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Stéphane Joost
stephane.joost@epfl.ch

SPECIALTY SECTION

This article was submitted to
Coral Reef Research,
a section of the journal
Frontiers in Marine Science

RECEIVED 19 May 2022
ACCEPTED 26 August 2022

PUBLISHED 15 September 2022

CITATION

Selmoni O, Lecellier G,
Berteaux-Lecellier V and Joost S
(2022) Worldwide analysis of reef
surveys sorts coral taxa by associations
with recent and past heat stress.
Front. Mar. Sci. 9:948336.
doi: 10.3389/fmars.2022.948336

COPYRIGHT

© 2022 Selmoni, Lecellier, Berteaux-
Lecellier and Joost. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 15 September 2022

DOI 10.3389/fmars.2022.948336
Worldwide analysis of reef
surveys sorts coral taxa by
associations with recent and
past heat stress
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Coral reefs around the world are under threat from anomalous heat waves

that are causing the widespread decline of hard corals. Different coral taxa

are known to have different sensitivities to heat, although variation in

susceptibilities have also been observed within the same species living in

different environments. Characterizing such taxa-specific variations is key

to enforcing efficient reef conservation strategies. Here, we combine

worldwide-reef-survey data with remote sensed environmental variables

to evaluate how local differences in taxa-specific coral cover are associated

with past trends of thermal anomalies, as well as of non-heat related

conditions. While the association with non-heat related environmental

variation was seldom significant, we found that heat stress trends

matched local differences in coral cover. Coral taxa were sorted based on

the different patterns of associations with recent heat stress (measured the

year before the survey) and past heat stress (measured since 1985). For

branching, tabular and corymbose Acroporidae, reefs exposed to recent

heat stress had lower coral cover than locally expected. Among such reefs,

those previously exposed to frequent past heat stress displayed relatively

higher coral cover, compared to those less frequently exposed. For massive

and encrusting Poritidae, and for meandroid Favidae and Mussidae, we

observed a negative association of coral cover with recent heat stress.

However, unlike with Acroporidae, these associations were weaker and did

not vary with past heat exposure. For Pocilloporidae, we found a positive

association between coral cover and recent heat stress for reefs frequently

exposed to past heat, while we found a negative association at reefs less

frequently exposed to past heat. A similar pattern was observed for the

branching Poritidae, although the associations were weaker and not

statistically significant. Overall, these results show taxa-specific heat

association patterns that might correspond to taxa-specific responses to

past heat exposure, such as shifts in the assembly of coral communities,

evolutionary adaptation or physiological acclimation.
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Introduction

For over 30 years now, coral reefs around the world have

been suffering from a widespread decline of hard corals

(Ateweberhan et al., 2011; De’ath et al., 2012; Cramer et al.,

2020). This decline threatens the persistence of entire coral reef

ecosystems, as hard corals constitute the physical architecture of

such habitats. A leading cause of this decline are heat waves that

cause the disruption of the functional association between corals

and the symbiotic algae living in their tissues (van Oppen and

Lough, 2009). Indeed, heat stress exposure drives the coral host

into a stress state where this symbiotic association is perturbated,

and when heat stress persists beyond a physiological “tipping

point” the association is broken. The latter state is called coral

bleaching, and if not reverted it can lead to death of the coral

(Gómez-Campo et al., 2022). Extensive reef deterioration

following anomalous heat waves have been observed globally,

with an estimated 3.2% loss of absolute coral cover (i.e. the

percentage of the reef surface covered by live stony coral)

worldwide from 2005 to 2015 (Souter et al., 2021). By 2050, it

is expected that coral bleaching conditions will become

persistent worldwide (van Hooidonk et al., 2013).

The sensitivity to thermal stress varies between coral species

(Marshall and Baird, 2000; Loya et al., 2001; McClanahan et al.,

2001). Growth form has typically been considered as one of the

main proxies to assess heat stress susceptibility, where corals

with branching morphologies were observed to be more sensitive

to heat stress than corals with encrusting or massive

morphologies (Loya et al., 2001). Coral growth form is

correlated with several morphological, reproductive and

functional traits (e.g. tissue thickness, fecundity, growth rate),

and combination of such traits were employed to define groups

of corals with different life history strategies: such as “stress

tolerant”, “generalist”, “weedy” and “competitive” (Darling et al.,

2012). As reefs are hit by heat waves, their coral assemblies are

shifting toward stress tolerant species (Hughes et al., 2018). Of

note, substantial differences in heat tolerance can also be

observed between coral of the same species (Bay and Palumbi,

2014; Schoepf et al., 2015; Louis et al., 2016; Klepac and Barshis,

2020; McClanahan et al., 2020b). Such differences can be due to

(1) evolutionary adaptation, where the presence of genetic traits

conferring heat tolerance to some colonies of a population, or (2)

acclimation, where some colonies transiently adjust their

physiology in response to seasonal environmental changes

(Scheufen et al., 2017a; Scheufen et al., 2017b) or in response
02
to stressful conditions (e.g. daily fluctuations of sea surface

temperature; Palumbi et al., 2014). Characterizing how

responses to past heat exposure (i.e. community shifts,

adaptation, acclimation) vary between taxa is of paramount

importance in order to organize effective conservation efforts

(Baums et al., 2019; Matz et al., 2020).

Over the last decade, the combination of field survey records

with remote sensed data for sea surface temperature has become

one of the major tools used to measure coral decline associated

with heat stress. Multiple studies have shown associations

between heat stress events and coral cover decline at both local

(Head et al., 2019; Babcock et al., 2020; Selmoni et al., 2020a) and

global scales (Selig et al., 2012). In other studies, the bleaching

intensity metric was found to be positively associated with heat

stress on the Australian Great Barrier Reef (Hughes et al., 2018;

Hughes et al., 2019), as well as across larger spatial scales (for

instance, the Indo-Pacific region; Sully et al., 2019; McClanahan

et al., 2020a). Notably, some of these studies investigated how

past and recent thermal stress interact to drive coral cover

decline/bleaching intensity, suggesting the existence of changes

in thermal tolerance driven by past heat exposure (Thompson

and van Woesik, 2009; Guest et al., 2012; Hughes et al., 2018;

Head et al., 2019; Hughes et al., 2019; Sully et al., 2019;

McClanahan et al., 2020a; Selmoni et al., 2020a). Yet, few of

these works focused on the differences in heat stress responses

between coral taxa (Guest et al., 2012; Hughes et al., 2018; Head

et al., 2019), and even fewer investigated these responses across

wide spatial scales (e.g. the entire Indo-Pacific, McClanahan

et al., 2020a). Of note, previous studies detected a strong spatial

variability in coral heat responses, and suggested that the effects

of additional variables (e.g. relating to temperature variability, as

well as environmental constraints such as water velocity,

sedimentation, eutrophication) might confound or interact

with heat stress (Maina et al., 2011; Safaie et al., 2018;

McClanahan et al., 2019; McClanahan et al., 2020a;

McClanahan et al., 2020b; Sully et al., 2022).

In the present study, we combine pre-existing global coral

cover data obtained from the Catlin Seaview Survey project

(González-Rivero et al., 2014; González-Rivero et al., 2016) with

time series of sea surface temperature anomalies computed from

remote sensed data by the Coral Reef Watch (Skirving et al.,

2020). The goal is to investigate how spatial patterns of historical

heat stress overlap with local differences in coral cover of

different coral taxa. We first evaluate how long-lasting trends

of heat stress and alternative environmental constraints (related
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for instance to water turbidity, salinity and current velocity) are

associated with local differences in coral cover. These differences

concern (1) overall coral cover, and (2) coral cover specific to

seven taxa whose distribution spans across different oceans.

Next, we assess how period-specific trends of heat stress

associate with local differences in coral cover, and in particular

how such associations with recent heat stress (measured across

the year before the survey) interacts with (i.e. are accentuated or

mitigated by) past heat stress exposure (measured during all the

previous years since 1985). The results highlight four groups of

coral taxa showing distinct patterns of heat associations.

Materials and methods

Coral cover data

The coral cover data were obtained from the Catlin Seaview

Survey (CSS) project (González-Rivero et al., 2014; González-

Rivero et al., 2016). When we accessed the data in January 2021,

there were a total of 860 surveys performed along 579 transects

(380 transects were visited once, 140 twice, 36 three times, and

23 four times) across twelve study areas around the world

between 2012 and 2018 (Figure 1A). The CSS project applied

the same standardized framework to each survey when

recording and analyzing field data. First, field surveys were

performed using an underwater 360° camera that took a

picture every three seconds along a 1.6-2 km transect,

maintaining a constant depth of 10 meters. Next, field pictures

were processed using automated image recognition based on

machine learning algorithms. Such algorithms were trained

using labels that were manually annotated by coral

taxonomists (Beijbom et al., 2012).

For each reef survey, the CSS data provided (1) the overall

measure of hard coral cover and (2) coral cover for 35 taxa of corals

labelled using morphological characteristics (e.g. branching

Acroporidae, massive Poritidae, meandroid Favidae and

Mussidae). We used these data to obtain taxa-specific

measurement of coral cover. As the number of labels employed

varied between regions, and different regions featured different

numbers of surveys, we focused on labels that appeared in at least

half of the twelve study regions. After this filtering step, the dataset

included taxa-specific coral cover data with the following seven

labels: branching Acroporidae (CSS label ACR.BRA), tabular,

corymbose, digitate Acroporidae (ACR.TCD), Meandroid Favidae

and Mussidae (FAV.MUS), Pocilloporidae (POCI), massive

Poritidae (POR.MASS), encrusting Poritidae (POR.ENC),

branching Poritidae (POR.BRA).
Environmental data

Environmental data characterizing heat stress data were

retrieved from the Coral Reef Watch database, as part of the 5
Frontiers in Marine Science 03
km-resolution sea surface temperature products (Skirving et al.,

2020). The variable we used to describe heat stress was the

Degree Heating Week (DHW, Figure 1B), as it has been shown

to be directly correlated with coral bleaching occurrence and

severity (Liu et al., 2014). For a given day, DHW is calculated as

the sum of the temperature hotspots (that is, daily temperatures

that exceeded the maximal monthly average by 1°C) from the

preceding 12-weeks period. We used the CSS metadata to

retrieve the coordinates of every survey location (defined by

the transect mid-points) and at each coordinate we extracted the

monthly maximal DHW from 1985 to 2020 using the RASTER R

package (v. 3.0; Hijmans, 2021).

Using the same methods, we extracted the monthly averages

for different datasets describing seascape conditions that

potentially could be associated with changes in coral cover at

survey sites, including:
1) chlorophyll concentration (CHL), accessed from the

Copernicus Marine Services database (product id:

O C E A N C O L O U R _ G L O _ C H L _ L 4 _ R E

P_OBSERVATIONS_009_082, spatial resolution: 4 km,

temporal window: 1997-2020, EU Copernicus Marine

Service, 2017);

2) sea current velocity (SCV), accessed from the Copernicus

M a r i n e S e r v i c e s d a t a b a s e ( p r o d u c t i d :

GLOBAL_REANALYSIS_PHY_001_030, spatial

resolution: ~8 km, temporal window: 1993-2020, EU

Copernicus Marine Service, 2017);

3) suspended particulate matter (SPM), accessed from the

Copernicus Marine Services database (product id:

OCEANCOLOUR_GLO_OPT ICS_L4_REP_

OBSERVATIONS_009_081, spatial resolution: 4 km,

temporal window: 1997-2020, EU Copernicus Marine

Service, 2017);

4) sea surface salinity (SSS), accessed from the Copernicus

M a r i n e S e r v i c e s d a t a b a s e ( p r o d u c t i d :

GLOBAL_REANALYSIS_PHY_001_030, spatial

resolution: ~8 km, temporal window: 1993-2020, EU

Copernicus Marine Service, 2017);

5) sea surface temperature (SST), accessed from the Coral

Reef Watch database (product id: ct5km_sst-mean_v3.1,

spatial resolution 5 km, temporal window: 1985-2020;

(Skirving et al., 2020).
For each of the six datasets (DHW, CHL, SCV, SPM, SSS and

SST) used to describe seascape conditions at the CSS survey

locations, we computed three statistics summarizing long-lasting

environmental trends: mean (VARMEAN ) standard deviation

(VARSTD ) and maximal value (VARMAX ). The long-lasting

trends covered the entire temporal window from the first

measurement of the environmental variable until the date of

the CSS survey.
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For DHW, we computed twelve additional variables that

decompose overall trends into period-specific trends of heat

stress. These twelve variables were computed using three

different statistics: mean (DHWMEAN_… ), standard deviation

(DHWSTD_… ) and maximal value (DHWMAX_… ) each across

four different time periods (Figure 2). The first period represents

recent heat stress and covers the year that preceded the survey

date (DHW…_1yr ; Figure 2A). Similarly, we defined past heat

stress as the periods covering the 10 years (DHW…_10yrs ;

Figure 2B) and the 20 years (DHW…_20yrs ; Figure 2C) that
Frontiers in Marine Science 04
preceded the survey. Additionally, we defined one long-term

variable of past heat stress which excluded the first year before

the sampling date and covered all the previous years (DHW…

_>1yr ; Figure 2D). This variable was developed as an estimator of

past heat stress that does not overlap with recent heat stress, so

that it could be used in bi-variate model construction (see the

“Statistical analysis” section).

Hereafter, the variable names are abbreviated using the dataset

name, followed by the statistics’ name and the time period

concerned (i.e., DHWstatistics_period ). For instance, DHWSTD_10yrs
A

B

FIGURE 1

The study regions. (A) Distribution of the twelve study regions. (B) For each study region, the map shows the average monthly maximal Degree
Heating Week (DHW) values for the 1985-2020 period. The blue squares indicate areas where coral cover surveys from the Catlin Seaview
Surveys project were performed, with the numbers corresponding to the number of surveys per area. The reef surfaces were derived from the
“Global Distribution of Coral Reefs” dataset of the UNEP (UNEP-WCMC et al., 2021).
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is the standard deviation of monthly maximum DHW measured

across the 120 months (10 years) that preceded the survey date.
Statistical analysis

Previous studies have employed repeated measures of coral

cover over time to determine the trends of coral growth or

decline, and then used statistical analyses to match these trends

with environmental data (Selig et al., 2012; Head et al., 2019;

Babcock et al., 2020). This approach is not transposable to the

CSS dataset, as most of the transects were surveyed only once.

For this reason, we employed a different method to investigate

how local differences in coral cover were associated with patterns

of environmental variation measured at the survey sites.

In practice, we investigated the association between coral

cover and environmental variation using generalized linear

mixed-models (GLMMs), where the random factors controlled

for spatial autocorrelation between survey sites (Dormann et al.,

2007). We employed three levels of random factors representing

spatial autocorrelation at different spatial scales and

progressively nested into each other (i.e. the factors covering

smaller spatial scales were nested inside those covering larger

spatial scales). The first spatial random factor was the study area

(twelve levels, Figure 1A). We then designed two additional

spatial random factors to control for spatial autocorrelation at a

regional and at a local scale (within each study area). This was

done by applying the following clustering approach in the R

environment. First, we computed the Euclidean distances

between surveys sites, and applied a hierarchical clustering

using the Ward distance method. The result was a tree of

distances between survey sites that was used to compute the

two additional spatial random factors: (1) at regional-level,
Frontiers in Marine Science 05
grouping survey sites located up to a distance D1 from each

other; and (2) at local-level, grouping survey sites located up to a

distance D2 from each other.

The two values D1 and D2 were chosen after a preliminary

analysis where we constructed null GLMMs for overall coral cover

(built using the GLMMTMB R package, v. 1.0; Brooks et al., 2017). As

coral cover values are percentages, we used the beta regression

method to model their response (Ferrari and Cribari-Neto, 2004).

In this preliminary analysis, we compared the goodness-of-fit

(Akaike Information Criterion; AIC; Bozdogan, 1987, details

below) of null GLMMs using spatial random factors based on

different values of D1 and D2: 7 km, 10 km, 25 km, 50 km and 100

km (this range of values was set to include the minimal - 7 km - and

average - 100km - Euclidean distance measured between survey

sites within each study area). In practice, this preliminary analysis

investigated the distances D1 and D2 for which the spatial random

factors best explained the spatial variation in overall coral cover. The

combination of distances resulting in the largest goodness-of-fit

where D1 = 100 km and D2 = 7 km (Supplementary Table 1), and

these values were therefore used to compute regional and local

spatial random factors for downstream analyses.

Next, we ran the GLMM analyses employing environmental

trends. We investigated eight response variables recorded at each

survey site: overall coral cover and taxa-specific coral cover for

seven taxa described in the “Coral cover data” section

(ACR.BRA, ACR.TCD, FAV.MUS, POCI, POR.MASS,

POR.ENC, POR.BRA). For each coral cover variable, we

constructed three types of GLMMs (Table 1):

Univariate GLMMs of long-lasting
environmental trends

The goal of these models is to assess how local patterns of

coral cover can be explained by long-lasting trends (mean,
A

B

D

C

FIGURE 2

Degree heating week (DHW) periods. The figure summarizes the four temporal windows (A: one year before sampling, B: 10 years before
sampling, C: 20 years before sampling, D: all the years from 1985 to one year before sampling) across which three period-specific DHW
statistics (mean, standard deviation, maximal value) were calculated. The timelines are hypothetical examples, where the green arrows indicate a
hypothetical date of the coral cover survey, and the red boxes show the periods of interest used to calculate period-specific DHW statistics.
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standard deviation and maximal value) of variables describing

distinct conditions: degree heating week (DHW; M1 to M3 in

Table 1A), chlorophyll concentration (CHL: M4 to M6), sea

current velocity (SCV: M7 to M9), suspended particulate matter

(SPM: M10 to M12), sea surface salinity (SSS: M13 to M15) and

sea surface temperature (SST: M16 to M18).

Univariate GLMMs of period-specific trends of
heat stress

The goal of these univariate models is to evaluate how local

patterns of coral cover can be explained by recent and past heat

stress. We investigated the association of the coral cover

variables with each of the nine explanatory variables

describing averages, standard deviations and maximal values

of DHW calculated across periods of 1 year (DHW…_1yr ;M1 to

M3 in Table 1B), 10 years (DHW…_10yrs ; M4 to M6) or 20 years

(DHW…_20yrs ; M7 to M9) before the survey.

Bi-variate GLMMs of modulating effects of past
heat stress

The goal of these bi-variate models is to evaluate how past

heat stress interacts (i.e. accentuates or mitigates) with the

association between recent heat stress and coral cover. In

practice, the bi-variate models describe the associations

between coral cover variables and two explanatory terms. The

first term was the same for all bi-variate models. This term
Frontiers in Marine Science 06
represents recent heat, and corresponds to the maximal

DHW value measured during the year before the survey

(DHWMAX_1yr). We chose this variable as it was the one

showing the highest goodness-of-fit for most of the coral cover

variables in univariate models (see Results). The second term

corresponded to the interaction between (1) DHWMAX_1yr and

(2) each of the three explanatory variables describing average,

standard deviation and maximum values of DHW calculated

over all the previous years (DHW…_>1yr; ; M13 to M15).

Importantly, the interaction variables describing long-term

heat stress trends (DHW_>1yr ) were weakly collinear with

DHWMAX_1yr (R<0.2, Supplementary Figure 1).

For each GLMM, we reported the estimate (ß, with its standard

deviation) and the p-value from the Wald test for the fixed effects.

We also computed an approximation of the estimate of the fixed

effects (bresp ) in the unit scale of the response variable (i.e. in coral

cover percentage), using the R-package VISREG (v. 2.7; Breheny and

Burchett, 2017) and custom R functions.

In addition, we evaluated the goodness-of-fit of each of the

GLMMs by measuring the difference between the model’s AIC

and the AIC of a null model. For univariate models, the

corresponding null model was a GLMM using a constant

value as explanatory variable. For bi-variate models, the null

model was the univariate GLMMs using DHW1yr as explanatory

variable (M21). This approach allowed us to evaluate how

accounting for the interaction with past heat stress improves
TABLE 1 List of the models computed.

A) Univariate models of long-lasting environmental trends

Degree heating week - DHW
M1) CC ~ a + b(DHWMEAN)
M2) CC ~ a + b(DHWSTD)
M3) CC ~ a + b(DHWMAX)

Sea current velocity – SCV
M7) CC ~ a + b(SCVMEAN)
M8) CC ~ a + b(SCVSTD)
M9) CC ~ a + b(SCVMAX)

Sea surface salinity – SSS
M13) CC ~ a + b(SSSMEAN)
M14) CC ~ a + b(SSSSTD)
M15) CC ~ a + b(SSSMAX)

Chlorophyll concentration – CHL
M4) CC ~ a + b(CHLMEAN)
M5) CC ~ a + b(CHLSTD)
M6) CC ~ a + b(CHLMAX)

Suspended particulate matter –SPM
M10) CC ~ a + b(SPMMEAN)
M11) CC ~ a + b(SPMSTD)
M12) CC ~ a + b(SPMmax)

Sea surface temperature – SST
M16) CC ~ a + b(SSTMEAN)
M17) CC ~ a + b(SSTSTD)
M18) CC ~ a + b(SSTMAX)

B) Univariate models of period-specific heat stress trends

1 year period
M19) CC ~ a + b(DHWMEAN_1yr)
M20) CC ~ a + b(DHWSTD_1yr)
M21) CC ~ a + b(DHWMAX_1yr)

10 year period
M22) CC ~ a + b(DHWMEAN_10yrs)
M23) CC ~ a + b(DHWSTD_10yrs)
M24) CC ~ a + b(DHWMAX_10yrs)

20 year period
M25) CC ~ a + b(DHWMEAN_20yrs)
M26) CC ~ a + b(DHWSTD_20yrs)
M27) CC ~ a + b(DHWMAX_20yrs)

C) Bi-variate models of interactions between recent and past heat stress

M28) CC ~ a + b1(DHWMAX_1yr) + b2(DHWMAX_1yr: DHWMEAN_>1yr)
M29) CC ~ a + b1(DHWMAX_1yr) + b2(DHWMAX_1yr: DHWSTD_>1yr)
M30) CC ~ a + b1(DHWMAX_1yr) + b2(DHWMAX_1yr: DHWMAX_>1yr)
The table displays the formulae of the univariate and bi-variate models computed for each coral cover variable (CC, representing either overall or taxa-specific coral cover). Table A) shows
the formulae of models for univariate models based on long-lasting environmental trends (mean, standard deviation and maximal value) of degree heating week (DHW; M1-3), chlorophyll
concentration (CHL; M4-6), sea current velocity (SCV; M7-9), suspended particulate matter (SPM; M10-12), sea surface salinity (SSS; M13-15) and sea surface temperature (SST; M16-18).
Table B) displays the formulae of models based on period-specific trends (mean, standard deviation and maximal value) of DHW measured during the year (M19-21) the ten years (M22-
24) and the twenty years (M25-27) before the survey. Table C) shows the formulae of bi-variate models based on the interaction between recent heat stress and past trends of heat stress. The
first explanatory variable, representing recent heat stress, is always the maximal value of DHWmeasured during the year before the survey (DHWMAX_1yr ). The second explanatory variable
is the interaction of DHWMAX_1yr with the past trends (averages, standard deviations and maximal values) of DHW measured during all of the previous years (DHW…_>1yr ; M28-30). a
indicates the intercept, b the effects of the explanatory variables.
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the goodness-of-fit, compared to a model including recent heat

stress only (DHW1yr ). According to the rules of thumb for

model selection (Burnham and Anderson, 2004), a model with

dAIC<−2 (where dAIC = AICnull model−AICmodel ) has an

improved goodness-of-fit, compared to the null model.

For each GLMM, we calculated the coefficients of variation

(CV) related to the three random factors accounting for spatial

autocorrelation (at study area-, regional- and local-level). CV

was calculated by dividing the conditional standard deviation of

every random factor by the intercept value of the model. In

practice, these CVs could then be used as scaled standard

deviations to compare the amount of variance controlled by

every random factor across the different models (higher CV

indicates larger amount of variance).
Grouping of taxa based on heat
association

Based on the results of the association study between heat

stress and taxa-specific coral cover, we categorized the seven

coral taxa retained for the analysis into four groups showing

distinct types of heat associations. The grouping was based on

two criteria. First, whether differences in coral cover were

significantly (dAIC<−2 ) associated with recent heat stress

(DHWMAX_1yr ) in the univariate model M21 (Table 1B).

Second, whether past heat stress (DHWMEAN_>1yr ) interacted

significantly (dAIC<−2 ) with recent heat stress (DHWMAX_1yr )

in the bivariate model M28 (Table 1C). We chose M21 and M28

as these models display the highest goodness-of-fit in the

association models with the majority of the coral cover

variables (see Results). Taxa were assigned to the four heat

association groups as follows:
Fron
- Group 1 (GR1): significant association of local coral cover

with recent heat, significant interaction with past heat.

- Group 2 (GR2): significant association of local coral cover

with recent heat, non-significant interaction with past

heat.

- Group 3 (GR3): non-significant association of local coral

cover with recent heat, significant interaction with past

heat.

- Group 4 (GR4): non-significant association of local coral

cover with recent heat, non-significant interaction with

past heat.
For each survey, we computed the overall coral cover for every

heat association group as the sum of the taxa-specific coral cover of

taxa assigned to every group. Next, we computed the models of

association with heat stress M21 andM28 for the overall coral cover

of every heat association group using the same methods described
tiers in Marine Science 07
in the “Statistical analysis” section. The goal of these models was to

summarize average coral cover-heat associations for every heat

association group. To visualize such average associations, we used

the VISREG R package (v. 2.7; Breheny and Burchett, 2017) and

custom R functions.

Results

Associations with long-lasting
environmental trends

Most of the models (16 out of 24 models) that used long-

lasting DHW trends as explanatory variables (M1-M3) resulted

in a stronger goodness-of-fit (dAIC<−2 ) when compared to a

constant null model and displayed significant (p<0.01) negative

associations (bresp<0 ) with coral cover (Table 2A). These results

were observed for models focusing on overall coral cover and for

models focusing on taxa-specific coral cover of branching

(ACR.BRA), corymbose, tabular and digitate Acroporidae

(ACR.TCD), encrusting (POR.ENC) and massive (POR.MASS)

Poritidae and meandroid Favidae and Mussidae (FAV.MUS). In

contrast, models of Pocilloporidae (POCI) and branching

Poritidae (POR.BRA) coral covers did not display significant

associations with DHW trends. In general, models accounting

for average DHW (M1) showed a weaker goodness-of-fit (higher

values of dAIC , when compared with models based on maximal

values of DHW (M3).

For models employing explanatory variables other than DHW,

we generally observed weaker goodness-of-fit and non-significant

associations with coral cover variables (100 out of 112 models;

Table 2). Among the few exceptions were the following significant

associations: maximal CHL with coral cover of taxon ACR.TCD

(M6 in Table 2A); SPM with overall coral cover and coral cover of

taxon POCI (M10-12); maximal SSS with overall coral cover (M15);

and maximal SST with overall coral cover and coral cover of taxa

ACR.BRA, ACR.TCD and FAV.MUS (M18).
Associations with period-specific trends
of heat stress

Focusing on period-specific trends of heat stress, we

observed that most models (52 out of 72 models) resulted in a

stronger goodness-of-fit compared to a constant null model and

displayed a significant negative association between DHW

trends and coral cover (Table 2B). The goodness-of-fit

generally appeared stronger in models based on DHW trends

computed over shorter time periods (e.g. 1 year; M19-21 in

Table 2B) and using the maximal value as the trend-statistic

(M21, M24, M27). This was observed for overall coral cover and

taxon-specific coral cover of taxa POR.ENC, ACR.BRA,

ACR.TCD and FAV.MUS. Similar to patterns observed for
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TABLE 2 Association models of coral cover with environmental trends.

A) Univariate models of long-lasting environmental trends

All POR.BRA POR.ENC POR.MASS ACR.BRA ACR.TCD POCI FAV.MUS Env. range

dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC b̂ resp
dAIC b̂ resp

M1: DHWMEAN -18 -11.8
± 3

2 0.2 ± 0.7 -3 -1.1
±
0.5

-7 -3.8
±
1.3

-12 -1.8
±
0.6

-9 -1.4 ±
0.4

0 0.2
±
0.1

-3 -0.2
± 0.1

0.01-0.93 [°
C-wk]

M2: DHWSTD -39 -4 ±
0.6

1 -0.3 ±
0.2

-10 -0.6
±
0.2

-17 -1.3
±
0.3

-21 -0.8
±
0.2

-15 -0.6 ±
0.1

2 0 ±
0

-10 -0.1
± 0.1

0.06-2.49 [°
C-wk]

M3: DHWMAX -50 -0.4
± 0.1

-1 0 ± 0 -19 -0.1
± 0

-16 -0.1
±
0.1

-26 -0.1
± 0

-12 -0.1 ±
0.1

2 0 ±
0

-15 -0.1
± 0.1

1.03-18.72
[°C-wk]

M4: CHLMEAN 0 10.8
± 7.1

2 0.5 ± 1.2 2 -0.5
±
0.8

-4 -4.3
±
1.8

-4 3.7
±
1.5

1 2.9 ±
2.9

0 3.8
±
2.5

1 0.1 ±
0.1

0.05-0.76
[mg/m3]

M5: CHLSTD 2 -1 ±
10.7

1 3 ± 2.8 2 -0.2
±
1.6

2 -1.2
±
2.9

1 3.6
± 3

-2 -8.4 ±
3.8

1 3.5
±
4.7

2 0 ±
0.2

0.01-0.47
[mg/m3]

M6: CHLMAX 1 -0.9
± 0.9

1 0.2 ± 0.2 2 0 ±
0.1

2 0 ±
0.2

2 0.1
±
0.2

-6 -0.6 ±
0.2

1 0.3
±
0.4

2 0 ± 0 0.09-4.34
[mg/m3]

M7: SCVMEAN 2 2.9 ±
4.9

1 1.4 ± 1.4 2 0.1
±
0.7

-2 5.1
±
2.6

1 -1 ±
1.2

1 -2 ±
2.2

2 0.1
±
0.4

2 0 ±
0.2

0.04-1.4
[m/s]

M8: SCVSTD 2 -0.7
± 9.9

1 1.4 ± 2 1 -0.7
±
0.9

0 5.3
±
3.6

2 -0.9
±
1.8

2 -1.1 ±
3.4

2 -0.1
±
0.5

2 -0.1
± 0.5

0.02-0.4
[m/s]

M9: SCVMAX 2 -0.7
± 2

1 0.5 ± 0.5 1 -0.2
±
0.2

1 0.8
±
0.8

2 0 ±
0.4

2 0 ±
0.8

2 0 ±
0.1

2 0 ±
0.1

0.1-2.0 [m/
s]

M10: SPMMEAN -8 2.2 ±
0.7

2 0.1 ± 0.1 1 -0.1
±
0.1

2 0 ±
0.1

0 0.2
±
0.2

0 0.7 ±
0.4

-12 0.2
±
0.1

1 0 ± 0 0.3-8.1 [g/
m3]

M11: SPMSTD -10 4.5 ±
1.3

2 0.1 ± 0.2 1 -0.1
±
0.1

1 0.1
±
0.1

2 0.1
±
0.2

0 0.9 ±
0.6

-23 0.5
±
0.1

2 0 ± 0 0.1-5.1 [g/
m3]

M12: SPMMAX -6 0.5 ±
0.2

2 0 ± 0 1 0 ±
0

2 0 ±
0

2 0 ±
0

-2 0.2 ±
0.1

-30 0.1
± 0

2 0 ± 0 0.9-34.3 [g/
m3]

M13: SSSMEAN -4 -3.4
± 1.3

1 -0.6 ±
0.7

2 0 ±
0.3

2 0.1
±
0.7

0 -0.3
±
0.2

0 0.7 ±
0.5

1 0.1
±
0.2

-3 -0.1
± 0.1

32.3-36.6
[‰]

M14: SSSSTD 1 4.8 ±
5.1

0 -1.7 ±
1.2

1 0.9
± 1

2 -0.1
±
2.3

1 -0.7
±
0.7

2 -0.6 ±
2.7

2 0.4
±
0.5

1 0.3 ±
0.3

0.1-0.9 [‰]

M15: SSSMAX -5 -4.5
± 1.6

-2 -1.5 ±
0.7

0 0.3
±
0.2

2 0.4
±
0.7

-2 -0.4
±
0.2

1 0.6 ±
0.6

2 0 ±
0.2

0 -0.1
± 0.1

33.5-37.1
[‰]

M16: SSTMEAN -1 -2.9
± 1.7

2 0 ± 0.2 -2 0.1
±
0.1

1 0.3
±
0.4

-2 -4.3
±
1.1

-1 -0.4 ±
0.3

-1 0 ±
0

0 0 ± 0 23.0-29.2 [°
C]

M17: SSTSTD 2 -1.1
± 2.5

2 0.1 ± 0.5 -2 -0.5
±
0.2

1 -0.9
± 1

2 0 ±
0.2

2 0.3 ±
0.5

1 -0.1
±
0.1

-3 -0.1
± 0

0.4-3.1 [°C]

M18: SSTMAX -36 -7.2
± 1.2

-1 -0.4 ±
0.3

2 0 ±
0.2

-4 -1.1
±
0.4

-22 -3.8
±
0.7

-12 -1.4 ±
0.4

2 0 ±
0

-10 -0.2
± 0

27.3-30.8 [°
C]

(Continued)
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TABLE 2 Continued

B) Univariate models of period-specific heat stress trends

All POR.BRA POR.ENC POR.MASS ACR.BRA ACR.TCD POCI FAV.MUS Env. range

dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC bresp dAIC b̂ resp
dAIC b̂ resp

M19:
DHWMEAN_1yr

-71 -1.2
± 0.1

2 0 ± 0 -30 -0.2
± 0

-7 -0.2
±
0.1

-27 -0.2
± 0

-23 -0.1 ±
0

2 0 ± 0 -13 -0.1
± 0

0-4 [°C-
wk]

M20:
DHWSTD_1yr

-72 -0.9
± 0.1

1 0 ± 0 -32 -0.1
± 0

-5 -0.2
±
0.1

-29 -0.1
± 0

-24 -0.1 ±
0

2 0 ± 0 -13 -0.02
± 0

0-5.6 [°C-
wk]

M21:
DHWMAX_1yr

-74 -0.4
± 0

1 0 ± 0 -33 -0.1
± 0

-3 -0.1
± 0

-29 -0.1
± 0

-25 -0.1 ±
0

2 0 ± 0 -13 -0.01
± 0

0-13.8 [°C-
wk]

M22:
DHWMEAN_10yrs

-31 -4.1
± 0.7

2 0 ± 0.2 -10 -0.6
±
0.2

-6 -1.3
±
0.5

-15 -0.6
±
0.2

-14 -0.6 ±
0.2

0 0.1 ± 0 -5 -0.1
± 0

0.01-2.1 [°
C-wk]

M23:
DHWSTD_10yrs

-56 -2.2
± 0.3

1 -0.1 ±
0.1

-19 -0.3
±
0.1

-8 -0.5
±
0.2

-23 -0.4
±
0.1

-29 -0.4 ±
0.1

2 0 ± 0 -6 -0.05
± 0

0.04-3.8 [°
C-wk]

M24:
DHWMAX_10yrs

-65 -0.4
± 0

0 0 ± 0 -27 -0.1
± 0

-6 -0.1
± 0

-29 -0.1
± 0

-35 -0.1 ±
0

2 0 ± 0 -7 -0.01
± 0

0.3-18.7 [°
C-wk]

M25:
DHWMEAN_20yrs

-20 -7.4
± 1.6

2 0.1 ± 0.5 -6 -0.9
±
0.3

-5 -2.2
±
0.9

-13 -1.2
±
0.4

-10 -1 ±
0.3

0 0.1 ± 0 -3 -0.1
± 0.1

0-1.2 [°C-
wk]

M26:
DHWSTD_20yrs

-44 -3.1
± 0.5

1 -0.1 ±
0.2

-14 -0.5
±
0.1

-14 -0.9
±
0.2

-24 -0.6
±
0.1

-16 -0.4 ±
0.1

2 0 ± 0 -9 -0.07
± 0

0.1-2.8 [°C-
wk]

M27:
DHWMAX_20yrs

-52 -0.4
± 0.1

-2 0 ± 0 -20 -0.1
± 0

-16 -0.1
± 0

-28 -0.1
± 0

-12 -0.05
± 0

2 0 ± 0 -14 -0.01
± 0

1-18 [°C-
wk]

C) Bi-variate models of interactions between recent and past heat stress

All POR.BRA POR.ENC POR.MASS ACR.BRA ACR.TCD POCI FAV.MUS Env. range

dAIC b1 b2 dAIC b1 b2 dAIC b1 b2 dAIC b1 b2 dAIC b1 b2 dAIC b1 b2 dAIC b1 b2 dAIC b1 b2
M28:
DHWMEAN_>1yr

0 – + 0 – + 1 – – 1 – + -4 - + -18 - + -36 - + 1 – – 0-0.9 [°C-
wk]

M29:
DHWSTD_>1yr

0 – + 1 – + 2 – + -2 – + 0 – + -3 – + -20 - + 2 – – 0.02-2.5 [°
C-wk]

M30:
DHWMAX_>1yr

0 – + 1 – + 2 – + 0 – + 2 – + 2 – + -8 - + 2 – + 0.1-18 [°C-
wk]

D) Coral cover and spatial variation

All POR.BRA POR.ENC POR.MASS ACR.BRA ACR.TCD POCI FAV.MUS

MEDcoral cover . .5(7-24)% 0.5(0.1-1.4)% 0.1(0-0.5)% 1.7(0.7-4.1)% 0.5(0.2-1.6)% 1.4(0.6-3.4)% 1(0.2-2.9)% 0.3(0-1.6)%

CVstudy area . 444 ± 0.043 0.175 ± 0.014 0.168 ± 0.043 0.173 ± 0.011 0.021 ± 0.057 0.085 ± 0.037 0.164 ± 0.016 0.226 ± 0.02

CVregion . 202 ± 0.035 0.054 ± 0.003 0.04 ± 0.014 0.103 ± 0.004 0.098 ± 0.01 0.122 ± 0.014 0.072 ± 0.005 0.032 ± 0.006

CVlocal . 198 ± 0.014 0.054 ± 0.004 0.001 ± 0.001 0.104 ± 0.003 0.099 ± 0.005 0.105 ± 0.011 0.085 ± 0.005 0.036 ± 0.003
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The table shows the coefficients of models associated with different coral cover variables (columns) with variables describing environmental trends (rows). Coral cover variables refer to
overall coral cover and taxa-specific coral cover (ACR.TCD= tabular, corymbose and digitate Acroporidae; ACR.BRA = branching Acroporidae; POR.ENC = encrusting Poritidae;
POR.MASS = massive poritidae; FAV.MUS = meandroid Favidae and Mussidae; POCI = Pocilloporidae; POR.BRA = branching Poritidae), measured in field surveys. Environmental trends
refer to the three statistics –mean, standard deviation and maximal value – applied to different variables: degree heating week (DHW), chlorophyll concentration (CHL), sea current velocity
(SCV), suspended particulate matter (SPM), sea surface salinity (SSS) and sea surface temperature (SST). In table A), the models associate coral cover with long-lasting environmental
trends, calculated across all the years prior to the survey date. In table B), models involve period-specific trends of DHW, measured over 1 year, 10 years or 20 years before the survey date. In
table C), models involve two terms: (1) recent heat stress (maximal DHW measured during the year preceding the survey date) and (2) the interaction between recent heat stress and past
heat stress (i.e. DHW statistics measured across all of the previous years). In table D), the median value (showing the interquartile range in parenthesis) of each coral cover variable
(MEDcoral cover ) is shown, together with the coefficients of variation associated with the three random factors controlling for spatial autocorrelation of the survey locations (at a study area-
level, CVstudy area ; at a regional-level, CVregion ; at a local-level, CVlocal dAIC indicates the difference in the Akaike Information Criteria between each model and the null model (i.e.
goodness-of-fit compared to the null model). In A) and B), bresp shows the estimated effect in the unit scale of response variable (i.e. the percentage of absolute coral cover; negative effects are
in red and positive effects are in green). In C), b1 indicates the sign of the effect of recent heat stress on coral cover, and b2 indicates the sign of the effect of the interaction between recent and
past heat stress. Cells in grey indicate models failing to show (1) a stronger goodness-of-fit when compared to the null model and (2) b significantly (p<0.01) different from 0. The last
column headed ‘Env. range’ shows the range of the environmental variable implicated in the association model, with the units indicated in parentheses. The complete list of the coefficients
and statistics describing the association models are displayed in the Supplementary Table 2.
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long-lasting trends of DHW, no significant association with

period-specific DHW trends were found for coral cover of taxa

POR.BRA and POCI.
Interactions between recent and past
heat stress

Regarding the bi-variate models, we observed that models

accounting for the interaction of recent heat stress with average

DHW trends over the long-term (M28) showed a stronger

goodness-of-fit (when compared to the null models) for coral

cover of taxa ACR.BRA, ACR.TCD and POCI. For these models,

the association between recent heat stress and coral cover was of

negative sign, and this negative association was contrasted by the

interaction of positive sign with long-term heat stress. The same

results were observed for coral cover of taxon POCI in models

accounting for standard deviation and maximal DHW trends

over the long-term (M29 and M30, respectively).
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Sorting taxa by heat associations

We sorted taxa into four groups showing distinct types of

heat associations (Figure 3).

Group 1 (GR1) included ACR.BRA and ACR.TCD; these

were the taxa that showed a negative association between coral

cover and recent heat stress (p<0.01;dAIC<−2 ), which was

significantly modulated by the interaction with past heat

stress. The association models for GR1 showed local

differences in coral cover of −0.11 ± 0.02% er °C-week of

DHWMAX_1yr Figure 3A, purple regression line). In GR1, the

local differences in coral cover associated with recent heat stress

appeared to be mitigated at locations with higher past heat stress

(Figure 3B, top-left graph). For example, a DHWMAX_1yr of 1°C-

week corresponded to a local difference in coral cover of –0.20 ±

0.03% in locat ions where average past heat stress

(DHWMEAN_>1yr ) was below 0.3°C-week, whereas a difference

in coral cover of -0.07 ± 0.01% was observed in locations where

average past heat was above 0.5°C-week.
A B

FIGURE 3

Groups of coral cover-heat stress associations. The plots display the associations between local coral cover and heat stress trends at survey
sites for the four groupings of taxa with similar heat responses (heat association groups): in Group 1 (GR1, purple), taxa coral cover is associated
with recent heat stress, where this association interacts with past heat stress; in Group 2 (GR2, orange), coral cover is associated with recent
heat stress, without significant interaction with past heat stress; in Group 3 (GR3, brown), recent heat stress alone is not significantly associated
with taxa coral cover, but the interaction between recent and past heat stress shows a significant association with coral cover; and in Group 4
(GR4, blue), no significant association between coral cover and heat stress was found. Plot (A) displays the association of coral cover with recent
heat stress, measured as the maximal degree heating week measured during the year before the survey (DHWMAX_1yr ), for each of the four
groups. Plots in (B) show the association of coral cover with recent heat stress, for survey locations exposed to different levels of past heat
stress, measured as the average DHW during all the previous years (DHWMEAN_>1yr ). For each association model, the plots display the goodness-
of-fit compared to a null model (dAIC) along with the p-values (p) of the fixed effects.
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Group 2 (GR2) included taxa that had a significant negative

association between coral cover and recent heat stress, but

without a significant modulation of the interaction with past

heat stress. This group included the taxa POR.MASS, POR.ENC

and FAV.MUS. The association model for GR2 showed local

differences in coral cover of -0.05 ± 0.01% per °C-week of

DHWMAX_1yr (Figure 3A, orange regression line). Accounting

for the modulating interaction with past heat stress did not

improve the goodness-of-fit (dAIC>−2 ) of the models when

compared to the univariate counterpart accounting only for

recent heat stress (Figure 3B, top-right graph).

Group 3 (GR3) included the POCI taxon alone. Here,

significant differences in coral cover associated with recent

heat stress were only detected when accounting for the

modulating interaction with past heat stress. Indeed, the

univariate model that only accounted for recent heat stress did

not improve the goodness-of-fit (dAIC>−2 ) when compared to a

constant null model (Figure 3A, brown regression line).

However, the bi-variate model showed significant changes in

the association between coral cover and recent heat stress, and

such changes followed past heat stress levels (Figure 3B, bottom-

left graph): when past heat stress was low, recent heat stress

showed a negative association with coral cover, whereas when

past heat stress was high, the association between coral cover and

recent heat stress was of positive sign. For example, a

DHWMAX_1yr of 1°C-week corresponded to local differences in

coral cover of –0.014 ± 0.002% when average past heat stress

(DHWMEAN_>1yr ) was below 0.3°C-week, whereas it

corresponded to local differences in coral cover of +0.007 ±

0.001% when average past heat stress was above 0.5°C-week.

Group 4 included the POR.BRA taxon alone, where no

significant differences in coral cover were detected in

association with recent heat stress, nor with a modulating

interaction of past heat stress (Figure 3A, blue regression line;

Figure 3B, bottom-right graph).
Discussion

Local differences in coral cover mirror
heat stress trends

We observed that survey sites exposed to elevated long-lasting

and period-specific trends of Degree Heating Week (DHW)

almost systematically displayed lower levels of coral cover than

expected locally. These observations are consistent with previous

studies where DHW-related variables were used as proxies for

heat stress when investigating associations with coral decline or

bleaching severity (Hughes et al., 2018; Head et al., 2019;

McClanahan et al., 2019; Babcock et al., 2020). For the other

environmental variables examined here (chlorophyll

concentration, sea current velocity, suspended particulate

matter, sea surface salinity and sea surface temperature), the
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associations with local differences in coral cover were generally

weaker and seldom significant. As these environmental

constraints were expected to drive local differences in coral

cover based on past studies (Hédouin et al., 2015; Riegl et al.,

2015; Jones et al., 2020; Sully and van Woesik, 2020), it is possible

that the variables that we used are not appropriate proxies of such

environmental constraints, particularly at the depth at which coral

cover surveys were performed (see the “Limitations” section).

When we decomposed the effects of DHW into period-

specific trends, we observed that association models with coral

cover employing distinct DHW statistics (mean, standard

deviation, and maximal value) as explanatory variables often

displayed substantial differences in the goodness-of-fit. These

results must be considered with care, due to the high collinearity

(often > 0.8) between distinct DHW statistics measured during

the same period (Supplementary Figure 1). Nevertheless, we

note that univariate models employing DHW variables based on

maximal values systematically provided a higher goodness-of-fit

for the associations with coral cover, when compared to

univariate models employing DHW averages or standard

deviations. In the significant bi-variate models, we observed

that reefs exposed to low levels of past heat stress showed a

stronger negative association between coral cover and recent

heat stress, compared to reefs exposed to higher levels of past

heat stress. In contrast to univariate models, here this mitigating

role of past heat was better explained by DHW averages than by

DHW maximal values or DHW standard deviations. Average

DHWmight therefore represent the frequency of past heat stress

that previous research found to be associated with decrease in

bleaching rates (Thompson and van Woesik, 2009).

Of note, care must be taken when interpreting these results,

since local differences in overall coral cover might not be a

confident proxy to assess the impact of heat stress on coral

community. For instance, heat stress might drive taxa

replacement without a change in overall coral cover. In the

next section, we further investigate such taxon-specific

differences in coral cover.
Taxon-specific heat associations

We classified coral taxa into four groups based on the

patterns of coral cover association with recent and past

heat stress.

Local differences in coral cover for taxa in Groups 1 (GR1)

and 2 (GR2) matched the variation of recent heat stress, where

reefs exposed to higher recent heat stress had lower coral cover

than locally expected. The magnitude of this negative association

was twice as strong for GR1 than for GR2. One possible

assumption of these results is that these associations describe a

causal relationship (i.e. recent heat stress drives local loss of coral

cover). Under this assumption, such differences between GR1 and

GR2 might reflect differences in (1) heat sensitivity and/or (2)
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capacity of recovery. Indeed, GR1 includes heat sensitive, fast

growing taxa such as branching, corymbose and tabular Acropora

and Montipora, while GR2 includes stress tolerant, slow growing

taxa such as massive and encrusting Poritidae, and meandroid

Favidae andMussidae (Loya et al., 2001; Darling et al., 2012; Guest

et al., 2016; Hughes et al., 2018; Pisapia et al., 2019).

For coral taxa of heat association Groups 3 (GR3) and 4

(GR4), local differences in coral cover was not associated with

variation in recent heat stress. However, previous studies listed

taxa from these groups (GR3: Pocilloporidae, GR4: branching

Poritidae) as “heat sensitive” (Loya et al., 2001; Guest et al., 2016)

and “long-term losers” of coral bleaching (van Woesik et al.,

2011). If the causal relationship assumed above were true, we

expect that reefs exposed to higher recent heat stress would have

lower coral cover for these taxa, compared to reefs exposed to

lower recent heat. In fact, this negative association between coral

cover of these taxa and recent heat stress was observed, but as we

discuss below, it is only visible when considering the interaction

with past heat stress.

When considered with the interaction with past heat stress,

the association between coral cover and recent heat stress

showed distinct patterns for the four heat association groups.

For GR1, the negative association between coral cover and recent

heat stress appeared to be mitigated by the interaction with past

heat stress. This means that reefs exposed to high recent heat

stress displayed lower coral cover than locally expected; however,

among these reefs, those frequently exposed to past heat stress

had relatively higher coral cover compared to reefs less

frequently exposed. Of note, reefs exposed to very frequent

past heat stress (DHWMEAN_>1yr>0.6°C−week ) displayed

similar coral cover regardless of recent heat stress exposure.

GR3 had a similar, yet stronger, interaction as was observed for

GR1. Indeed, in GR3 there was a negative association between

coral cover and recent heat stress for reefs exposed to lower

frequency of past heat stress, yet a positive association for reefs

exposed to higher frequency of past heat stress. These results are

consistent with previous local observations of taxa from these

groups (Acropora and Pocillopora) that showed increased heat

resistance after previous thermal exposure (Guest et al., 2012;

McClanahan, 2017).

Similar increase in heat resistance was also previously

observed for branching Porites (McClanahan, 2017). We found

that GR4 (which includes branching Poritidae) showed similar

associations and interactions to GR3, though these models were

not found to be significant. The lack of clear statistical signal in

these associations might be due heterogenous heat responses

among species from GR4. For GR2 too, the interaction with past

heat did not result as significant, but here the patterns were

completely different from the other groups. Indeed, the

interaction with past of heat was of negative sign, suggesting

that past heat stress reinforced the negative association between

recent heat stress and coral cover.
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One possible explanation is based on the assumption that the

associations between coral cover and heat stress are causal

relationships, i.e. that recent heat stress exposure can drive

local coral cover loss, and frequent exposure to past heat stress

can provide a protection against such loss. Under this

assumption, GR1, GR3 and some species in GR4 might have

changed their thermal susceptibility in response to heat stress

exposure over the past three decades. There are at least three

(not mutually exclusive) phenomena that could underpin such

rapid responses. The first phenomenon is a shift at the

community level, where heat sensitive species have been

progressively replaced by heat tolerant species from the same

heat association group. This hypothesis assumes that there are

substantial differences in heat tolerance between species from

GR1 and GR3, which is possible even though corals within each

of these groups usually have similar life-history traits and heat

sensitivities (Loya et al., 2001; van Woesik et al., 2011; Darling

et al., 2012). However, recent works suggested that even closely

related species can exhibit different physiological characteristics

potentially determining different thermal tolerance (see

Limitations section for details; Scheufen et al., 2017a; Scheufen

et al., 2017b). A second possible explanation is evolutionary

adaptation, where colonies carrying genetic traits linked to

thermal tolerance have been positively selected by recurrent

exposure to heat stress. Indeed, recent environmental-genomics

studies have suggested that the selection of such genetic traits

could occur across relatively short time periods (~30 years) in

both Acropora and Pocillopora species (Selmoni et al., 2020b;

Selmoni et al., 2021). Nevertheless, this interpretation is

hampered by the fact that every heat association group is

composed of multiple species, and that each species likely has

distinct adaptive potentials. The last phenomenon that could

explain a hypothetical response to past heat exposure is

physiological acclimation, where individuals exposed to past

heat stress progressively adjust their metabolism, thus

becoming more heat tolerant. However, it is hard to assess the

role played by acclimation in the associations observed here,

parly because the thermal conditions driving such phenomenon

(e.g. large daily variation of SST; Palumbi et al., 2014) where not

measured in this study. Furthermore, the annual cycle of thermal

variability (seasonal acclimation) might drive different

population responses to heat stress, depending on the moment

of the year when surveys were performed (Scheufen et al., 2017b;

Gómez-Campo et al., 2022), but this aspect was not accounted

for in this study.
Limitations

In this study, we investigated the associations between local

coral cover and a set of environmental constraints measured

with remote sensed data. This approach is inevitably exposed to
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bias because the spatial resolution of the environmental variables

we employed is coarse (between 5 to 8 km), in comparison to the

size of the transects providing the coral cover data (up to 2 km).

The spatial distribution of the CSS survey sites might also bring

some bias into the analysis, since such sites are not

homogenously distributed across the different study regions.

Consequently, there might be some types of environment (e.g.

remote atolls) that are underrepresented in this analysis.

Furthermore, the coral cover data that we employed was

systematically collected at 10 meters of depth, such that our

analyses might not be representative for coral cover at other

depths. This aspect is particularly important since depending on

the region, additional environmental factors (e.g. see next

paragraph) can modulate how SST is perceived by the coral

community at 10 meters of depth. One possible way of

overcoming this issue could be to employ statistical models

with random factors accounting for non-stationary effects of

heat stress (i.e. SST-derived heat stress can have different

strength of association with coral cover depending on the

region). This approach requires larger sample sizes than the

ones used here for models to converge, and should be considered

in future works.

Additionally, previous studies pointed out that geographic

position is a key element for explaining variation in coral cover

and bleaching responses (McClanahan et al., 2019; Sully et al.,

2019). Our work is not an exception to this, as the random

factors used to account for spatial autocorrelation among

survey sites controlled for a substantial part of coral cover

variation. This suggests that there are important factors

proxied by geographical position that were not explicitly

accounted for in our analyses. Such factors could be

environmental conditions that we did not consider; or be

environmental conditions that we did consider, but for which

alternative types of descriptors should have be used. For

instance, recent studies proposed measures of heat stress that

are complementary to DHW, such as statistics describing SST

bimodality and spell peaks (McClanahan et al., 2019;

McClanahan et al., 2020a), or metrics describing the

combination of both temperature and light stress (Skirving

et al., 2017). The same reasoning applies to the modulation of

heat stress by non-heat related environmental conditions (such

as tidal range, cyclone frequency, human population density),

which were found in previous works (Maina et al., 2011; Safaie

et al., 2018; McClanahan et al., 2019; McClanahan et al., 2020a;

McClanahan et al., 2020b; Sully et al., 2022) but that wasn’t the

focus of the current study. Furthermore, in this study we

assumed that changes in coral cover and heat stress followed

a linear relationship, but this might not necessarily be the case.

For instance, heat stress could be associated with non-

monotonic changes in coral cover, and alternative modelling

options (e.g. non-linear generalized additive mixed models,

Chen, 2000) might be considered.
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Finally, we used taxonomic groups primarily defined by

taxonomic family and growth form and assumed that species

belonging to each of these taxa had similar associations with

environmental trends. In reality, this might not necessarily be the

case, as it is possible that within these taxa there are species with

divergent heat associations. For instance, important intra- and

inter-specific differences in heat tolerance can be determined by

variation of photo-physiological traits (such as the holobiont light

absorption efficiency), and the relationship between such traits

and the growth form of the colony remains to be assessed

(Gómez-Campo et al., 2022). By observing such traits, previous

research identified significant differences in heat responses

between closely related massive coral species (Scheufen et al.,

2017b; Scheufen et al., 2017a). Such intra-taxon differences could

not be assessed in our work, but might explain the weak

associations observed for instance in GR4. Future work could

focus on re-annotating the CSS surveys with more specific

taxonomic labels (for instance, at the genus level), so that the

analyses can be refined with a higher taxonomic resolution.
Perspectives

We observed that local differences in coral cover matched

distinct patterns of interaction between recent and past heat

stress depending on taxa. These distinct patterns could highlight

differences in how taxa respond to past exposure to heat stress,

and future work should investigate the possible causes.

As discussed above, one possible cause is a community shift

from heat sensitive to heat tolerant species. To evaluate this

hypothesis, future studies could focus on field survey data at

higher taxonomic resolution than in our analysis, to allow heat

associations to be assessed at a species level. Such studies are

likely to be hampered by difficulties in defining coral species

based on visual surveys (Postaire et al., 2016; Forsman et al.,

2020; Oury et al., 2020; Prada and Hellberg, 2021; Rippe et al.,

2021). This could be overcome by using molecular surveying

techniques such as environmental DNA, which could make it

possible to establish objective molecular boundaries to

distinguish between surveyed species (Shinzato et al., 2018;

Shinzato et al., 2021; Dugal et al., 2022).

These presumptive responses to past heat exposure could

also be mirroring micro-evolutionary processes, where

individuals with genetic traits conferring thermal tolerance are

persisting after recurrent heat exposure. To investigate this,

population genomic studies featuring genotype-environment

association analyses could be performed to evaluate the

emergence of adaptive genetic traits at reefs exposed to heat

stress over the past decades (Riginos et al., 2016; Selmoni et al.,

2020b; Selmoni et al., 2021).

Another possible mechanism underpinning these

association with past heat is the physiological acclimation of
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corals exposed to recurrent thermal stress. This phenomenon

could be verified by performing standardized and systematic

eco-physiological analyses, which can be done using

experimental systems (e.g. temperature-controlled metabolic

chambers) measuring in oxygen evolution curves and the

optical light absorption efficiency of the holobiont (Scheufen

et al., 2017a; Scheufen et al., 2017b). Such eco-physiological

studies should be complemented with transcriptomics analyses

(e.g. Voolstra et al., 2021) to characterize the molecular pathways

that are (in-)activated during thermal exposure.

In reality, it is likely that each of the three phenomena

discussed here act together in concert to shape the heat response

of a reef exposed to recurrent thermal stress. Understanding and

disentangling the individual contribution of each phenomenon

will be aided by running trans-disciplinary studies (i.e.,

performing ecological surveys, genomic and eco-physiological

analyses in parallel) across the same reef system.

Conclusions

We performed an association study across reefs worldwide

that revealed differences in local coral cover associated with heat

stress trends. These associations differed between coral taxa,

which we sorted into four groups accordingly:
Group 1: Branching, corymbose, tabular
and digitate Acroporidae

Reefs exposed to recent heat stress displayed lower coral

cover than locally expected; among these reefs, those previously

exposed to frequent past heat stress showed relatively higher

coral cover, when compared to those less frequently exposed.
Group 2: Massive and encrusting
Poritidae and meandroid Favidae and
Mussidae

Reefs exposed to recent heat stress displayed lower coral

cover than locally expected, yet this association was weaker than

for Group 1. No mitigating interaction of recent heat stress with

past heat stress was observed.
Group 3: Branching Pocilloporidae

The spatial overlap between differences in local coral cover

and recent heat stress was only observed when considering the

interacting role of past heat stress. Indeed, reefs exposed to

frequent past heat stress showed a positive association between

recent heat stress and coral cover, while a negative association

was observed when past heat stress was less frequent.
Frontiers in Marine Science 14
Group 4: Branching Poritidae

The associations between coral cover and heat stress

trends appeared to follow a similar trend to Group 3,

a l t h o u g h t h i s w a s w e a k e r , n o i s i e r a n d n o t

statistically significant.

The groupings presented here could represent coral taxa-

specific response to heat stress exposure across reefs worldwide

over the past two to three decades. Future studies will need to

validate the existence of such processes and investigate their

nature (community shifts, evolution or acclimation) in further

depth and at higher resolutions.
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