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Automated detection of coastal
upwelling in the Western Indian
Ocean: Towards an operational
“Upwelling Watch” system

Matthew Lee Hammond*, Fatma Jebri ,
Meric Srokosz and Ekaterina Popova

National Oceanography Centre, Southampton, United Kingdom
Coastal upwelling is an oceanographic process that brings cold, nutrient-rich

waters to the ocean surface from depth. These nutrient-rich waters help drive

primary productivity which forms the foundation of ecological systems and the

fisheries dependent on them. Although coastal upwelling systems of the Western

Indian Ocean (WIO) are seasonal (i.e., only present for part of the year) with large

variability driving strong fluctuations in fish catch, they sustain food security and

livelihoods for millions of people via small-scale (subsistence and artisanal)

fisheries. Due to the socio-economic importance of these systems, an

"Upwelling Watch" analysis is proposed, for producing updates/alerts on

upwelling presence and extremes. We propose a methodology for the detection

of coastal upwelling using remotely-sensed daily chlorophyll-a and Sea Surface

Temperature (SST) data. An unsupervised machine learning approach, K-means

clustering, is used to detect upwelling areas off the Somali coast (WIO), where the

Somali upwelling– regarded as the largest in theWIO and the fifthmost important

upwelling system globally – takes place. This automatic detection approach

successfully delineates the upwelling core and surrounds, as well as non-

upwelling ocean regions. The technique is shown to be robust with accurate

classification of out-of-sample data (i.e., data not used for training the detection

model). Once upwelling regions have been identified, the classification of extreme

upwelling events was performed using confidence intervals derived from the full

remote sensing record. This work has shown promise within the Somali upwelling

system with aims to expand it to the rest of the WIO upwellings. This upwelling

detection and classification method can aid fisheries management and also

provide broader scientific insights into the functioning of these important

oceanographic features.

KEYWORDS
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1 Introduction

Coastal upwelling is a process whereby cool and deep

nutrient-rich waters are brought to the ocean surface,

primarily as a result of wind driven Ekman transport (e.g.,

Kämpf and Chapman, 2016). The nutrients brought to the

surface by upwelling drive increased primary productivity and

in turn support higher trophic levels including fish (e.g.,

Cushing, 1971). These coastal upwelling regions are among the

most highly productive marine ecosystems regions and rich

fishing grounds around the globe (Cushing, 1971; Barber,

2001). In the Western Indian Ocean (WIO), coastal upwelling

systems are seasonal (only present for part of the year), driven by

changing wind directions over the year, leading to changes in

their productivity (e.g., Kämpf and Chapman, 2016b). They play

a key role in regulating regional ecosystem productivity and

sustaining food security and livelihoods for millions of people

via fishing activity (Bakun et al., 1998; Jacobs et al., 2020a; Jacobs

et al., 2020b; Jebri et al., 2020; Jebri et al., 2022a).

The Somali Coastal Upwelling (SCU) is considered to be the

largest upwelling system in the WIO (Chatterjee et al., 2019) and

the fifth most important coastal upwelling in the world ocean

(DeCastro et al., 2016). The Somali upwelling occurs during the

Southwest Monsoon season (from May to September) as the

strong Findlater jet (low-level atmospheric jet) wind blows

southwesterly (Findlater, 1971) and the positive alongshore

wind stress causes offshore Ekman transport (Schott et al.,

2009; Varela et al., 2015). The Findlater jet and the southwest

monsoon winds drive the Somali Current (SC) northward

(reversing its direction from the northeast monsoon season)

(Schott and McCreary, 2001; Chatterjee et al., 2019). Part of the

northward flowing SC separates from the coast at around 3-4°N

and flow eastward to form a clockwise gyre called the “Southern

Gyre” (Mccreary et al., 1996; Chatterjee et al., 2019). A second

part of the SC continues farther north before deviating to the

east at around 10°N where it interacts with the “Great Whirl”, a

strong and large anticyclonic gyre (Beal and Donohue, 2013;

Lakshmi et al., 2020).

The SCU results in upwelled cold subsurface water and

significant biological productivity with increased nutrient

concentration and enhanced chlorophyll-a (Chl, a proxy of

phytoplankton biomass) levels (Mccreary et al., 1996; Wiggert

et al., 2005; Lakshmi et al., 2020). The phytoplankton bloom

surface signature of this upwelling region is generally wedge

shaped, due to the offshore deviation of the SC and the

interaction with the Great Whirl and Southern Gyre

(Mccreary et al., 1996; Beal and Donohue, 2013). However, the

SC, its wedges and associated gyres spread the areal extent of this

upwelled productive waters over a wider region offshore (Baars

et al., 1998; Lakshmi et al., 2020).

Although most indicators of upwelling activity (e.g.,

enhanced Chl, and reduced Sea Surface Temperature [SST])
Frontiers in Marine Science 02
can be observed in a synoptic way using satellite observations,

the areal extent of the SCU productivity remains difficult to

delineate exactly from month to month or year to year with the

human eye. This task can also be highly time consuming.

Machine learning (ML) approaches have proven to be efficient

for automatic detection of spatial features and facial recognition

(e.g., Chen et al., 2016; Zhang et al., 2018; Cheng et al., 2019).

They have been successfully used in oceanographic applications

such as plankton image classification (e.g., Zheng et al., 2017;

Pastore et al., 2020), currents and SST clustering (e.g.,

Richardson et al., 2003; Liu and Weisberg, 2005), and

assessing the links between current dynamics and productivity

(Jebri et al., 2022b). ML approaches fall in to two broad

categories: supervised learning, where the desired outputs of

the training dataset are known and unsupervised learning (e.g.,

Bengio et al., 2013), where they are not. Spatial delineation

problems can be addressed by using unsupervised ML clustering

methods which classify a population as a number of subsets (or

clusters). Clustering works on the principle of ensuring that data

points within an assigned group are more similar to each other

than those in the other groups. Examples of ML clustering

approaches include DBSCAN (Ester et al., 1996) and K-means

(Macqueen, 1967). Spatial delineation based on ML clustering

techniques were successfully applied to identify regions with

distinct marine biological activity from satellite ocean colour

data (Ardyna et al., 2017). Other traditional thresholding

approaches have also been used in the past for spatial

delineation problems such as defining marine biogeochemical

regions (Devred et al., 2007; Reygondeau et al., 2013). However,

ML based clustering has the advantage of higher discriminant

power (i.e., distinguishing between the different clusters) as

compared to other traditional methods (Jouini et al., 2016).

Due to the importance of fishing for economic stability and

food security (Taylor et al., 2019) as well as its dependence on

the dynamic seasonal upwelling (e.g., Bakun et al., 1998), a

potential service is proposed called “Upwelling Watch” to

provide updates/alerts to interested parties concerning the

areal extent and extremes of upwelling productivity as

identified with ML clustering. An initial proposal for the

methodology is laid out in this manuscript. In this study, an

ML clustering technique based on K-means, a space-partitioning

algorithm, is applied to daily remote sensing data off the Somali

coast in order to identify the areal extent and classify extremes of

upwelling productivity.
2 Materials and methods

2.1 Satellite remote sensing data

All satellite datasets used in this study were retrieved from the

Copernicus Marine Environment Monitoring Service (CMEMS;
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https://resources.marine.copernicus.eu/products) from reprocessed

and operational (Near Real Time [NRT]) products. To determine

the SCU surface signature, three remotely sensed variables were

used based on theoretical understanding of coastal upwelling

systems. These three variables are Chl, SST, and Sea Level

Anomaly (SLA). Coastal upwelling systems are typically

characterised by high Chl/low SST water masses (e.g., Letelier

et al., 2009; Menna et al., 2016). SLA was also considered, in

addition to using solely Chl and SST, as upwelling is known to be

linked to depressions in sea level (e.g., Shi et al., 2000; Strub et al.,

2015). Note that other variables theorised to be connected to or

driving upwelling were also considered (i.e., wind and current

vectors), but showed a limited statistical relationship with the

known upwelling regions (not shown). Daily SST data were

sourced from the global multi-satellite L4 Operational-Sea-

Surface-Temperature-and-Sea-Ice-Analysis (OSTIA; Donlon et al.,

2012) dataset, which is made available daily on a 0.05° (5 km) grid.

The OSTIA product makes use of in situ and satellite (from

microwave and infrared sensors as provided by the Group for

High Resolution Sea Surface Temperature (GHRSST)) data. Daily

Chl data were taken from the multi-satellite L4 Copernicus-

GlobColour product (Garnesson et al., 2019), which are made

available daily on a 0.04° (4 km) grid. Daily SLA data were taken

from the altimetry derived SSALTO/DUACSmulti-satellite product

(delayed time DT2018 version) processed and distributed by

CMEMS (previously by AVISO (Archiving, Validation and

Interpretation of Satellite Oceanographic Data)). This global SLA

dataset is made available daily on a 0.25° (25 km) grid.

The selected test period for this study was from the start of

2007, when the SST dataset begins, until the end of 2021. For Chl

and SLA, reprocessed data were used until the end of 2020 and

operational (NRT) data were used for 2021; SST operational data

were used for the entire period. To match the different grids for

analysis, linear interpolation was used to move the SST grid to the

Chl grid, providing only a minor change in resolution (4 km to

5 km). The SLA grid was moved to the Chl grid using nearest

neighbour interpolation due to themuch larger differences in spatial

resolution. All the satellite data were retrieved over a spatial extent

that covers the SCU region (Figure 1). This areal extent lies between

the latitudinal bands of 2-12°N with an eastern longitude limit of

58°E and the western boundary determined by the coastline. Data

from the Gulf of Aden were also removed (Figure 1) as they are

expected to be affected by markedly different biogeochemical and

physical controls. We note that biological response may follow

physical forcing with a delay and thus may necessitate a lagged

clustering approach. Lags between Chl and SST were investigated

but not found to be necessary for the method (Supplementary

Figure 1) as the highest correlation was found in the range of lags

±1 day.
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2.2 Machine learning clustering approach

Initial visual analysis of Chl, SST, and SLA spatial

distributions showed an overall good agreement between

these variables over the SCU region (Figure 1), in line with

theoretical expectations for upwelling waters (e.g., Letelier

et al., 2009; Menna et al., 2016). During the upwelling season

(May to September), an increased proportion of low SST, high

Chl data is seen (Supplementary Figure 2) expected to be

linked to upwelling. The change in the distribution of data

indicate that clustering should be a suitable technique to

delineate an upwelling surface signature within the data. A

number of clustering approaches were explored in an initial

testing phase, where the K-means learning algorithm was

found to provide best results [i.e., more in line with

expectations of a separate high Chl, low SST region – as

identified by the scatter plots – when compared with other

clustering approaches such as DBSCAN (Ester et al., 1996)].

This likely relates to the characteristics associated with the

data, i.e., the data density and variability, in the Chl/SST

variable space in this region.

K-means clustering allows a user selected number of

clusters to be defined, i.e., the number of clusters is not a

pre-defined automated process (Macqueen, 1967). As such a

range of “K” values (i.e., number of clusters) were tested (see

examples in Figures 2–4, and more details on the selection

process in the Results below). Two different K-means based

modelling approaches were assessed, a 2-variable (Chl and

SST) and a 3-variable (Chl, SST, and SLA). Both K-means

learning approaches were assessed visually and with

clustering metrics (Calinski-Harabasz score shown here) to

determine their suitability.

To fit the K-means based model, the data was subset, with

only the reprocessed data between 2007 and 2020 used. First,

only data from the Southwest Monsoon period were used,

when the SCU is active (e.g., Schott, 1983), specifically only

data from the months of May – September inclusive were

used (Jebri et al., 2020). Once the temporal subsetting

was done, fitting was based on a selection of 15% of the

remaining data with 85% used for testing. The NRT data

provided a further out of sample testing dataset. Data

were first treated with outlier removal, whereby data

exceeding the 99.5% quantile or lying below the 0.5%

quantile were removed, before minmax scaling prior

to fitting. The scaling and outlier removal reduce the

sensitivity of clustering approaches to anomalies in the

individual datasets used (Milligan and Cooper, 1988). This

will also potentially reduce the volume of data required for

accurate, reproducible fitting.
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2.3 Extremes threshold
classification approach

Once an upwelling surface signature has been identified, the

upwelling indicators (e.g., Chl, SST, SLA) are classified to determine

whether they represent an extreme event. This determination of

extremes is made with a comparison against historical data in each

grid cell (see e.g., Figure 1). All data from the historical period
Frontiers in Marine Science 04
(2007-2020) in each individual grid cell were taken to define a

historical distribution. This was done on a grid cell basis as, for

example, some grid cells will always have high SST values, so would

otherwise always be identified as extreme in SST (when compared

to the distribution of the whole region). From this historical

distribution, quantiles were used to determine thresholds for

extreme classification. As this is classifying upwelling, only data

identified as upwelling core (i.e., highest Chl, lowest SST – detailed
FIGURE 1

Example maps of the three different variables expected to be linked to upwelling over the SE monsoon season. Each row indicates a different
day, over 2020, separated by 1 month. The variables are: (leftmost column) Chl, (centre column) SST, and (rightmost column) SLA.
frontiersin.org
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fully in Section 3.1) in the clustering approach (detailed above) was

considered. The classification of extreme events was determined

from whether the grid cell value in a given image exceeded a

minimum or maximum threshold (i.e., the peaks-over-threshold

method – e.g., Lang et al., 1999). In such case, the event is classified

as a high or low extreme in any or all of the upwelling indicators.

The threshold value was determined using all historical data within

a given grid cell using quantiles, a number of which were considered

(5/95%, 15/85%, 25/75%) in lieu of an automated selection process

(e.g., Lang et al., 1999).

Figure 5 shows an example of themethodology for the extremes

classification approach, in this case for an extreme in SST, showing

a scatter plot in Chl/SST space of data from within the upwelling

core cluster. Alongside are two histograms, showing the

distributions of SST (top right) and Chl (bottom left). The

colours are indicative of the data being classified as an extreme

low (blue) or high in SST (yellow), in this case marked as threshold

quantiles of 15 and 85% of the data. A similar approach is applied to

Chl data, although in that case a low extreme would be considered

as non-upwelling and therefore is not indicated by the approach.

3 Results

3.1 Upwelling signature using the
2-variables (Chl - SST) K-means
based model

K-means clustering relies on a predefined number of clusters

“K” chosen by the user, that must be manually optimised
Frontiers in Marine Science 05
(Macqueen, 1967). The elbow criterion is an approach to

determining the optimal number of clusters. It works by

calculating the metric Within Cluster Sum of Squares (WCSS)

for a number of K values. The optimum number for “K” can

then be determined by plotting K against WCSS and identifying

the inflexion point (Thorndike, 1953). For the 2-variable (Chl

and SST) model an optimum number of 4 regions is determined

Figure 2. Scatter plots of a number of different K values are

shown in Figure 3 with corresponding maps displayed in

Figure 4. The smallest number of clusters (2) separates into a

high Chl/low SST clustering region and a low Chl/high SST non-

upwelling region (Figures 3, 4). Additional clusters, beyond these

first two, add subdivision primarily in the mid-SST low-Chl

space. Looking at maps of these different examples (Figure 4)

these regions can be characterised as an upwelling core region

(green), an upwelling surround or pre/post upwelling region

(yellow), as well as two non-upwelling regions, divided primarily

by their average temperature (blue and grey). A similar analysis

is performed for a 3-variable model (Chl/SST/SLA) – see

Supplementary Material.
3.2 Performance comparison of
2-variable and 3-variable models

Once the clustering K-means based model (c.f. section 2.2) is

fitted using a random sample (subset) of the reprocessed remote

sensing data, it is then applied to the remaining subset and to the

operational remote sensing data. An assessment of temporal
FIGURE 2

Elbow diagram indicating the performance for different pre-defined numbers of clusters. The inflexion point indicates the optimum number of
clusters. This corresponds to the 2-variable model (Chl/SST).
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performance (both interannual and seasonal respectively) of the

two data types is shown in Figure 6 (blue and green lines) &

Figure 7 (blue and green dots) using the metric Calinski-

Harabasz Score, which represents the ratio between the

dispersion within individual clusters to the dispersion between

clusters, whereby a larger score indicates better clustering

(Caliński and Harabasz, 1972). In terms of the historical

reprocessed data, some small degree of interannual variability

is seen, although seasonal variability is much stronger (Figure 6;

blue and green lines). The seasonal clustering performance

shows a peak in performance in July (Figure 7; blue and green

dots). It should be noted that the portion of this variability that is

related to clustering performance is unclear, with a considerable

proportion instead likely relating to underlying variability of the

data, for example the July peak in performance may relate to a

stronger and more uniform upwelling signal. This is considered

further in the discussion section.

Like the 2-variable model, the 3-variable clustering model

is fitted using a random sample (subset) of the reprocessed

remote sensing data before application to the operational

remote sensing data. An assessment of temporal performance

(both interannual and seasonal respectively) of the two data

types is shown in Figure 6 (orange and red lines) & Figure 7

(orange and red dots), showing similar temporal variability to

the 2-variable model. However, in all cases the 3-variable
Frontiers in Marine Science 06
model shows worse performance. Due to the slightly worse

performance of the 3-variable model (i.e., that also including

SLA), we decided to continue with the 2-variable model (i.e.,

Chl and SST only) for the analysis of extreme upwelling

events. More details behind this decision can be found in

the discussion.
3.3 “Upwelling Watch”: upwelling
NRT extreme events using the
threshold classification

The maps in Figure 9 show the results from the

application of the extremes threshold classification

approach to one day of NRT data in 2021, alongside the

underlying maps showing the SST and Chl data, as well as the

clustering identification results . As detai led in the

methodology, only the upwelling core cluster is used when

identifying upwelling extremes. In this case there is shown to

be one large area of high extreme in Chl that spans much of

the South of the upwelling core cluster. The SST data shows

areas of both high and low extremes. There is a small area of

high extremes in the East and two areas of low extremes, in

the North and in the South of the upwelling region; the South

shows a partial overlap with the high extremes in Chl.
FIGURE 3

Scatter plots of SST against Chl with subplots representing different numbers of pre-defined clusters, and colours indicating the different
clusters for the 2-variable model (Chl/SST).
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4 Discussion

In this study, two K-means based clustering approaches for

upwelling detection were used, leading to slightly different

clustering performance. One K-means clustering model was

fitted also using information for SLA (i.e., Chl/SST/SLA), the

other was fitted without this information (i.e., Chl/SST only). A

spatial comparison of both clustering models is included in

Figure 8, using an example from one day of NRT data, also

showing the underlying variables used by the clustering

technique. A reasonable correlation in the spatial patterns of

the three variables over the upwelling region is seen, however the

inclusion of SLA in the K-means model leads to slightly worse

performance. This could relate to two factors; the SLA model

picks up more features that do not directly relate to the targeted

coastal upwelling (e.g., SC associated gyres) and secondly the

coarser spatial resolution (25 km vs 4-5 km for the other two

variables). This leads to, when a region boundary is more

dominantly SLA defined, spatial boundaries that are not

smooth and instead take the coarser resolution of the SLA

product as well as the omission of smaller scale features. It

may be possible in future that an improved resolution SLA

product (e.g., from the upcoming SWOT mission) could be a
Frontiers in Marine Science 07
useful addition to this upwelling identification system;

alternatively, SLA data from models could be another possible

source of this information.

Three parameters associated with upwelling (Chl, SST, and

SLA) were directly explored in this manuscript. Current and

wind vectors were also explored in a preliminary analysis

although they were not found to have a strong correlation

with the Chl and SST variables. Other variables have also been

shown to impact Chl productivity in upwelling regions. For

example, precipitation has been shown to have an indirect

impact on Chl productivity through influence on nutrient

input via riverine discharge into coastal regions (e.g.,

Shafeeque et al. , 2019). Precipitation data was not

incorporated into our methodology as precipitation primarily

affects the coastal region (the majority of our study region is

open ocean) and is currently of limited spatial resolution (e.g., 1°

for the Global Precipitation Climatology Product, Huffman

et al., 2001). Aerosols and dust have also been shown to have

some very limited impact on chl productivity in the Somali

offshore region (Shafeeque et al., 2017), and so they are not

incorporated into our methodology.

There are a small number of limitations that affect the

remote sensing data used here, although they should have
FIGURE 4

Maps showing the regions identified with clustering, using different numbers of pre-defined clusters corresponding to those shown in Figure 3.
This corresponds to the 2-variable model (Chl/SST).
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limited impact. Remotely sensed Chl-a cannot be retrieved when

there is cloud cover, as clouds block visible light, this is partially

compensated by the use of an L4 dataset. The L4 GlobColour

dataset fills missing data (due to cloud coverage) by using the

most recently available value in a grid cell. SST data is similarly
Frontiers in Marine Science 08
affected by cloud cover, at infrared wavelengths, although this is

similarly compensated by use of an L4 dataset that incorporates

data from microwave sensors. Additionally, Chl-a values are

typically overestimated near the coast due to the impact of

atmospheric aerosols and dust as well as additional
FIGURE 5

Example of extremes definition in SST space. (bottom right) Chl/SST scatter plot, (bottom left) Chl histogram, (top right) SST histogram. Dark
blue indicates an extreme low in SST, yellow indicates an extreme high in SST.
FIGURE 6

Clustering performance over the entire time series of the study, showing clustering models with and without the inclusion of SLA data, as well
as the application to NRT data for both these cases.
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constituents in the water column, including Coloured Dissolved

Organic Matter (CDOM) (Schollaert et al., 2003; Hyde et al.,

2007; Mélin et al., 2007). Regional studies have shown that

radiometric biases can exceed ±5% for data within 25km of the
Frontiers in Marine Science 09
coast (Bulgarelli et al., 2017). SLA data is also known to be

impacted near the coast, where altimeters can be contaminated

by land falling within the footprint of the altimetry instruments

as well by the impact of tides and other high frequency events;
FIGURE 8

Example of image showing one day of the two clustering models. (Top left) clustering using Chl and SST only, (top right) clustering using Chl,
SST, and SLA. The bottom row shows the three underlying variables: Chl (bottom left), SST (bottom centre), and SLA (bottom right).
FIGURE 7

Average clustering performance over the seasonal cycle, showing clustering models with and without the inclusion of SLA data, as well as the
application to NRT data for both these cases.
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data within 15km of the coast are generally considered

inaccurate (The Climate Change Initiative Coastal Sea Level

Team, 2020). These limitations close to the coast are largely

mitigated by the study area primarily being open ocean and by

the use of outlier removal.

The application of the K-means model fitted using historical

reprocessed data to operational data performs well and is within

the bounds produced by the historical reprocessed data (both

seasonally and interannually, Figures 6, 7). This indicates the

model fit is likely to continue to be applicable to incoming

reprocessed data for the foreseeable future, provided there are no

major changes in the primary Chl/SST relationships in this

region. It is also feasible that this method could be adapted in

future to detect such changes. However, assessing the overall

performance of these K-means based models can be somewhat

challenging in two ways. First, although there is good theoretical

understanding of upwelling drivers and relevant biogeochemical

response, in situ data, which compared to satellite data have the

advantage of sampling the ocean subsurface, are rarely available

in this region. Conversely, while ocean model data is available at

depth, models are currently poor at describing vertical

(upwelling) velocities, so there is a dependency on secondary

parameters (e.g., nutrient and Chl concentrations indicative of

the biological response). These secondary parameters can have a

spatial coverage different from the actual upwelling site.

Comparison in future with fishing data may allow some

assessment of the performance, assuming a higher abundance

of fish in these productive upwelling regions, although the

limited spatial resolution of available fishing datasets (e.g., up

to 0.5°; Pauly et al., 2020) would make this challenging at

present. The second factor challenging performance
Frontiers in Marine Science 10
assessment is the use of traditional clustering metrics (e.g.,

Calinski-Harabasz score here); as the data itself changes

temporally, the metrics will also reflect this variability rather

than solely clustering performance (e.g., Wu et al., 2009). The

data considered in each “scene” (i.e., one day of data) differs

between days. This will happen on a day-to-day basis, seasonally,

and also interannually, as the variables change in response to

drivers beyond simply upwelling. This will in turn lead to

“apparent” changes in clustering performance, in traditional

clustering metrics (e.g., the Calinski-Harabasz score), that do

not necessarily reflect any change in true performance. New

metrics, or normalisation of existing metrics, that are robust to

this may help improve assessment of such clustering approaches

in future (e.g., Wu et al., 2009).

In a potential “Upwelling Watch” service, being able to not

only identify upwelling but also classify extreme events will be of

great use to potential end users. For the example found in

Figure 9 part of the upwelling region is identified as a high

extreme in Chl and low extreme in SST. In order to classify

upwelling events as extremes, a number of thresholds were

explored, in this case based on quantiles at 5-15% and 75-95%

of the data (Figure 7). Each of these thresholds thus corresponds

to a different proportion of data classified as being extreme.

However, the optimum proportion has not been identified in

this study. Instead, it may vary depending on the subject of

interest, for example for potential fisheries end users it may

depend on the type of fish being targeted, noting that there can

be lags between Chl productivity and fish abundance (Menon

et al., 2019; Kizenga et al., 2021). As such in a potential

“Upwelling Watch” service, the thresholds for this may be a

user selectable option. Alternatively, to allow a more informed
FIGURE 9

Example of extremes classification for (top left) Chl, (top right) SST, alongside the underlying variables: Chl (bottom left), SST (bottom centre),
and upwelling classification (bottom right).
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comparison and selection of these threshold options, future

work on comparing these thresholds with fishing data may

help identify the ideal thresholds.

The clustering method is based on identification of regions

within Chl/SST space. As such, other ocean features such as

mesoscale eddies and oceanic fronts may have a similar

signature to upwelling. Evidence of the detection of an eddy

can be seen in Supplementary Video 1 between the 17th and 21st

of August, classified by the method as part of the upwelling

surround or pre/post upwelling region. The analysis of fronts in

this region is the focus of ongoing work although the main

thermal fronts in this region have been shown to correspond

with the typical Somali upwelling signature (e.g., Wang et al.,

2021). When applying this method, care should be taken to

avoid contamination of the signal by eddies and fronts; if it is

necessary to separate these features in future work, joint

application of automated eddy and front detection techniques

(e.g., Belkin, 2021; Mauzole, 2022) alongside the upwelling

detection could be performed.

The clustering K-means model is currently fitted, and

geophysical variables selected for, the SCU. This method can

be expanded in future, either to the rest of the WIO or indeed

additional seasonal upwelling systems globally, but with some

adaptations. It is possible that some covariates other than Chl

and SST become more important for successful clustering. This

may be particularly relevant in, for example, regions where there

is substantial riverine input, which is typically higher Chl at high

SST, rather than the high Chl/low SST expected as an upwelling

signature. Another example would be areas where primary

production is not limited by nutrient availability (e.g., at

higher latitudes); the addition of nutrients via upwelling in

these areas may lead to a more muted response in Chl.

Although potential extra remotely sensed covariates will still

be limited by the available resolution, as in the case of SLA,

model information may possibly be used to supplement remote

sensing data.
5 Conclusions and perspectives

An unsupervised ML clustering (K-means based) approach

was used to detect and then classify seasonal upwelling surface

signature off the Somali coast using satellite observations. This

approach successfully delineates upwelling core and surrounds

as well as non-upwelling ocean regions. The technique is shown

to be temporally robust (seasonally and interannually) with

accurate classification of NRT data not used in the fitting of

the classification model. Once upwelling regions have been

identified, classification of extreme upwelling events was

performed using a threshold approach that includes

confidence intervals derived from historical data. These

approaches, that we call “Upwelling Watch”, are designed to

be adaptable to meet users’ needs.
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Due to the high productivity in seasonal coastal upwelling

systems, such as analysed here in the WIO, they support a large

volume of fishing activity sustaining food security in the region

for millions of people (Taylor et al., 2019). At the same time,

upwelling systems can be areas of reduced oxygen and more

pronounce acidification (e.g., Kämpf and Chapman, 2016),

negatively impacting marine ecosystems. Thus, extremes in

upwelling along with general upwelling variability can directly

affect fishing catch success rates and the health of marine

ecosystems in general. This “Upwelling Watch” service,

designed to detect these upwelling systems and their

anomalous behaviour, can be very useful provided it is

accompanied by schemes to raise awareness and maximise use

rates for those most in need of it. Furthermore, local fisheries

data collection and analysis needs to work hand-in-hand with

this service to be able to identify and document biological

consequences of the extreme upwell ing events. An

implementation scheme alongside the full development of the

system could involve interactions with local management,

governments, and NGOs in order to aid in communication of

its benefits.

This work has shown promise within the SCU system with

aims to expand it in future to the rest of the WIO using similar

clustering techniques although recognising that different

upwelling systems can provide their own unique problems,

potentially requiring adaptations to both the method and

geophysical information used. This “Upwelling Watch”

method can aid fisheries management, by potential defining

target areas for fishing. The “Upwelling Watch” method may

also provide broader scientific value by providing a definition of

upwelling regions, and classification of their modes of variability.

This subset of data can then be further analysed in numerous

ways. Examples might include studying temporal and spatial

dynamics of upwelling, addressing potential questions such as

whether upwelling is changing in its spatial extent as well as

quantifying marine heatwaves and cold spells and associated

extremes of Chl (green waves), in this and potentially other

seasonal upwelling regions.
Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://resources.marine.copernicus.eu/

product-detail/OCEANCOLOUR_GLO_CHL_L4_NRT_

OBSERVATIONS_009_033/INFORMATION https://resources.

marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_

CHL_L4_REP_OBSERVATIONS_009_082/INFORMATION

https://resources.marine.copernicus.eu/product-detail/SST_

GLO_ S ST _ L 4 _NRT_OBSERVAT IONS_ 0 1 0 _ 0 0 1 /

INFORMATION https://resources.marine.copernicus.eu/

product-detail/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_

008_057/INFORMATION https://resources.marine.copernicus.
frontiersin.org

https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033/INFORMATION
https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082/INFORMATION
https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082/INFORMATION
https://resources.marine.copernicus.eu/product-detail/OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057/INFORMATION
https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046/INFORMATION
https://doi.org/10.3389/fmars.2022.950733
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Hammond et al. 10.3389/fmars.2022.950733
eu/product-deta i l /SEALEVEL_GLO_PHY_L4_NRT_

OBSERVATIONS_008_046/INFORMATION
Author contributions

Methodology and investigations: MH. Writing—original

draft preparation: MH. Writing—review and editing: all.

Supervision: FJ, MS, EP. Project administration: EP. All

authors contributed to the article and approved the

submitted version.
Funding

This study was supported by the Global Challenges Research

Fund (GCRF) under NERC grant NE/P021050/1 in the

framework of the SOLSTICE-WIO project (https://www.

solstice-wio.org/) as well as the UK National Capability project

FOCUS (NE/X006271/1).
Acknowledgments

All data used in this study was sourced from the Copernicus

Marine Service (CMEMS- marine.copernicus.eu). SST data was

produced by the OSTIA project, Chl data by the Copernicus-
Frontiers in Marine Science 12
GlobColour team, and SLA was processed by CMEMS. The

authors would like to thank those involved for producing these

datasets and for making them freely available.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fmars.2022.950733/full#supplementary-material
References
Ardyna, M., Claustre, H., Sallée, J.-B., D'Ovidio, F., Gentili, B., van Dijken, G.,
et al. (2017). Delineating environmental control of phytoplankton biomass and
phenology in the Southern Ocean.. Geophys. Res. Lett. 44 (10), 5016–5024.
doi: 10.1002/2016GL072428

Baars, M. A., Schalk, P. H., and Veldhuis, J. W. (1998). “Seasonal fluctuations in
plankton biomass and productivity in the ecosystems of the Somali current, gulf of
Aden, and southern red sea,”, in Large Marine ecosystems of the Indian ocean:
Assessment, sustainability, and management (Oxford: Blackwell Science), 143–174.

Bakun, A., Roy, C., and Lluch-Cota, S. (1998). Coastal upwelling and other processes
regulating ecosystem productivity and fish production in the Western Indian ocean.
Large Mar. Ecosyst. Indian Ocean Assessment Sustain. Manage 103–139.

Barber, R. T. (2001). Upwelling ecosystems. Encycl. Ocean Sci. 6, 3128–3135.
doi: 10.1006/rwos.2001.0295

Beal, L. M., and Donohue, K. A. (2013). The great whirl: Observations of its seasonal
development and interannual variability. J. Geophys. Res. Ocean. 118, 1–13. doi: 10.1029/
2012JC008198

Belkin, I. M. (2021). Review remote sensing of ocean fronts in marine ecology
and fisheries. Remote Sens. 13, 1–22. doi: 10.3390/rs13050883

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
doi: 10.1109/TPAMI.2013.50

Bulgarelli, B., Kiselev, V., and Zibordi, G. (2017). Adjacency effects in satellite
radiometric products from coastal waters: a theoretical analysis for the northern
Adriatic Sea. Appl. Opt. 56, 854. doi: 10.1364/ao.56.000854
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