.6°C (0.8 psu) near the

thermocline (surface). Then, the errors of T-S profiles obtained
Frontiers in Marine Science 10
by cross-validation were also smaller, and the maximun was less

than 1.2°C (0.6 psu) near the thermocline (surface). Because of

these small monthly errors, the expanded T–S fields are

considered to provide a realistic representation of the northern

South China Sea, and the expanded T–S profiles at two single

stations were also confirmed to be similar to the observed results.

Furthermore, the expanded T–S field clearly described the

vertical temperature structure at a cross-section through the

Luzon Strait and accurately simulated the structure and

variation of the temperature profile associated with the LWE.

These results prove that the ex-panded T–S field can accurately

reflect the actual ocean field’s vertical structure and internal

variation and the mesoscale eddies inside the ocean.

Obviously, the reconstructed salinity profiles have relatively

large errors on the sea surface, especially in summer. Although this

does not affect the overall results of this work, we hope to reduce

the errors in future work. The use of satellite SSS (Sea Surface

Salinity) database may be an effective method, which can provide

large-scale and continuous data (Yang et al., 2015; Bao et al., 2019).
FIGURE 9

T–S profiles for two observation stations in the northern South China Sea. The blue and red lines represent the expanded T–S field results and
observations (WOD18), respectively.
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FIGURE 10

Vertical distribution of expanded temperature field monthly errors in the northern South China Sea (cross-validation tests).
FIGURE 11

Vertical distribution of expanded salinity field monthly errors in the northern South China Sea (cross-validation tests).
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Recently available SSS data mainly come from SMOS (Soil

Moisture and Ocean Salinity), Aquarius and SMAP (Soil

Moisture Active Passive) satellites, of which Aquarius stopped

working on June 7, 2015 due to power supply problems (Tang
Frontiers in Marine Science 12
et al., 2017). However, the SSS database is also required strict

quality assessment and error analysis, and the data mainly focus on

the last 10 years, so the use of SSS to complete the reconstructed

salinity profile needs further research.
FIGURE 12

T–S profiles for two observation stations in the northern South China Sea (cross-validation tests). The blue and red lines represent the expanded
T–S field results and observations (WOD18), respectively.
B CA

FIGURE 13

Temperature profiles of the cross-section (Figure 8) based on the observations (A), expanded temperature field (B) and WOA18 (C), respectively.
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FIGURE 14

SLA (colours) from 15 September 2006 through 15 January 2007 in the western Luzon Strait. Black squares denote the locations of observed
profiles from WOD18.
A B

FIGURE 15

Temperature profiles corresponding to the black squares in Figure 14 based on the observation data (A) and the expanded temperature field (B),
respectively. The black lines are isotherms of 23°C used as a thermocline proxy and the interval bewewen color contours is 2°C.
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The T–S information inside the ocean is a basic component of

oceanographic research data, playing a crucial role in describing

the nature of the ocean. For example, Han et al. (2011) developed a

regional ocean reanalysis system for the coastal waters of China

and adjacent seas by similar method, and the evaluations show that

a good representation of the processes and phenomena were

produced. Wang et al. (2012) reconstructed the T-S profiles from

1993 to 2008 near the Luson Strait, which was used to estimate the

heat, salt and volume transports during mesoscale eddies

movement. This study’s expanded T–S field is expected to be

used as the initial field for an ocean numerical model or for

pseudo-observation assimilation into an ocean numerical

reanalysis and prediction system to improve the three-

dimensional T–S field results, which could delineate ocean

processes and phenomena such as mesoscale eddies more clearly.
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