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Turbidity influences the
recruitment of Argyrosomus
japonicus to estuarine nurseries

Nicola Caroline James1,2*, Amber-Robyn Childs2,
Justin Kemp2, Shannon Wilsnagh2 and Carla Edworthy1

1South African Institute for Aquatic Biodiversity, Makhanda, South Africa, 2Department of
Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
Estuaries serve as important nursery habitats for several coastal fishery species.

The successful recruitment of larvae and early juveniles into estuaries is

paramount for population persistence and maintenance. Several factors have

been proposed as stimuli that could elicit a recruitment response in estuary-

associated fish species. Larvae and early juveniles may trace land-based cues

back to an estuary by following the olfactory concentration gradient or use

other visual or acoustic stimuli. Argyrosomus japonicus is an iconic estuarine-

associated species. Due to overfishing, reduced freshwater input and habitat

degradation in their estuarine nursery habitat, the South African population has

suffered severe stock declines. Turbidity associated with high freshwater input

is thought to promote recruitment into estuaries. We used choice-chamber

laboratory experiments to test the hypothesis that settlement-stage A.

japonicus are attracted to turbidity rather than olfactory gradients when

recruiting into estuaries. Three choice experiments (with three replicate trials

each) were performed over three consecutive days. Each experiment used

paired combinations of six estuarine/seawater types with varying turbidity and

olfactory characteristics. For each experiment, three trials were repeated in

succession with six new fish for each trial. Settlement-stage A. japonicus

showed a significant preference for turbid water (with and without olfactory

cues) over seawater (no olfactory cues) and clear estuary water (with

olfactory cues). No clear choice was made between clear estuary water (with

olfactory cues) and clear artificial seawater (without olfactory cues), suggesting

that turbidity gradients are most likely the primary factor governing the

recruitment of settlement-stage A. japonicus into estuaries.
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Introduction

Fish may utilize acoustic, visual, and chemical cues to

identify and recruit into nursery habitats (Gouraguine et al.,

2017). Studies on early-stage temperate sparids and sciaenids

have highlighted the importance of olfaction in locating

estuarine nursery habitats (James et al., 2008; Radford et al.,

2012; Havel and Fuiman, 2015). Olfactory cues that allow for

discrimination between habitat types may come from a variety of

compounds including amino acids, lipids as well as mannitol

from algae and lignins from seagrasses and terrestrial plants

(Dixson et al., 2008; Havel and Fuiman, 2015; Gouraguine et al.,

2017). Olfactory cues may be particularly important for species

using littoral vegetated habitats in estuaries (such as seagrasses),

with larvae of the sparids Rhabosargus holubi and Pagrus

auratus and the sciaenid Sciaenops ocellatus preferring water

collected from or near seagrass beds over seawater (James et al.,

2008; Radford et al., 2012; Havel and Fuiman, 2015). However, it

is not clear whether this is also true for demersal species that

often utilize the deeper channels of estuaries, which may be

responding to visual cues such as turbidity.

The dusky kob, Argyrosomus japonicus, is a widely distributed

sciaenid, which occurs in temperate and subtropical waters of the

Indian and Pacific Oceans around Africa, Australia, India,

Pakistan, China, Korea, and Japan (Silberschneider and Gray,

2008). Spawning occurs in the nearshore marine environment in

the vicinity of estuaries, reefs and the surf-zone (Silberschneider

and Gray, 2008), with settlement stages in South Africa (10 – 30

mm TL) (Griffiths, 1996; Pattrick and Strydom, 2014; Nodo et al.,

2018) and eastern Australia (from ~ 4 weeks post-hatching)

(Russell et al., 2021a) recruiting into estuaries soon after

spawning. Argyrosomus japonicus in South Africa is most likely

estuarine-dependent, with the early juveniles (< 150 mm TL)

thought to occur exclusively in estuaries and the larger juveniles

found in estuaries and nearshore coastal waters (Griffiths, 1996;

Cowley et al., 2008). However, based on acoustic telemetry

research on juvenile A. japonicus in South Africa it has been

suggested that the A. japonicus stock exists as several

subpopulations (within larger metapopulations), each with

distinct estuarine and marine contingents (Childs, 2013; Childs

et al., 2015). In Australia, although estuaries are critical nursery

habitats for A. japonicus and recruitment is likely bolstered by

access to turbid estuaries for certain populations there appears to

be some plasticity in A. japonicus life history. A range of different

research methods provide evidence that the populations are not

entirely estuarine associated, with marine centric contingents that

do not enter estuaries (Ferguson et al., 2011; Barnes et al., 2016;

Barnes et al., 2019; Russell et al., 2022).
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It has been suggested that high freshwater flow promotes the

recruitment of larval and juvenile A. japonicus into estuaries

(reviewed in Stewart et al., 2020). The prevalence of juveniles of

the South African population in turbid versus non-turbid

estuaries (Marais, 1981; Marais, 1985; Plumstead et al., 1985;

Whitfield and Paterson, 2003; Nodo et al., 2017; James et al.,

2020), suggests that turbid systems with fairly high freshwater

input, such as the Great Fish Estuary on the south-east coast of

South Africa, are the preferred nursery habitat for A. japonicus

(Griffiths, 1996). Within turbid estuaries throughout their

distribution, early juveniles are found predominantly in deeper

waters in the upper reaches and are not associated with the

shallow littoral vegetated fringes (Silberschneider and

Gray, 2008).

In this study, we assessed the behavioural response of

settlement-stage larval A. japonicus from the south-east coast

of South Africa to several different estuarine and seawater types

(with varying turbidity and olfaction characteristics) by using a

two-channel choice flume adopted in previous studies (James

et al., 2008; Radford et al., 2012; Havel and Fuiman, 2015). We

tested the hypothesis that turbidity associated with high

freshwater flow is used as a visual cue in the recruitment of A.

japonicus into estuaries.
Materials and methods

All the choice experiments were conducted in a controlled

environment (CE) room at the NRF-SAIAB Aquatic

Ecophysiology Research Platform (AERP) laboratory at

Rhodes University in Makhanda, South Africa (Figure 1).
Experimental animals

Settlement-stage (size at recruitment, having completed

metamorphosis) A. japonicus were sourced from the Pure

Ocean Aquaculture facility in East London. The fish were

hatched from eggs derived from an induced spawning of wild

caught (West Kleinemonde Estuary) broodstock (Figure 1).

They were transported from the hatchery to the laboratory in

Makhanda and stocked into a single 500 L holding tank although

estuaries are critical nursery habitats for A. japonicus a range of

different research methods provide evidence that the

populations are not entirely estuarine associated, with marine

centric contingents that do not enter estuaries containing filtered

(1 µm) and ozonated seawater (35 ppt). The seawater in the
frontiersin.org
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tanks was continuously re-circulated through a mechanical and

biological filter to maintain water quality. The fish were

maintained on their hatchery artificial micro-pellet diet and

fed three times a day.
Seawater and estuarine water
collection sites

Seawater was collected at a site 6 km offshore of the Kowie

Estuary (Figure 1) and estuarine water was collected from the

freshwater-dominated Great Fish Estuary, and the marine-

dominated Kariega Estuary (Figure 1). The Great Fish Estuary

has a large catchment area of about 30 000 km2. Although

several impoundments have been constructed in the catchment,

natural runoff is augmented by water from the Orange River.
Frontiers in Marine Science 03
The high sediment load of the river results in very high turbidity

(Nephelometric Turbidity Unit (NTU) >240) (Grange et al.,

2000; James and Harrison, 2010; Froneman, 2010; Nodo et al.,

2017). In contrast, the Kariega Estuary receives a negligible

inflow of freshwater due to relatively low rainfall, a small

catchment (686 km2), as well as several impoundments along

the river that severely reduce river flow. The estuarine waters are

normally clear (NTU <35) as a result of limited freshwater input,

with the bed of the system visible in the lower reaches (James

and Harrison, 2010; Froneman, 2010).
Choice experiments

A two-channel choice-flume (Figure 2) constructed from

Perspex was used to conduct choice experiments on two water
FIGURE 1

Map showing the study area and locations referred to in the text.
FIGURE 2

Image of two-channel choice flume constructed from Perspex.
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types at a time. The two types of experimental water to be tested

were pumped from their respective holding tanks to two small

header tanks (20 L) located above the flume, each with an overflow

outlet at the top of the tank that returned excess water to the

holding tanks. A second outlet at the base of each header tank

allowed water to flow by gravity through tubing to the inflow of

each channel of the flume. The flow of experimental water was

regulated by a double valve and inline flowmeter. The flow rate to

each channel of the flume was regulated to 2 cm s-1. Water from

each source entered the upstream end of each channel of the flume

and immediately passed through a wall constructed of packed, fine-

walled PVC tubes to dissipate inflow turbulence and initiate laminar

flow. The two water types, still separated by a dividing wall, then

flowed down the flume before passing through a second wall of

packed tubes. Thereafter the central divider ended and the two

water types flowed alongside each other before exiting the system

over a beveled overflow weir. Two stainless steel screens (1 mm

mesh size) placed across the width of the flume (at the end of the

dividing wall and before the overflow weir) were used to define a

test arena (280 mm wide x 200 mm long) and prevented the fish

from moving upstream of the end of the central divider or towards

the overflow. A GoPro camera (GoPro Hero 3) was mounted

directly above the test arena to record the activity of fish during each

trial. The walls of the flume were covered with opaque vinyl film to

eliminate external influences that may have resulted in side-bias. A

light source was located centrally above the chamber to ensure equal

lighting to each chamber. Tracer dye tests were performed after

each experiment to ensure the two water flows were laminar

throughout the flume.

Three choice experiments (with three replicate trials each)

were performed over three consecutive days just prior to the

midday feed. Each experiment used paired combinations of six

seawater/estuary water types (Table 1), with varying turbidity

and olfactory characteristics, namely:
Fron
Experiment 1) Preference of A. japonicus for Great Fish

estuarine water over Kariega estuarine water

Turbid estuarine water (Great Fish: + turbidity, + odor)

over clear estuarine water (Kariega: - turbidity, + odor)

Experiment 2) Preference of A. japonicus for turbidity cues
tiers in Marine Science 04
Clear oceanic seawater (- turbidity, - odor) with turbid

artificial seawater (+ turbidity, - odor)

Experiment 3) Preference of A. japonicus for odor in Great

Fish estuarine water over turbidity

Estuarine water (Great Fish) with turbidity removed (-

turbidity, + odor) with clear artificial seawater (-

turbidity, - odor)
Oceanic seawater (1000 L) (- turbidity, - odor) was collected

at high tide using a submersible pump. The turbid estuarine

water (2000 L) (+ turbidity, + odor) and clear estuarine water

(1000 L) (- turbidity, + odor) were pumped during low tide from

the lower reaches of the freshwater-dominated Great Fish

Estuary and the marine-dominated Kariega Estuary,

respectively. The collected oceanic seawater and estuarine

water were transported to the AERP laboratory and stored for

1 – 4 days at 24°C in separate 500 L containers containing

circulation pumps to maintain water movement.

In order to determine if A. japonicus were responding to

odor rather than turbidity in Great Fish Estuary water, a portion

(1000 L) of the water sample collected from the Great Fish

Estuary was treated to remove turbidity by settlement and

filtration (1 µm and 0.2 µm filter pore). This resulted in

estuarine water with turbidity removed (- turbidity, + odor).

Artificial seawater (- turbidity, - odor) was also used in addition

to oceanic seawater (- turbidity, - odor) due to sampling

constraints. Artificial seawater (- turbidity, - odor) was made

by adding artificial sea salt (Tetra Marine Sea Salt, Tetra® -

Spectrum Brands Pet LLC, USA) to rainwater to achieve a

salinity of 35 ppt. Turbid artificial seawater (+ turbidity, -

odor) was created by adding sediment collected from the

lower reaches of the Great Fish Estuary to artificial seawater.

The sediment was first dried in a circulating oven (8 h at 100°C)

and then placed in a muffle oven (12 h at 400°C) to burn off

organic matter (Carrasco et al., 2013) and associated olfactory

cues. The resulting product was crushed and sieved (2 µm mesh)

before mixing with artificial seawater. The turbidity was

matched to untreated Great Fish water by assessing a sample

(1 L) of Great Fish water that was vacuum filtered (0.2 µm) in ten

100 ml batches onto pre-weighed filter papers. These were then
frontiersin.o
TABLE 1 Water parameters at the initiation of the choice chamber experiments.

Experiment Water type Salinity Temperature (°C) pH Turbidity

1 Turbid estuarine water (Great Fish) 37.0 23.4 8.19 55.7

Clear estuarine water (Kariega) 37.0 23.7 7.82 1.9

2 Clear seawater 34.2 23.5 8.32 0

Turbid artificial seawater 34.1 23.7 8.17 51.5

3 Estuarine water (Great Fish) with turbidity removed 29.3 24.4 7.34 0

Clear artificial seawater 29.3 23.3 7.53 0
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oven dried (four hours at 100°C) and weighed to estimate the

turbidity (grams of sediment L-1). The required portion of

treated sediment was then added to the artificial seawater and

adjusted using turbidity meter (HANNA 98703-02) readings.

Each choice experiment was conducted according to the

following protocol. Prior to the experiments to eliminate salinity

as a confounding factor and to prevent water types of different

salinities from mixing in the test arena the salinity of the

experimental water was standardized by the addition of

artificial sea salt (Tetra Marine Sea Salt, Tetra® - Spectrum

Brands Pet LLC, USA). Six fish were placed in the test arena

containing water from their holding tank and allowed five

minutes to acclimate without flow. Water flow from the two

header tanks (containing the experimental water as per the

paired combinations listed above) to each channel was then

initiated for three minutes after which the inflows to the flume

channels were switched around and run for a further three

minutes to control for potential side bias. For each experiment,

three trials were repeated in succession with six new fish for each

trial. Water quality parameters were measured at the start of

each experiment (Table 1).
Video image analyses

VLC media player was used to crop the last six minutes from

each of the 11 minutes of video footage for analysis in the

automated video tracking software id Tracker (Romero-Ferrero

et al., 2019). See https://www.youtube.com/watch?v=fk6QzEd-

iZ8&list=PLbDylBDlLLT2wYjfdTsbOrlB2P8MeXp10 for the

cropped video footage from Trial 1 of each experiment. Id

Tracker extracts trajectory data for each of the six individuals

in the test arena. The location of each individual was noted every

second and allocated either a 1 (for presence in the cue) or 0

(absence in the cue) to create a binomial dataset for

each individual.
Statistical analyses

The binomial data for each individual were used to calculate

the time (seconds) that the individual fish spent in the turbid

(Experiment 1 and 2) or odor (Experiment 3) cue for each trial.

We fitted a generalized linear model (GLM) with a gamma

distribution (Zuur et al., 2009), estimated with a maximum

likelihood estimator, to test the significance of time spent in each

cue. Gamma distribution was selected due to the response

variable having a maximum time (Jutfelt et al., 2017). Separate

models were run for each experiment using the glm function in

the ‘lme4’ package (Bates et al., 2015), where time spent

(seconds) of each fish was the response variable and presence

in the cue (or not) and side preference (side 1 vs side 2) were

added as fixed effects. Model diagnostics were conducted to
Frontiers in Marine Science 05
ensure assumptions were not violated (Zuur et al., 2010). We

initially ran a generalized mixed effects model to include the

random effect structure of individual fish nested within each trial

(Harrison et al., 2018). However, since the effect was negligible

(variance of the random effects was zero), they were dropped

from the model and the generalized linear models were then

fitted for each experiment. All plots and analyses were conducted

in R (version 4.0.2) and RStudio (version 1.4.1717).
Results

Settlement stage (21.9 ± 5.3 mm TL) A. japonicus spent more

time in the turbid cues in both experiments 1 and 2 (turbid

estuarine water (Great Fish water) and turbid artificial seawater,

respectively) occurring in the turbid cues on average 79.54 (± 5.06

SE, range 43.33 – 100, n = 18) and 69.72 (± 3.02 SE, range 50 –

94.16, n = 18) percent of the time during each experiment,

respectively (Figure 3). The average time spent in the clear

estuarine odor cue (Experiment 3), however, was only 45.97 (±

4.01 SE, range 20 – 93.33, n = 18) percent (Figure 3).

Supporting our hypothesis and overall trends observed in

the data, the results of the GLMs showed that A. japonicus

exhibited a significant preference for turbid estuarine water

when compared to clear estuarine water (Experiment 1) (b =

-0.03, SE = 0.004, t(69) = -7.101, P < 0.001) and turbid artificial

seawater when compared to clear seawater (Experiment 2) (b =

-0.03, SE = 0.004, t(69) = -7.157, P < 0.001). Conversely, when

given the choice of clear estuarine water and clear artificial

seawater, fish showed no significant preference for the clear

estuarine water (b = 0.0005, SE = 0.003, t(69) = 1.382, P =

0.172). For all experiments, side was not a significant predictor

of time spent in the cue (Experiment 1 (b = 0.00005, SE = 0.003,

t(69) = 0.000, P = 0.999), Experiment 2 (b = 0.00005, SE = 0.003,

t(69) = 0.017, P = 0.987) and Experiment 3 (b = 0.005, SE =

0.003, t(69) = 0.008, P = 0.994).
Discussion

Results from this study clearly indicate that settlement-stage

A. japonicus show a preference for turbid water (with and

without odor) over clear water. This suggests that A. japonicus

use turbidity as a cue to navigate towards estuarine nursery

habitats. These findings also confirm the importance of turbid

estuaries, particularly the Great Fish Estuary, as settlement and

nursery areas for the South African population of this species.

Unlike other estuarine-associated species, which are associated

with shallow littoral vegetation, turbidity may be more

important as a recruitment cue than olfaction for this

demersal species.

The habitat and associated behavioural transitions

associated with maturing larvae of estuary-associated marine
frontiersin.org
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species are dependent on the presence of external stimuli that

induce a migratory response (Boehlert and Munday, 1988).

When the behavioural or biological significance of a stimuli is

unknown, choice chamber experiments using a group (or an

individual) of test animals provide an opportunity to understand

behavioural responses to the controlled release of physico-

chemical stimuli (Scarfe et al., 1985). It is also highly likely

that the importance of certain environmental stimuli are species-

specific (Cyrus and Blaber, 1987).

Although studies have highlighted the importance of both

olfaction (James et al., 2008; Radford et al., 2012; Havel and

Fuiman, 2015) and turbidity (this study) in recruitment of

estuarine-associated species into estuaries, identifying the

mechanism is challenging, and in many instances, a myriad of

environmental and sensory system stimuli may also be used to

locate estuarine nurseries. For example, the use of sound (not

tested in the present study) as a cue for settlement-stage larval
Frontiers in Marine Science 06
reef fishes to locate nursery areas for settlement is well

documented (e.g. Simpson et al., 2004; Radford et al., 2011).

Juvenile reef fishes use a variety of sensory cues and the

utilization of different types of cues may vary according to

different spatial scales (Kingsford et al., 2002; Leis et al., 2011).

Estuaries with large amounts of riverine input have higher

turbidity in comparison to smaller estuaries and freshwater

deprived estuaries in the same region (Marais, 1988) and

discharge turbid, nutrient-rich plumes into adjacent nearshore

waters (shown graphically in Figure 4). These turbid, nutrient-

rich plumes have the greatest potential to affect fish recruitment

(Grimes and Kingsford, 1996). Vorwerk (2006) found that

outflow of estuarine water from the Great Fish Estuary results

in a plume of turbid water, with increased particulate organic

matter (POM) as well as phytoplankton and zooplankton

concentrations adjacent to and downstream of the estuary

mouth. In contrast, no evidence of freshwater outflow
A

B

C

FIGURE 3

Mean percent preference ( ± SE) of settlement-stage Argyrosomus japonicus (n = 54) when given the choice of (A) turbid estuarine water
(sourced from the Great Fish Estuary) or clear estuarine water (sourced from the Kariega Estuary), (B) clear seawater or turbid artificial seawater
and (C) estuarine water with turbidity removed (sourced from the Great Fish Estuary) or clear artificial seawater. Grey bars indicate the turbid
water and white bars indicate clear water.
frontiersin.org
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(reduced salinity and increased POM) is evident adjacent to the

Kariega Estuary. The absence of a marked turbidity gradient in

the marine environment adjacent to several estuaries on the

south-eastern coastline of South Africa, led Whitfield (1994) to

suggest that olfaction rather than turbidity is likely the driving

force behind the recruitment of most marine fishes into South

African estuaries. Although this hypothesis is supported by the

results of James et al. (2008) for the estuarine-dependent

Rhabdosargus holubi, Whitfield (1994) and Cyrus and Blaber

(1987) suggested that certain species may follow turbidity

gradients into estuaries.

Settlement stage A. japonicus showed a significant preference

for turbid water (with and without olfactory cues) over seawater

(no olfactory cues) and clear estuary water from the Kariega

Estuary (with olfactory cues). No clear choice was made between

clear estuary water (with olfactory cues) and clear oceanic

seawater (without olfactory cues). These findings suggest that

turbidity gradients are likely the primary factor governing the

recruitment of settlement stage A. japonicus into estuaries. At

settlement, larval A. japonicus are capable of active swimming

(12 BL s-1) in response to environmental cues from estuaries

(Clark et al., 2005). It is likely that these settlement stage fish use

vision (along with other senses) to follow estuarine turbidity

gradients into freshwater-dominated estuaries. Early-stage A.

japonicus have well developed visual senses from 5 mm TL, with

vision being the main sensory system used for feeding

(Ballagh, 2011).

In South African estuaries, A. japonicus early juveniles

(< 150 - 400 mm TL) are common in turbid systems and are

relatively scarce in clearer estuaries (Ter Morshuizen et al., 1996;

Whitfield and Paterson, 2003). Preliminary otolith

microchemistry classification analyses on young-of-the-year A.

japonicus captured from six estuaries with contrasting
Frontiers in Marine Science 07
environmental attributes (including the Kariega and Great

Fish estuaries sampled in the present study) showed high

levels of classification (> 90%) when only turbid freshwater-

influenced estuaries were grouped compared to other adjacent

less turbid estuaries, suggesting that larvae and early juveniles

may recruit primarily into turbid estuaries, and then either

remain in these important estuaries or later move to less

turbid estuaries (Childs, unpublished data). The results of the

present study, which show that settlement stage A. japonicus

have a preference for turbid cues support this hypothesis and

highlight the importance of turbidity and freshwater inflow for

the successful recruitment of settlement-stage fish. Additionally,

geographic variation in growth rates of A. japonicus suggest that

the increased productivity in the freshwater-influenced estuaries

(including Great Fish) support higher growth rates of juveniles

and hence increased nursery values when compared to other less

productive estuaries (Childs, 2013). Indeed, the availability of

nutrients in freshwater-dominated estuaries supports elevated

primary, secondary and tertiary productivity providing an

abundant food supply to meet diverse food requirements of

estuarine fishes (e.g. Froneman, 2010) including the newly

recruited A. japonicus larvae and early juveniles. The spring/

summer rainfall pattern and highest river discharge along the

south-east coast of South Africa coincides with peak spawning of

A. japonicus and give rises to higher mysid and copepod

biomasses, important prey items for early juvenile A. japonicus

(< 50 mm TL) migrating into South African estuaries (Griffiths,

1997). An increase in detritus accumulations (organic material)

also cause a significant increase in detritivorous teleosts, such as

Mugilidae, which are preyed upon by larger A. japonicus

juveniles (> 150 mm TL) (Griffiths, 1997).

Turbid water may also provide juveniles with protection

from predation, including by conspecifics (Cyrus and Blaber,
FIGURE 4

Turbidity plumes adjacent to the two study estuaries (A) Google Earth Pro V 7.3.3.7786. (6 December 2003). The lower reaches and adjacent
nearshore of the Kariega Estuary -33.683882; 26.684485, Eye alt 4.49 km. Maxar Technologies 2022. http://www.earth.google.com [14 May
2022] and (B) Google Earth Pro V 7.3.3.7786. (3 August 2004) the lower reaches and adjacent nearshore of the Great Fish Estuary -33.492921,
27.126729, Eye alt 12.41 km. Landsat/Copernicus 2022, Maxar Technologies 2022. http://www.earth.google.com [14 May 2022].
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1987; Stewart et al., 2020). Stewart et al. (2020) found that the

recruitment success of A. japonicus in eastern Australia is linked

to freshwater inflow into estuaries and subsequent salinity and

turbidity gradients. Freshwater inflow also increased the

availability of key prey (Metapenaeus macleayi) for juvenile A.

japonicus in eastern Australia and may be linked to the enhanced

growth and survival of cohorts (Stewart et al., 2020). Similarly,

Russell et al. (2021a) and Russell et al. (2021b), using otolith

microchemical analysis, also identified important estuarine

nursery areas, characterized by an abundance of prey items

and reasonable freshwater inflow, for the successful recruitment

of A. japonicus. In Australia, the populations are not always

estuary-associated, with some individuals and populations being

marine resident throughout their life-cycle (Ferguson et al.,

2011; Barnes et al., 2016; Barnes et al., 2019). The variation in

time spent in the turbid and odor cues by individual early life

stage settlement-stage A. japonicus in the present study provides

further evidence that the South African A. japonicus populations

could also exist as separate estuarine and marine contingents, as

proposed by Childs et al. (2015). The existence of such a strategy

would improve the species resilience to major anthropogenic

impacts such as estuarine degradation (i.e. freshwater

abstraction) and overfishing (Childs et al., 2015), and

ultimately confer survival benefits (Russell et al., 2022).

High levels of growth (overexploitation of juveniles) and

recruitment (overexploitation of mature individuals) overfishing

have led to the collapse of the South African A. japonicus stock

(Griffiths, 1996; Childs et al., 2015; Mirimin et al., 2015). The

dependence on turbid estuaries, such as the Great Fish Estuary,

as a nursery area for A. japonicus may have contributed to the

decline and collapse of this species in South Africa owing to the

high fishing effort these estuaries experience. Exploitation

pressure for juveniles of this species in estuaries such as the

Great Fish Estuary is significant, which results in growth

overfishing. Cowley et al. (2008), in a tagging study of

juveniles (150 – 400 mm TL) in the Great Fish Estuary, found

that 41% of tagged juveniles were caught in the fishery. The

importance of freshwater inflow and turbidity in recruitment,

when viewed in the context of continued freshwater abstraction

from estuaries, may also limit the nursery habitat available for

the estuary-associated early juveniles (<150 mm TL). Based on

the concentration of early juveniles in the upper reaches of

turbid, freshwater-rich estuaries, such as the Great Fish, and the

absence of early juveniles in the clear, freshwater-deprived

Kariega Estuary, Whitfield and Paterson (2003) suggested that

freshwater abstraction reduces the nursery habitat available to A.

japonicus in this region. Confirming the importance of

freshwater input and increased turbidity to the recruitment of

A. japonicus, Nodo et al. (2018) also found that settlement stage

A. japonicus (30 – 100 mm TL) were only recorded in the

freshwater deprived Kariega Estuary following major river

flooding and increases in turbidity and food resources in the

middle and upper reaches of the estuary.
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The results of this study provide valuable information for

conservation and resource management initiatives for estuaries

and overexploited estuarine-associated fishery species. Our

results highlight the importance of turbid estuaries as nursery

areas for early juvenile A. japonicus and the important role of

turbidity gradients in the nearshore marine environment in the

successful recruitment of settlement-stage A. japonicus.

Estuaries with large amounts of riverine input have higher

turbidity gradients within and outside of the estuary in

comparison to smaller estuaries in the same region. Climate

change is already altering rainfall patterns, with changes in

rainfall affecting the amount and timing of freshwater entering

estuaries. These changes are exacerbated in estuaries where

humans have modified freshwater delivery through freshwater

abstraction (James et al., 2013). The south-east coast of South

Africa is predicted to be drier (with an increase in dry days and

rainfall variability) by the end of the century (Engelbrecht et al.,

2015). Our results also highlight the importance of adequate and

effec t ive catchment and flow management in our

changing climate.
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