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Contourite drifts are significant sedimentary features and provide clues for 

the reconstruction of paleoceanography and paleoenvironment. Although 

they have been increasingly identified in the world’s ocean, shallow-water 

contourite drifts (< 300 m depth) remain poorly understood and the examples 

are rare. This study documents a Middle Miocene shallow-water contourite 

depositional system in the southwest South China Sea by interpreting 

seismic reflection data and calibrating results with the previous chronological 

framework. The depositional system consisted of six mounded drifts and six 

moats. The contourite features were generated in seismic unit III (16-10.5 Ma) 

and distributed adjacent to carbonate reefs. They were formed on the proto-

continental shelf (50-200 m depth) and shaped by the wind-driven currents. 

Changes in the sedimentary stacking patterns suggest three evolutionary 

stages of the contourite features. Stage I represents the growth of the Middle 

Miocene contourite depositional system between 16 and 10.5 Ma. Stage II 

marks the termination of carbonate drifts and the burial of the Late Miocene 

sedimentation during 10.5-5.3 Ma. Stage III started with the development 

of modern deep-water sedimentary systems since 5.3 Ma. The contourite 

features are compared with the examples on other South China Sea margins. 

Significant changes in the paleoceanography occurred at 10.5 Ma and 6.5-5.3 

Ma when the dominated bottom currents shifted from the monsoonal wind-

driven currents to the North Pacific waters, and then the modern circulation 

system. The Middle Miocene mounded drifts were likely sourced by the 

coarse-grained carbonate sands. Fluid flow escaped from the coarse-grained 

contourite layers and natural gas leakage occurs on the seafloor. Shallow-

water carbonate contourite drifts can be served as a good gas reservoir and 

have great economic potential.
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1 Introduction

Bottom currents are vital oceanographic processes of 
redistributing sediments (Hanebuth et al., 2015; de Castro et al., 
2021; Rodrigues et al., 2022), shaping seafloor morphology (Howe 
et  al., 2006; Hernández-Molina et  al., 2017; Yin et  al., 2022), 
influencing marine ecosystems (Loeb et al., 2010; Cimino et al., 
2020), and transporting pollutants (Martin et al., 2017; Kane and 
Clare, 2019). The persistent bottom currents that are commonly 
driven by winds, thermohaline circulation, eddies, and tides can 
create alongslope sedimentary features on the continental margin 
through geological timescales (Hernández-Molina et  al., 2008; 
Rebesco et al., 2014). The combination of the depositional (i.e., 
contourite drifts) and erosional features (i.e., moats, contourite 
channels), known as the contourite depositional system, 
provides clues for the reconstruction of palaeoceanographic and 
paleoenvironmental conditions (Llave et al., 2007; García et al., 
2016; de Weger et al., 2020; Kirby et al., 2021).

Since the 1960s (Heezen and Hollister, 1964; Heezen et al., 
1966), contourite depositional systems have been increasingly 
observed in the deep basins (García et al., 2016; Pérez et al., 2019; 
Ng et  al., 2021), on the continental slops (Roque et  al., 2012; 
Hernández-Molina et al., 2016; Yin et al., 2019), in the shallow 
marine (Pepe et  al., 2018; Mulder et  al., 2019), and in lakes 
(Ceramicola et al., 2001; Wagner et al., 2012). However, identified 
shallow-water contourite drifts are not as much as deep-water 
ones (Thran et  al., 2018). Shallow-water contourite drifts are 
those influenced by contour-parallel flows at a water depth 
shallower than 300  m (Verdicchio and Trincardi, 2008). Some 
of the well-studied examples are the Maldives (Lüdmann et al., 
2013; Betzler et al., 2018) and the Bahamas (Chabaud et al., 2016; 
Mulder et  al., 2019) archipelagos. The contourite depositional 
systems were formed adjacent to carbonate reefs, platforms, 
or atolls and situated in the pathway of major surface currents 
(Lüdmann et  al., 2013; Betzler et  al., 2014). This type of drifts, 
defined as carbonate contourite drifts, commonly consisted 
of coarse-grained carbonated sediments and has an economic 
significance for hydrocarbon exploration (Viana, 2008; Eberli 
and Betzler, 2019).

In the tropical Pacific Ocean, the Middle Miocene was 
an important period for the shallow-water carbonate drifts 
because of widely distributed carbonate platforms and enhanced 
surface currents (Lüdmann et  al., 2013; Betzler et  al., 2018; 
Mathew et  al., 2020). The proto-continental shelf in the South 
China Sea was under the comparable paleoceanographic and 
paleoenvironmental conditions and served as a preferable region 
for the development of carbonates during the Middle Miocene 
(Wu et al., 2016; Yan et al., 2020; Makhankova et al., 2021; Yang 
et  al., 2021). The formation of the carbonate contourite drifts 
would be theoretically significant as the case of the Maldives 
(Lüdmann et al., 2013; Betzler et al., 2014). However, studies on 
the shallow-water carbonate drifts in the South China Sea are rare. 

The sedimentary, paleoceanographic, and economic implications 
of the carbonate contourite drifts remain poorly investigated.

This study focuses on the continental margin in the southwest 
South China Sea, which offers a key area to study carbonate 
contourite drifts and contributes to a better understanding of 
South China Sea paleoceanography. The objectives of this work 
are: 1) to identify the Middle Miocene contourite depositional 
system; 2) to determine the contourite evolutionary stages; 3) to 
discuss paleoceanographic changes in the South China Sea; and 
4) to demonstrate the economic importance of shallow-water 
carbonate drifts.

2 Regional setting

2.1 Geological setting

The South China Sea is a marginal sea located in the NW 
Pacific Ocean. Seafloor spreading and tectonic opening of the 
South China Sea initiated during the Cenozoic at ~33-30 Ma 
(Sibuet et al., 2016). In the southwest South China Sea, sedimentary 
basins were subsequently formed and further separated by 
the NW-SE orientated Tinjar fault (Figure  1A) (Morley, 2002; 
Barckhausen and Roeser, 2004). The basins were widened because 
of the widespread extensional tectonics during the Middle and 
Late Eocene (Hall, 2002; Hutchison, 2004). The direction of the 
seafloor spreading significantly changed during the Early Miocene 
in the South China Sea (~23-16 Ma) (Chang et al., 2022). Regional 
collision consequently uplifted the sedimentary basins (Hutchison, 
2004; Cullen, 2010). The southwest South China Sea went into a 
regional quiescence stage and rapid subsidence occurred from the 
Middle Miocene (~10.5 Ma) onward (Hutchison, 2004; Madon 
et al., 2013; Zhang et al., 2020).

2.2 Physiographic domains

The southwest South China Sea consists of several 
physiographic domains (Liu et al., 2021). The Sunda continental 
shelf extends from 0 to 260 m water depth (Figure 1B). Modern 
carbonate reefs are widely observed on the shelf (Mathew et al., 
2020). The continental slope extends to the Nanwei Bank (also 
known as the Rifleman Bank) and the Wan’an Plateau from 260 
to 2360 m water depth (Figure 1B). Eight seamounts are shown. 
They are the Daoming, Yangxin, Zhuzhen, Zhuliang, Changjun, 
Nanan, Beikang, and Andu seamounts from the west to the 
east, respectively (Figure 1B). Modern sedimentary systems on 
the continental slope contain mass-transport deposits (MTDs), 
contourite drifts, turbidites, and pockmarks (He et  al., 2018; 
Zhang et al., 2020; Liu et al., 2021; Huang et al., 2022).
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2.3 Present-day oceanography

The modern oceanic circulation in the South China Sea 
consists of the Surface (SW), Intermediate (IW), Deep (DW), and 
Bottom (BW) waters from the surface to the sea bottom (Tian 
et al., 2006). The SW that appears from 0 and 300 m water depth 

has a seasonal variation and is under the influence of monsoon 
winds (Figure 2A) (Qu et al., 2009). The IW is sourced from the 
North Pacific Intermediate Water (NPIW) (Tian et  al., 2006). 
The water mass circulates in an anticyclonic pattern and entered 
the southern SCS between a water depth of 300 and 750  m  
(Figures  2B, C). The DW that originated from the North Pacific 

A B

FIGURE 1 

(A) Region map of the study area with the location of the strike-slip faults (Huang et al., 2022), seismic reflection data, borehole wells (Luo 
et al., 2020; Makhankova et al., 2021) and piston core CL49 (Huang et al., 2022). Contour lines every 200 m; and (B) Bathymetry map indicating 
physiographic domains (Liu et al., 2021) and seismic lines used in this study.

A B

C

FIGURE 2 

(A) Oceanic circulation in the southwest South China Sea (Tian et al., 2006; Liu et al., 2021) and location of CTD stations; (B) Potential temperature 
versus salinity diagram from the water masses in the study area (World Ocean Database, 2013); and (C) Oceanographic cross-section of the study 
area. The water column color ranges indicate temperature. The location of this profile is shown in (A).
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Deep Water (NPDW) is observed below a water depth of 1500 m 
around the Luzon Strait (Qu et al., 2006). The DW is characterized 
by a cyclonic circulation pattern and the core is 200-300  m 
shallower in the southern South China Sea (Figure 2C) (Liu et al., 
2021). The BW is a deep-water overflow transported through the 
Luzon Strait into the SCS (Zhou et al., 2017). It moves below a 
water depth of 2000 m in a cyclonic flowing pattern (Figure 1) 
(Tian et al., 2006).

3 Data and methods

3.1 Bathymetry, seismic, and 
oceanographic data

The datasets used for this study contain high-resolution 
multibeam bathymetry, multichannel seismic reflection profiles, 
and oceanographic observation (Figures 1, 2). Bathymetric and 
seismic datasets were obtained during the R/V Tanbao cruise 
in 1996, 2009, and 2013 via the Guangzhou Marine Geological 
Survey. A SeaBEAM 2112 system was used for acquiring 
multibeam bathymetry. The system operated at a center frequency 
of 12 kHz with a swath width of 120 degrees. The multichannel 

seismic data were acquired by using a Seal 408 streamer recording 
system. The seismic source was a 32-bolt airgun array with a total 
volume of 5080 in3. The dominant frequency ranged from 40 
to 60 Hz. The seismic reflection data were further processed by 
applying a bandpass filter, amplitude recovery, velocity analysis, 
and pre-stack time migration. Vertical CTD profiles were 
extracted from the World Ocean Database (2013) (Figure  2) 
(Boyer et al., 2013). The temperature cross-section (Figure 2C) 
was made utilizing the Ocean Data View (ODV) software.

3.2 Seismic interpretation methods

The seismic reflection profiles are interpreted using the Petrel 
software. The vertical scale is expressed by two-way travel time 
(TWT). The seismic stratigraphic division for major depositional 
units is based on the identification of regional discontinuities (T3 
T2, and T1) (Catuneanu et al., 2009). T3 is marked as a regional 
erosional discontinuity, while T2 and T1 are identified by the vertical 
variation of acoustic facies (Figure  3A). These discontinuities 
are matched with the seismic stratigraphic documented by Luo 
et al. (2020) through connected seismic profiles (Figure 3C). The 
correlation between seismic data and drill core data (Well Mulu-1 

A

B

C

FIGURE 3 

(A) Seismic stratigraphic framework, environmental changes, and regional tectonics (Lei et al., 2019; Luo et al., 2020) of the study area; 
(B)  Lithology and the seismic profile of the Middle Miocene carbonate reef on the Sunda Shelf; and (C) Seismic correlation of the stratigraphic 
framework in the southwest South China Sea.
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and Bako-1) indicate possible chronostratigraphic constraint of 
the study area (Figure 3).

The interpretation of contourite drifts is based on the 
mounded geometry, continuous oblique to subparallel reflections, 
and onlap reflection terminations, while moats are characterized 
by U-shaped erosional features (Faugères et  al., 1999; Faugères 
and Stow, 2008; Rebesco et  al., 2014). Carbonate reefs are 
characterized by the mounded geometry, disrupted to chaotic 
reflections, and bi-directional downlap reflection terminations 
(Figure 4) (Burgess et al., 2013; Hendry et al., 2021).

4 Results and interpretation

4.1 Seismic stratigraphic analysis

Three major seismic units (UIII-UI from old to young), 
separated by main discontinuities (T3 T2, and T1), are identified 
below the present seafloor in the seismic profiles (Figure  3A). 
UIII is characterized by moderate to high amplitude and semi-
continuous chaotic-subparallel reflections. The unit is separated 
from the base unit by discontinuity T3 (Figure  5). Mounded 
features with onlap and downlap terminations are identified on 
the continental slope and at the seamount flanks (Figures 5, 6). 
Some mounded features are only observed at the lower part of 
UIII (Figures 5C, 6C). The unit has a maximum sedimentary 
thickness of 1 s TWT at the lower continental shelf, but the 
thickness decreases seawards (Figure 3C).

UII is bounded by discontinuity T2 at its base. The unit 
consists of high amplitude and continuous subparallel reflections 
(Figures 5, 6). The sedimentary thickness is relatively constant at 
about 0.2 s TWT. UI is bounded by discontinuity T1 at the base 
and by the seafloor at its top. The unit is internally characterized 
by moderate-high amplitude and continuous oblique-subparallel 
reflections. Several fault-controlled contourite drifts were 
previously identified in the upper part of this unit (Figure  10) 

(Liu et al., 2021). The thickness of this unit reaches the maximum 
value (1.2 s TWT) at the depositional section of MTDs (Figure 10) 
(He et al., 2018).

4.2 Buried carbonate reefs

Mounded features were widely observed atop discontinuity T3 
in the study area (Wu et al., 2016; Yan et al., 2020). Their internal 
seismic features are moderate to high amplitude and disrupted to 
chaotic reflections, while the external shape is characterized by the 
mounded geometry (Figure 6). The boundary of these mounded 
features exhibits high amplitude reflectors. Bi-directional 
downlap terminations are shown (Figure 4). Although volcanism 
was active during the early Miocene in the study area (Yan et al., 
2008), these features are not likely the volcanogenic mounds. 
Volcanogenic mounds are generally characterized by pull-up 
features and volcanic intrusion (or direct connection with sills) 
in seismic profiles (Magee et al., 2013), which do not match with 
the observation in the study area (Figures 5, 6). Besides, evidence 
from drilling demonstrates that these mounded features possibly 
contained skeletal grainstone and coral framestone with massive 
corals (Figure  3B) (Makhankova et  al., 2021). Drillings from 
the adjacent regions, such as the Dangerous Ground, also show 
the presence of mounded carbonate reefs (Steuer et  al., 2014; 
Banerjee and Ahmed Salim, 2021; Li et  al., 2022). Thus, these 
mounded features are most likely the carbonate reefs.

Buried carbonate reefs were previously observed on the 
Sunda Shelf (Mathew et al., 2020) and the continental slope (Yan 
et al., 2020) (Figures 3B, 7). In addition to these identified ones, 
three carbonate reefs (A, B, and C) are recognized in UIII in this 
study (Figure  7). U-shaped erosional features and mounded 
depositional features are observed on one side of the carbonate 
reefs A, B, and C (Figure 6). Carbonate reef A was 0.7 s TWT 
high, and the width reached 8  km. Carbonate reef B was 0.6 s 
TWT high and 7 km wide. The height and width of carbonate reef 

FIGURE 4 

Seismic expression, distribution, geometry, and examples of contourite features and carbonate reefs in seismic unit III.
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C were 0.3 s TWT and 6 km. The top of carbonate reefs A and 
B reached T2, while carbonate reef C only grew to the middle 
part of UIII (Figure 6).

4.3 A buried contourite 
depositional system

4.3.1 Mounded drifts
Six mounded drifts (MD 1-6) are identified in UIII (Figs. 5 

and 6). MD-3 and -6 only show at the lower part of UIII (Figs. 
5C and 6C). MD -1, -2, and -3 are characterized by moderated 
amplitude and oblique to subparallel reflections (Figure  4). 
Low-angle onlap and downlap terminations are observed onto 
T3 (Figures 4, 5). MD-1 was 0.4 s TWT thick and 21 km wide 
and extended along a structural high between 2.8 and 3.4  s 
TWT (Figure 5A). MD-2 was distributed along the southern 
flank of the Zhuzhen Seamount between 2.9 and 4.0 s TWT 
(Figures 5B, 7). The thickness was 0.3 s TWT and the width 
reached 17 km. MD-3 was relatively thin and only generated at 
the lower part of UIII between 3.3 and 4.2 s TWT (Figure 5C). 
The drift was 0.15  s TWT thick and 16 km wide.

MD -4, -5, and -6 are associated with carbonate reefs A, 
B, and C in UIII, respectively (Figure  6). These drifts exhibit 
moderate amplitude and oblique to subparallel reflections 
(Figure 6). High-angle onlap terminations are recognized onto 
carbonate reefs, while low-angle downlap terminations are 
shown towards T3 (Figs. 4 and 6). MD-4 was 0.4 s TWT thick 
and 9 km wide. The drift extended along the southern flank of 
carbonate reef A between 2.1 and 2.7 s TWT (Figs. 6A and 8). 
MD-5 was distributed along the southern flank of carbonate reef 
B between 2.6 and 3.6 s TWT (Figs. 6B and 8). The thickness was 
0.4 s TWT and the width reached 11 km. MD-6 was located along 
the western flank of carbonate reef C between 2.5 and 2.9 s TWT 
(Figs. 6C and 8). The drift was generated at the lower part of UIII 
with a thickness of 0.3 TWT and a width of 11 km.

4.3.2 Moats
Six moats (Mo 1-6) were associated with the mounded drifts 

in UIII (Figs. 5, 6, and 8). The distribution was parallel to the 
seamount, structural high, and carbonate reefs (Figure 7). They 
were W-E and NNE-SSW orientated and exhibited truncations 
and U-shaped geometry (Figure 4). The incision was around 50 
ms TWT and the width ranged from 0.7 to 4 km (Figures 5, 6).

A

B

C

FIGURE 5 

Seismic profiles and their interpretation, showing mounded drifts 1-3 and associated moats in seismic unit III. The location of these seismic lines 
is displayed in Figure 1B. Discontinuities T

3
 (16 Ma; purple dotted line), T

2
 (10.5 Ma; light blue dotted line) and T

1
 (5.3 Ma; dark blue dotted line) are 

indicated. A fluid-escape pipe and its expression at the seafloor are shown in (C).
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4.4 A fluid-escape pipe

A fluid-escape pipe, previously identified by Huang et  al. 
(2022), extends from UIII to the seafloor. The root of the pipe is 
located at the lower part of MD-3 (Figure 5C). This fluid-escape 
pipe shows pulled-up reflections. The seafloor expression of the 
pipe is a pockmark with a diameter of 210  m (Figure  5C). A 
piston core CL49 acquired at this location indicated the formation 
of gas seepage conduits at the seafloor (Huang et  al., 2022). 
 

5 Discussion

 
5.1 Chronological framework

Discontinuities T3, T2, and T1 of this study are correlated with 
previous chronostratigraphic interpretations of the southwest 
South China Sea (Figure 3C) (Madon et al., 2013; Luo et al., 2020; 
Huang et al., 2022). The correlation between seismic data and drill 
core data (Well Mulu-1 and Bako-1) shows that T3 corresponds 
to the Middle Miocene unconformity (MMU; 16 Ma). T2 marks 

a transition of depositional styles from shallow water to deep 
marine, related to Wanan tectonic movement at 10.5 Ma, while T1 
is correlated to Guangya tectonic movement at 5.3 Ma (Luo et al., 
2020). Thus, UIII has a Middle Miocene age (16-10.5 Ma), UII a 
Late Miocene age (10.5-5.3 Ma), and UI a Pliocene-Quaternary 
age (<5.3 Ma) based on the chronostratigraphic constraints. 
 
5.2 Evolutionary stages of the contourite 
features

The major changes in the sedimentary stacking pattern and 
the outlined chronology of UIII, UII, and UI indicate three 
evolutionary stages of the contourite features: I) carbonate drift 
stage; II) burial stage; and III) modern stage (Figure  8). The 
carbonate drift stage reflects the growth of the Middle Miocene 
contourite depositional system between 16 and 10.5 Ma. The 
burial stage marks the terminated growth of carbonate drifts 
which are buried by the Late Miocene sedimentation during 
10.5-5.3 Ma. The modern stage started with the development 
of Quaternary deep-water sedimentary systems since 5.3 Ma. 
These modern sedimentary systems are some of the major 
morphological features on the present-day seafloor in the study 
area.

A

B

C

FIGURE 6 

Seismic profiles and their interpretation, showing carbonate mounded drifts 1-3, associated moats, and carbonate reefs (A–C) in seismic unit III. 
The location of these seismic lines is displayed in Figure 1B. Discontinuities T

3
 (16 Ma; purple dotted line), T

2
 (10.5 Ma; light blue dotted line), and T

1
 

(5.3 Ma; dark blue dotted line) are indicated. Instantaneous frequency profile of carbonate reef A is indicated in (A).
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5.2.1 Carbonate drift stage (16-10.5 Ma)
The carbonate drift stage (UIII) began with the growth of 

the Middle Miocene contourite drifts in the study area at 16 Ma 
(Figure 8A), coeval to the initial build-up of carbonate reefs on 
the Sunda Shelf in the southern South China Sea after ~18-15.5 
Ma (Vahrenkamp et al., 2004; Mathew et al., 2020; Makhankova 
et al., 2021). Corals and foraminifera that constructed carbonate 
reefs on the proto-Sunda shelf indicated a shallow lagoon (<20 m 
depth) paleoenvironment during the Middle Miocene (Figure 3B) 
(Makhankova et  al., 2021). The present-day continental slope 
south of the Nanwei Bank was used to be the outer continental 
shelf (50-200 m depth) during this period (Figure 9A) (Collins 
et al., 2018). Thus, the Middle Miocene contourite depositional 
system in UIII was generated in a shallow-marine setting.

Shallow-water contourite deposits can be shaped by bottom 
currents driven by four forces: 1) thermohaline circulation 
(Vandorpe et  al., 2011); 2) wind-induced circulation (Nishida 
et al., 2022); 3) tidal flow (Lüdmann et al., 2013); and 4) processes 
at the water-mass interface (Verdicchio and Trincardi, 2008). 
For the reasons explained below, the Middle Miocene contourite 
depositional system in the study area was likely related to the 
wind-induced circulation.

The ocean circulation of the North Pacific enhanced and 
started to resemble the modern pattern after ~14 Ma (Nathan and 
Leckie, 2009; Kender et al., 2018). Surface waters had the possibility 
to intrude into the South China Sea because of its open connection 
with the Pacific (Figure  9A). However, the N-S thermocline 
gradient in the South China Sea only occurred after 11.5-10.6 Ma 
(Li et al., 2005; Jian et al., 2006). Contourite drifts in UIII were 
unlikely linked to the thermohaline circulation or processes at the 
water-mass interface because of the absence of stratified waters in 
the South China Sea during the Middle Miocene.

Sedimentary records on the Sunda Shelf showed a significant 
influence of tidal currents on the sediment deposition during 
the Middle Miocene (Koša, 2015; Amir Hassan et al., 2017). The 
related tidal currents were able to transport fine-grained sand 
and silt but were too weak to generate erosional features on the 
seafloor (Collins et  al., 2017; Collins et  al., 2018). Thus, tidal-
induced circulation could hardly create moats in UIII and was 
not involved in the formation of the Middle Miocene contourite 
depositional system in the study area.

The Middle Miocene was also a significant period for the 
onset of the modern-like East Asian monsoon system (Betzler 
et  al., 2016). The intensification of the East Asian monsoon at 
~15-10 Ma greatly enhanced the seasonal wind-driven currents 

FIGURE 7 

Distribution and location of the Middle Miocene contourite depositional system and carbonate reefs (A–C). The location of previously identified 
Middle Miocene carbonated reefs is adapted from Mathew et al. (2020) and Yan et al. (2018).
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at the sea surface (Farnsworth et  al., 2019; Holbourn et  al., 
2021; Ting et al., 2021). Siliciclastic materials were transported 
to the ocean, forming carbonate reefs and contourite drifts e.g., 
in the Maldives and on the proto-Sunda Shelf (Lüdmann et al., 
2013; Betzler et  al., 2016; Betzler et  al., 2018). The W-E and 
NNE-SSW orientated moats in UIII in the study area indicate 
possible directions of wind-driven currents (Figure 10), which 
are comparable with the observation on the proto-Sunda Shelf 
(Ting et  al., 2021). The reconstructed Middle Miocene wind-
driven currents, resembled the modern pattern (Mathew et al., 
2020; Ting et al., 2021), was namely flowed towards the north-
northeast and the east during summer and winter monsoon in 
the study area (Figure  9A). Thus, wind-driven currents were 
responsible for the formation of the Middle Miocene contourite 
depositional system in UIII.

Notice that MD-3 and -6 only show at the lower part 
of UIII (Figures  5C and 6C). They were at a close distance 
and located at the Lizhun-Tinjar fault zone (Figure  7). The 
development of MD -3 and -6 was most likely hindered due to 
regional tectonic activities. Reactivation of the Lizhun-Tinjar 

fault zone uplifted the paleo-seafloor and formed structural 
highs during the Middle Miocene (Liu et al., 2004). The resulted 
topographic barriers could profoundly change the pathway of 
oceanic currents (Gordon et al., 2003) and, in turn, control the 
development of contourite drifts.

5.2.2 Burial stage (10.5-5.3 Ma)
The burial stage (UII) of the contourite depositional system 

occurred between 10.5-5.3 Ma (Figure  8B). The contourite 
features became inactive and were buried by younger deposits 
after discontinuity T2 (Figures  5, 6). This prominent change 
in sedimentary stacking pattern was linked to variations in 
tectonics, paleoenvironment, and paleoceanography during 
the Late Miocene. Unlike the Middle Miocene tectonic uplift 
induced by the collision between the Nansha Islands (Dangerous 
Grounds) and the Borneo (Hutchison, 2004; Cullen, 2010; Ding 
et  al., 2013), large-scale tectonics terminated at 10.5 Ma and 
rapid subsidence occurred in the southern South China Sea 
(Morley, 2016) (Figure  3A). The present-day continental slope 

A

B

C

FIGURE 8 

Sketch of evolutionary stages of the contourite features in the southwest South China Sea: (A) Carbonate drift stage (16-10.5 Ma); (B) Burial stage 
(10.5-5.3 Ma); and (C) Modern Stage (5.3 Ma to present day).
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of the southwest South China Sea consequently transferred 
from shallow-marine to bathyal environments (Ding et al., 2013; 
Yan et  al., 2020) (Figure  9B). Terrigenous clastic input greatly 
increased and most of the previously constructed carbonates 
reefs were drowned (Wu et  al., 2016; Makhankova et  al., 2021; 
Ting et al., 2021).

Wind-driven currents no longer influenced the deep seafloor 
in the study area, but stratified water masses persistently occupied 
the intermediate and deep layers of the southern South China Sea 
after 9.6 Ma (Li et al., 2005; Jian et al., 2006). Although the proto-
North Pacific waters (NPW) influenced the South China Sea in 
an anticyclonic pattern during this time interval (Yin et al., 2021), 
the water mass flowed at the surface layer and could not create 
contourite features at the deeper site in the southwest South 
China Sea (Figure 9B).

5.2.3 Modern stage (<5.3 Ma)
The modern stage (UI) started with the generation of the 

present-day contourite drifts (Figure  10) (Liu et  al., 2021). 
The modern-like ocean circulation was initiated after the 
establishment of the modern morphology of the Luzon Strait 
(Figure 9C) (Tian et al., 2017). The DW enters the study area with 

a significant intensification in the velocity and generates numbers 
of contourite drifts and moats on the present-day seafloor (Liu 
et al., 2021).

5.3 Paleoceanographic implications

The evolution of the contourite depositional systems in the 
southwest South China Sea is compared with the contourite 
examples on other South China Sea margins (Figure 11). Changes 
in the South China Sea paleoceanography significantly influenced 
the sedimentary records along the water-mass pathways 
(Figure  11). The dominated bottom currents on sedimentary 
processes shifted from the monsoonal wind-driven currents to 
the NPW at 10.5 Ma and then the modern-like circulation system 
at 6.5-5.3 Ma (Figure 9).

The middle Miocene South China Sea was widely influenced 
by the monsoonal wind-driven currents (Figure  9A). The 
enhanced East Asian monsoon promoted surface currents 
(Farnsworth et al., 2019; Holbourn et al., 2021; Ting et al., 2021), 
which strongly shaped the morphology of the proto-continental 
shelves in the northern (Tian et al., 2015), the northwest (Zhuo 

A B

C

FIGURE 9 

Dominated ocean circulation in the South China Sea. Effective bottom currents were associated with (A) monsoonal wind-driven currents (the 
Middle Miocene); (B) the North Pacific Tropical Water (the Late Miocene); and (C) the South China Sea Intermediate and Deep waters (the present 
day). Paleogeographic maps are modified from Collins et al. (2018).
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et  al., 2014), and the southwest South China Sea. The related 
wind-driven currents created mounded contourite features in 
the Xisha region (Tian et al., 2015), the Zhongjian basin (Yang 
et al., 2021) and the study area (Figure 11). The development of 
these contourite features terminated at 10.5 Ma.

After 10.6 Ma, the latitudinal thermocline gradient firstly 
appeared in the South China Sea (Jian et al., 2006), coinciding 
with the intrusion of the proto-NPW (Yin et  al., 2021). The 
monsoonal wind-driven currents only created contourite 
features on the proto-Sunda Shelf in the southwest South China 
Sea (Mathew et  al., 2020), while the proto-NPW profoundly 
influenced the western (Yin et  al., 2021) and northwest 
(Palamenghi et  al., 2015), and northern margins (Wang 
et  al., 2022) in the South China Sea during the Late Miocene 
(Figure 9B). The external shape of these contourite drifts varied 
from mounded (Palamenghi et  al., 2015; Yin et  al., 2021) to 
sheeted geometry (Wang et al., 2022) towards the distal site of 
the proto-NPW pathway. The proto-NPW would gradually lose 
the energy towards the northern South China Sea as the sheeted 
drifts are shaped by weak bottom currents (Faugères et al., 1999; 
Hernández-Molina et al., 2008; Rebesco et al., 2014).

Benthic foraminiferal δ18O and δ13C of ODP Sites 1143 and 
1148 have indicated significant changes in the South China Sea 
paleoceanography at 6.5 Ma (Figure 11) (Li et al., 2006; Tian 
et al., 2017), coeval with the initial isolation of the South China 
Sea (Chen et al., 2015; Tian et al., 2017; Huang et al., 2018). The 
sandwich-like (inflow-outflow-inflow) water mass exchange 
was initiated through the Luzon Strait (Chen et al., 2015; Yin 
et al., 2021). The present-day anticyclonic IW (Tian et al., 2006) 
and cyclonic DW (Qu et al., 2006) were consequently formed 
in the South China Sea (Figure  9C), generating contourite 
depositional systems along IW and DW pathways from the 
latest Miocene onwards (Figure  11) (Palamenghi et  al., 2015; 
Chen et  al., 2016; Wang et  al., 2018; Chen et  al., 2019; Chen 
et al., 2021; Liu et al., 2021; Yin et al., 2021).

5.4 Economic implications

Shallow-water contourite drifts in UIII are served as a good 
gas reservoir in the study area. The fluid-escape pipe that is 

FIGURE 11 

The formation time and distribution of contourite features in the South China Sea since the Middle Miocene. Dominated oceanic circulation and 
paleoceanography are indicated. The location of ODP sites 1148 and 1143 is shown in Figure 9C.

A B

FIGURE 10 

Seismic profiles and their interpretation, showing present-day fault-controlled contourite drifts (Liu et al., 2021) and mass-transport deposits (He 
et al., 2018) in the seismic unit I. The location of these seismic lines is displayed in Figure 1B. Discontinuities T

3
 (16 Ma; purple dotted line), T

2
 (10.5 

Ma; light blue dotted line), and T
1
 (5.3 Ma; dark blue dotted line) are indicated.
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deeply rooted at the mounded drift 3 extended to the seafloor and 
formed a pockmark (Figure 5C). The core CL49 acquired at the 
pockmark shows intense methane leakage from the fluid-escape 
pipe (Table  1), indicating sufficient hydrocarbon fluid sources 
in the deep part of seismic units (Huang et al., 2022). Previous 
studies demonstrated that the deformed seismic unit below T3 (in 
Figure 5) was the Eocene to Late Miocene source rocks (Zhang 
et  al., 2017). They contained mixed Type II/III kerogen and 
potentially supplied 1.4855×1012 m3 natural gas in the study area 
(Zhang et al., 2017; Lei et al., 2019; Tang et al., 2021). Therefore, 
natural gas was likely migrated upwards from the deformed unit 
via previously documented faults (Figure  3C) (e.g., Lei et  al., 
2019; Luo et  al., 2020) and then reserved in buried contourite 
drifts in UIII.

The true lithology of these shallow-water contourite drifts in 
UIII is unknown because of the limited dataset. However, they 
were most likely coarse-grained and poorly sorted. Shallow-water 
contourite drifts in UIII were generated in adjacent or associated 
with carbonate reefs in the study area (Figure 7). Such contourite 
deposits are directly sourced from the adjacent reefs and 
composed of coarse-grained carbonate sands (Lüdmann et  al., 
2013; Chabaud et  al., 2016; Eberli and Betzler, 2019). Coarse-
grained carbonate drifts are potential hydrocarbon reservoirs 
because of their high porosity, high permeability, and effective 
lateral and vertical transmissibility of fluids (Viana, 2008). Similar 
examples were observed in the eastern Gulf of Cádiz (León et al., 
2014), the western Alborán Sea (Somoza et al., 2012; León et al., 
2014), and the mid-Norwegian margin (Hustoft et  al., 2010; 
Plaza-Faverola et  al., 2010), where fluid flow escaped from the 
coarse-grained contourite layers and caused natural gas leakage. 
Similarities between these contourite examples indicate the great 
economic potential of the Middle Miocene carbonate contourite 
drifts in the southwest South China Sea.

6 Conclusion

This study demonstrates the previously undocumented 
occurrence of carbonate contourite drifts in the southwest South 
China Sea. Analysis of seismic reflection data and previously 
established chronology allows the identification of the Middle 
Miocene contourite depositional system. The distribution, 
characteristics, and evolution of the contourite features have 
significant sedimentary, paleoceanographic, and economic 
implications:

• Three evolutionary phases are identified for the contourite 
drifts’ construction: I) a carbonate drift stage (16-10.5 Ma) 
where six carbonate contourite drifts were built by the 
monsoonal wind-driven currents; II) a burial stage (10.5-
5.3 Ma) where contourite features became inactive and were 
buried by younger deposits; and III) a modern stage from 
the 5.3 Ma till the present-day, characterized by the modern 
contourite features associated with the South China Sea 
Deep Water;

• The dominated bottom currents in the South China Sea 
shifted from the monsoonal wind-driven currents to the 
North Pacific waters at 10.5 Ma and then the modern 
circulation system at 6.5-5.3 Ma. The paleoceanographic 
changes significantly influenced the sedimentary records 
along the water-mass pathways in the South China Sea.

• Shallow-water carbonate contourite drifts are good gas 
reservoirs. They were generated in adjacent or associated 
with carbonate reefs during the Middle Miocene. The drifts 
were possibly composed of coarse-grained carbonate sands. 
Fluid flow escaped from the coarse-grained contourite layers 
and caused intense methane leakage on the seafloor.
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TABLE 1 Hydrocarbon components and carbon isotope values of the 
methane in core CL49 (Huang et al., 2022).

Interval(mbsf) Methane (ppm) Propane (ppm) C1/C2+ ratio

0.5–0.6 23.9 0.45 23.7
1.1-1.2 23.0 0.38 60.5
1.7-1.8 24.2 0.41 59.0
2.3-2.4 22.4 0.36 62.2
2.9-3.0 22.9 0.52 11.3
3.5-3.6 21.7 0.34 63.8
4.1-4.2 21.6 0.52 17.9
4.7-4.8 22.8 0.41 25.9
5.3-5.4 19.1 0.23 83.0
5.9-6.0 22.6 – –
6.5-6.6 1298 – –
7.1-7.2 1249 – –
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