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Since 2011, the distribution extent of pelagic Sargassum algae has substantially

increased and now covers the whole Tropical North Atlantic Ocean, with

significant inter-annual variability. The ocean colour imagery has been used

as the only way to monitor regularly such a vast area. However, the detection is

hampered by cloud masking, sunglint, coastal contamination and other

phenomena. All together, they lead to false detections that can hardly be

discriminated by classic radiometric analysis, but may be overcome by

considering the shape and the context of the detections. Here, we built a

machine learning model base exclusively on spatial features to filter out false

detections after the detection process. Moderate-Resolution Imaging

Spectroradiometer (MODIS, 1 km) data from Aqua and Terra satellites were

used to generate daily map of Alternative Floating Algae Index (AFAI). Based on

this radiometric index, Sargassum presence in the Tropical Atlantic North

Ocean was inferred. For every Sargassum aggregations, five contextual

indices were extracted (number of neighbours, surface of neighbours,

temporal persistence, distance to the coast and aggregation texture) then

used by a random forest binary classifier. Contextual features at large-scale

were most important in the classifier. Trained with a multi-annual (2016-2020)

learning set, the model performs the filtering of daily false detections with an

accuracy of ~ 90%. This leads to a reduction of detected Sargassum pixels of ~

50% over the domain. The method provides reliable data while preserving high

spatial and temporal resolutions (1 km, daily). The resulting distribution is

consistent with the literature for seasonal and inter-annual fluctuations, with

maximum coverage in 2018 and minimum in 2016. This dataset will be useful

for understanding the drivers of Sargassum dynamics at fine and large scale and

validate future models. The methodology used here demonstrates the
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usefulness of contextual features for complementing classical remote sensing

approaches. Our model could easily be adapted to other datasets containing

erroneous detections.
KEYWORDS

Sargassum algae, remote sensing, random forest, contextual analysis, Tropical North
Atlantic, fractional coverage, time series
1 Introduction

For a decade, Sargassum stranding events have become a

global concern for many countries bordering the Tropical North

Atlantic Ocean. In particular, many coastlines are smeared out

with Sargassum algae almost every year with significant impacts

on the fishing industry and the tourism economy (Chávez et al.,

2020). While offshore Sargassum aggregations are hotspots of

biodiversity and provide shelter to various species (Fine, 1970;

Martin et al., 2021), biomass accumulation on coastal waters and

beaches causes ecological, economical and sanitary issues

(Resiere et al., 2018; Merle et al., 2021). Those nuisances

highlight the need of scientific research to understand and

anticipate the development of Sargassum algae. To date, there

is still no consensus about how the outbreak of Sargassum

expansion started, nor about how to forecast accurately the

annual Sargassum biomass growth. It was initially assumed that

the increasing rivers nutrient discharge was the cause of the

triggering event of 2011 (Oviatt et al., 2019; Wang et al., 2019).

Considering the mismatch between Sargassum distribution and

river plumes, that hypothesis was recently revised (Jouanno

et al., 2021b). Another recent hypothesis involves an

anomalous meteorological event in 2010 that may have

inseminated the new Sargassum area (Johns et al., 2020).

Therefore, in order to build and discuss hypotheses to explain

the Sargassum dynamics, reliable data over a long time period

are still required.

Remote sensing is a useful tool to monitor large-scale

Sargassum distribution (Gower and King, 2011; Wang and Hu,

2016; Xing et al., 2017; Cuevas et al., 2018; Qiu et al., 2018;

Arellano-Verdejo et al., 2019; Chen et al., 2019; Ody et al., 2019;

Shin et al., 2021) as in-situ approaches are costly and do not

allow sufficient spatial coverage (Ody et al., 2019). Sargassum can

be detected by satellite sensors due to its high reflectance in Near

Infra-red compared to clear water. Several Sargassum indices

using optical properties have been proposed to enhance that

specific Sargassum signal (Gower et al., 2006; Dierssen et al.,

2015; Hu et al., 2015; Cuevas et al., 2018). Presently, Moderate-

Resolution Imaging Spectroradiometer (MODIS) on board

NASA’s Terra and Aqua satellites, Visible Infrared Imaging

Radiometer Suite (VIIRS) on board NOAA/NASA’s Suomi-
02
NPP, Ocean and Land Colour Instrument (OLCI) on board

Copernicus’s Sentinel-3 and MultiSpectral Instrument (MSI) on

board Copernicus’s Sentinel-2, are satellite sensors with

adequate spectral bands for monitoring Sargassum algae (Ody

et al., 2019).

However, Sargassum detection and quantification by remote

sensing face numerous challenges: scarcity of the aggregations,

cloud coverage, sun glint, signal contamination in the coastal

areas, and large-scale fluctuations of the surrounding water

reflectance. Moreover, the detection robustness is limited by

the spatial resolution and revisit period of each sensor. MSI and

OLCI have good spatial (20 m and 300 m respectively) and

spectral resolution (Gower and King, 2020; Wang and Hu,

2020), but their greater revisit period (5 and 2 days

respectively) makes them less efficient for mapping the

Tropical Atlantic considering the high cloud coverage. While

MODIS and VIIRS miss some fine Sargassum signal because of

their moderate spatial resolution (1000 m and 750 m), they both

have a 1-day revisit period that provides robust time series. A

processing chain was developed and described in details for

MODIS and VIIRS satellite sensors (Wang and Hu, 2016; Wang

and Hu, 2018).

Regarding data availability, MODIS Sargassum products

from Wang et al. (2019) are restricted to 0.5° resolution,

monthly. On the SAWS website (https://optics.marine.usf.edu/

projects/saws.html), daily Alternative Floating Algae Index

(AFAI) Sargassum maps at native resolution are shown as

images only, and restricted to the main distribution area.

Consequently, there is currently no data source that combines

high-frequency observations and high spatial resolution over the

extended Sargassum distribution area (from 15°S to 50°N and

from 100°W to 15°E).

Thus, in order to exploit the full potential of MODIS data

and enhance further modelling use, a MODIS 1 km resolution

processing chain was developed using the AFAI presented in

Wang and Hu (2016). The results showed a lot of detection

errors that are not mentioned in Wang and Hu (2016) and are

likely removed by an unspecified process in the SAWS website.

Those false detections are due to different phenomena, primarily

by residual clouds, cloud shadows, sunglint and turbidity. As

those phenomena have a spectral signature and thus AFAI
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similar to Sargassum, they produce false detections. We thus

focused here on the development of an original post-processing

method to filter Sargassum detection over the whole Tropical

North Atlantic. Several machine learning models already exist

for detecting Sargassum algae using radiometric information

extensively (Cuevas et al., 2018; Qiu et al., 2018; Arellano-

Verdejo et al., 2019; Shin et al., 2021). By contrast, we

demonstrate here the benefit of spatial information to filter

out detections as post-processing. While spatial properties of

aggregations at local scale are occasionally taken into account

(Qiu et al., 2018; Chen et al., 2019; Wang and Hu, 2020) or used

implicitly in neural network models (Qiu et al., 2018; Arellano-

Verdejo et al., 2019), large-scale contextual features are still

untapped. Taking the detections extracted by the remote sensing

approach, our method use a random forest algorithm applied to

the large-scale spatial properties for classifying true and false

Sargassum detections. This study describes the processing

scheme for filtering the false detections, the spatial features

used, the learning and testing processes, and the application of

the method to the MODIS time series from 2016 to 2020. Finally,

the resulting filtered dataset and its variability are briefly

analysed and discussed.
2 Materials and methods

2.1 Approach overview

The study was based on Fractional Coverage (FC) products

generated using a MODIS full resolution processing chain called

SAREDA [Sargassum Evolving Distributions in the Atlantic, see

Section 2.2, Descloitres et al. (2021)]. It retrieved Sargassum

detected pixels from the MODIS 1 km band and mapped them

in 1 km equirectangular grid. Among these detections distributed

in the whole North Atlantic Ocean, about half were likely false

detections, based on visual inspection. These errors are not only

restricted to the extreme parts of the Tropical North Atlantic

Ocean and are mixed up with the valid detections in the new

Sargassum area. Consequently, this issue cannot be solved using

only local masks or filters. Hence, we need a global approach to

filter out the data from all false detections whatever their location.

Those false detections were caused by various phenomena (see

Section 2.2) and can hardly be discriminated using only

radiometric features (Qiu et al., 2018). As a complement to FC

(proportional to AFAI), we focused on shape and context

characteristics of aggregations. More specifically, i) the shape of

local groups of pixels, as Sargassum algae aggregations tend to

have typical elongated shape; ii) the surrounding aggregates, as the

algae are usually grouped together in clusters of aggregations close

to one another; iii) the geographic location, as Sargassum are more

likely to be present in known areas; iv) the temporal persistence, as

false detections caused by clouds and sun glint do not last in time

while Sargassum true detections do. To represent those
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characteristics we introduced ad hoc features characterising the

shape of Sargassum aggregations and their surrounding context.

Then, using a supervised classification approach, the

aggregations were classified into two classes: true or false

Sargassum detections. The work was divided in three main

tasks (Figure 1): (i), the selection and extraction of features to

describe the detections; (ii), the manual validation of a dataset

for training the supervised algorithm; (iii), the evaluation of

several machine learning algorithms and the selection of the

most effective one.

As some features do not make any sense at the pixel level

(e.g., shape of aggregations), the images were exported in vector

format (ESRI Shapefile or GeoCSV) (Cuevas et al., 2018). This

particular step allowed each contiguous aggregation of pixels to

be grouped in a single entity associated with information about

shape and FC values distribution. As a result, pixels within one

aggregation were assumed to belong to the same class, true or

false Sargassum detection. This also reduced the size of the

classification problem, from approximately seventy million

pixels to less than two thousand aggregations per day. At the

end of the classification process, the validated aggregations were

exported back into raster format. The Geospatial Data

Abstraction Library (https://gdal.org/) was used to perform all

spatial operations (vector/raster export and features’ extraction).
2.2 Sargassum dataset: SAREDA

This study used the MODIS full resolution Level-2 (v1.20)

and Level-3 (v1.21) products processed by SAREDA Descloitres
FIGURE 1

Filtering method diagram. The daily images are processed to
extract spatial and context features. These features feed the
filtering model that discriminates between true and false
detections. The manual labelling and algorithm selection are
performed once (indicated in dotted line) to build the model.
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et al. (2021) developed at the AERIS/ICARE Data and Services

Centre (https://www.icare.univ-lille.fr) using the AFAI (Wang

and Hu, 2016). The SAREDA pipeline is globally organised in

seven main steps: 1) atmospheric correction to get Rayleigh-

corrected reflectance (Rrc) (Wang and Hu, 2018; Ody et al.,

2019) using OCSSW/SeaDAS (https://oceancolor.gsfc.

nasa.gov/); 2) Screening of sunglint, clouds and cloud shadows

(Wang and Hu, 2016; Descloitres et al., 2021); 3) AFAI

computation based on 1 km bands over the ocean to enhance

the algae signature; 4) Evaluation of the residual AFAI signal of
Frontiers in Marine Science 04
Sargassum-free ocean water due to local variations of Rrc; 5)

Calculation of the AFAI deviation from the local Sargassum-free

background; 6) Thresholding of the AFAI deviation (1.79*10-4)

and computing the Sargassum Fractional Coverage (FC) or

biomass (Wang et al., 2018); 7) (optional) projecting and

aggregating extracted data in a given area with chosen spatial

and temporal resolutions.

In addition, intermediate steps were added to improve the

detections extraction (Figure 2). Besides masking cloud, cloud

shadows, sunglint and land before AFAI computation, the

shallow and moderate waters (depth< 500 m) were masked.

Every ensemble of contiguous detections overlapping coastal

mask was excluded from the results. Most coastal areas

contaminating the AFAI signal were removed from the results.

After the AFAI computation, the background estimation was

refined by two successive median filters with window size

401x401 and 51x51 pixels. The resulting AFAI deviation

values (i.e. AFAI deviation with respect to the Sargassum-free

background) were noisy due to the local filtering therefore an

erosion-dilatation step was added to remove the small

isolated detections.

That work flow was applied to the full archive of MODIS

Level-1B (i.e. Top-of-the-atmosphere reflectance) granules (i.e.,

5-minute orbit segments, 1354x2030 pixels 2300x2030 km²

each) for both satellites. From those filtered AFAI images, the

FC of the Sargassum algae was derived from AFAI with the ratio

used by Wang and Hu (2016). FC values retrieved from Terra/

MODIS and Aqua/MODIS were then mapped to an

equirectangular grid and averaged daily and monthly. The

mapped area extends from 15°S to 50°N and from 100°W to

15°E. The masked pixels were discarded in the average. We

called those aggregated products composites. The daily

composites provide a global view of Sargassum state in the

North Atlantic. They are not exhaustive and contain gaps

because of the cloud coverage and the gaps between

MODIS swaths.

In this original dataset, Sargassum was distributed from the

Gulf of Guinea to the Gulf of Mexico going through the

Caribbean Sea. However, there was a high amount of

suspicious detections. At high latitudes false detections were

mainly caused by clouds and sun glint that were not completely

removed from the data. In coastal areas, water turbidity can

run over coastal mask in some cases and generate false

detections (Wang and Hu, 2021). Finally, high chlorophyll

concentration or other floating algae (such as Trichodesmium)

are responsible for the remainder of false detections. These

different phenomena cause a wide spatial distribution of false

detections. Some of them are scattered in time and space,

especially cloud resulting detections, while others are recurrent

in some areas such as offshore chlorophyll production near the

Mauritanian coasts. Finally, the fraction of false detections can

exceed 50%. Examples of the different types of detection are

presented in Figure 3.
FIGURE 2

SAREDA work flow. Intermediate step of the data are
indicated in bold.
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2.3 Learning dataset, “expert truth”

In order to perform the filtering, it was necessary to establish

a manually labelled dataset to train the model. A manual

labelling was performed over FC daily composites by visual

inspection (Wang and Hu, 2016; Cuevas et al., 2018; Qiu et al.,

2018). We called that new dataset “expert truth” to differentiate

it from real ground truth. To limit human validation bias, results

obtained by three different operators were compared. All three

labelled sets were consistent thus the operator bias was

considered negligible.

The labelling process was based on daily vector images of the

full North Atlantic area and set up with the graphical interface of

QGIS (https://www.qgis.org). It was used for selecting and

classifying the aggregations while displaying the AFAI images

to analyse the surrounding context. Based on a daily 1 km Aqua-
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Terra composite and the corresponding full-resolution single-

sensor non reprojected images (Level-2 products), we classified

every aggregation except the ambiguous cases (< 5%).

The study focused on five years, 2016 to 2020, a period with

continuous Sargassum presence. In order to ensure the model

generalisation capability in spite of large seasonal and inter-

annual variability of Sargassum algae, the learning dataset had to

extent over a long time period to cover the different cases. The

labelling process was divided evenly over the five years. Each

year, we selected and validated 3 to 5 days spread out over the

seasonal cycle. The dataset was thus representative of both an

entire seasonal cycle and the five years of interest.

In the end, about 2000-2500 aggregations per year were

labelled by the operators (Table 1), except for 2016 with less

validated aggregations due to its lower Sargassum occurrence.

Finally, there was about ten thousand labelled aggregations with
TABLE 1 Labelled aggregations per year.

2016 2017 2018 2019 2020 all

Number of labelled aggregations 1586 2598 2632 2352 1953 11121

Number of true aggregations 697 1402 2147 1623 1540 7409

Ratio of true aggregations (%) 43.9 54.0 81.6 69.0 78.9 66.6

Area ratio of true aggregations (%) 20.8 29.5 71.0 57.4 68.1 48.8
frontiers
The aggregations were obtained by the export of FC images in vector format. The labelling was performed over the Atlantic (100°W to 15°E, 15°S to 50°N).
FIGURE 3

Examples of true and false detections for 2020 in 2° by 2° boxes. The colour bar indicates the AFAI deviation from the background (the AFAI
detection threshold is indicated in red), masked pixels: either clouds, clouds shadows sunglint or shallow waters (<500 m depth) are represented
in dark grey and land in light grey. The bottom right panel shows the average of Rayleigh-corrected reflectance spectra (Rrc) of each case and
the background spectrum. Rrc was averaged over the detected pixels (not-detected pixel in the case of background) for each MODIS band in
the range (400 nm - 800 nm). The bands used in the AFAI computation (667, 748, 869 nm) are shown as dashed blue lines.
in.org
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60% classified as true. While the true detections were more

numerous than the false ones, their spatial extent was relatively

smaller and they represented only 50% of the area.
2.4 Aggregations characterisation: spatial
features extraction

The first kind of features used was the shape feature. At

scales lower than 1 km, Sargassum algae aggregate in windrows

(narrow elongated rafts) and patches (Ody et al., 2019), with

extent between 1 and 100 m diameter. At scales greater than

1 km, the MODIS resolution only detects aggregations in the

upper range of spatial extent, mostly typical large elongated

structures. These filaments are a few kilometres wide and 10-100

kilometres long. Thus, a dozen shape indicators were extracted

from the aggregations to characterise them (Jiao et al., 2012).

Among those, an elongation index (Stojmenović and Žunić,

2008), a roundness index, a form complexity index, the area and

the perimeter were extracted:

Elongation =
lmax

lmin
(1)

Roundness = 4*
a

p*l2max
(2)

Form complexity =
4p*a
p2

(3)

Where lmax and lmin are the length of the major and minor

axis of the aggregation, a and p its area and perimeter. Area and

perimeter metrics take aggregations inner holes into account.

A second category of features was derived from the FC values

within each aggregation. While the FC value of pixels considered

independently does not allow false detection screening, as FC

covers a wide range of valid values, the statistical distribution of

these values within one aggregation can discriminate the false

and the true Sargassum detections. Therefore, the mean, the

median, the standard deviation, the minimum, the maximum

and the interquartile range of the FC values within each

aggregation were extracted.

The third kind of features was composed of several indices

describing the surrounding of aggregations. As Sargassum

aggregations are often small and close to each other, we

defined the Nearest Neighbours Index (NNI) that counts the

number of neighbouring aggregations within a given radius

around one aggregation. Additionally, the Nearest Neighbours

Area Index (NNAI) measures the total area covered by those

close-by neighbours. Both of these indices were extracted with

different radii from the barycentre of the aggregations.

In order to give more likelihood to redundant and time-

coherent detections, an original persistence index (PersI) was

developed. For every aggregation, it evaluates the number of
Frontiers in Marine Science 06
times where the aggregation is close to at least one other

aggregation in the two previous days and the two next days.

Finally, the Coast Shortest Distance Index (CSDI) represents the

aggregation distance from a land body.

In the end, around thirty indexed features were extracted.

They were highly redundant, it was thus necessary to select the

minimal subset of features to ensure the simplicity, the reliability

and the robustness of the classification method. The feature

selection was based on different sources of information. First, it

took into account the correlation between indices to select

uncorrelated features. Then, when it was available, it relied on

the feature frequency of use during training with machine

learning algorithms. Finally, the selection maximised the

performance metrics of the algorithms (Section 2.5). Plus, the

interpretability of the features was taken into account during

the selection.
2.5 Classification algorithms selection
and tuning

The last step of the method was to select the most suitable

machine learning algorithm for the filtering and tune it. In order

to evaluate and compare the performance of each algorithm,

different scores were computed.

The classic performance scores used were the accuracy, the

recall and the precision (Hastie et al., 2009), thereafter called

“overall accuracy”, “overall recall” and “overall precision”. These

scores were obtained with k-fold cross-validation on the whole

dataset. In addition, we introduced the “generalisation

accuracy”, the “generalisation recall” and the “generalisation

precision” scores. First, the yearly accuracy, recall and

precision were computed for each year using the remainder of

the dataset as training dataset. The generalisation scores were

defined as the average of those yearly scores. Those new metrics,

needed because of the inter-annual variability of the Sargassum

algae, represent the prediction capacity of the method over a

completely unknown year. It thus gives a more realistic

estimation of the method performance.

For selecting a machine learning algorithm, a benchmark

was conducted over various classification algorithms. It

included single model algorithms as Naive Bayes classifier

(NB), Decision tree, Support Vector Machine (SVM), Linear

Discriminant Analysis (LDA). Plus, some aggregated models

based on decision trees were evaluated such as Adaboost,

Gradient Tree Boosting (GTB), XGBoost and Random

Forest (RF).

Several scores were computed to evaluate and compare the

performance of each algorithm. First, the overall accuracy gives

an overview of the algorithms performance. Yet, true Sargassum

aggregations were more important in the classification to keep as

much as possible the Sargassum signal. As overall accuracy

weights evenly the classes, the overall recall was taken into
frontiersin.org
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account to focus on the true positive/false positive ratio. The

overall precision was also computed but with lower attention for

the optimisation as the false positive matter was less important.

Finally, the overall f-score summarised these last two metrics but

we mainly used the overall accuracy and the overall recall

for interpretability.

Finally, those metrics were computed for all the tested

algorithms using the python library scikit-learn (https://scikit-

learn.org/) (Table 2). They were evaluated with a cross-

validation step, by performing a k-fold over the labelled

dataset (k = 50). The inputs were the 30 extracted aggregation

features (Section 2.4). Usual algorithm performance ranking was

retrieved, with aggregated methods with higher performances

than single model methods. The single model methods, with low

overall accuracy and overall recall (around 85% - 90%) but

higher interpretability allowed to select the right features,

especially the decision tree algorithm. Aggregated methods

were very efficient with around 94% of overall accuracy but

not easily interpretable. The random forest algorithm showed

the best performance and was thus selected. This is consistent

with the literature that repeatedly employs random forest for

remote sensing classification (Belgiu and Drăgut,̧ 2016; Cuevas

et al., 2018).

After selecting the random forest algorithm, a calibration

was performed on its parameters to maximise the performance.

Concerning the random forest algorithms calibration itself, the

models were highly configurable. However, only two main

parameters were evaluated here, the numbers of bootstrapped

trees and the maximum depth of trees. Although random forests

are not very sensitive to overfitting, the lowest values for tree

depth (12) were taken to both conserve good performances and

enhance generalisation power. Similarly, the number of

estimators was chosen as small as possible (24) to reduce the

computation time. We evaluated here both “overall accuracy”

and “generalisation accuracy”. The set of input features was then

reduced to a reasonable number in order to optimise

performance (Section 2.4). For the NNI, the persistence index

and the NNAI features, the radius maximising the scores for the

NNI and NNAI computation was 700 km and the radius for the

PersI computation was 50 km.

A learning curve was computed to check the convergence of

the metrics. It was obtained by learning over an increasing

fraction of the dataset, testing over the remainder, and

computing both overall and generalisation scores. This was
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repeated 30 times to reduce random selection effect and then

averaged in a single curve.
2.6 Time series production

The random forest classifier was applied to the daily FC

composites over the time period 2016-2020 to build a filtered

dataset. We obtained a complete filtered time series with one

image of 1 km resolution per day.

Monthly composites were computed to overcome the

extensive masking of daily products (mostly due to clouds), to

enhance interpretability and for comparison with the literature

(Wang and Hu, 2016; Ody et al., 2019). Finally, the FC was

converted to wet biomass using the ratio of 3.34 proposed by

Wang et al. (2018) based on field measurements in the Gulf of

Mexico, the Florida Straits and Belize.

In order to summarise the whole time series (2016-2020),

annual biomass averages were computed at 50 km resolution. A

simplified envelope was also extracted for comparing spatial

distributions between years. This envelope was obtained by first

thresholding the 50 km composites (FC=10-5). Then, the images

were exported in vector format and erosion-dilation-erosion steps

were applied to delete the remaining scattered aggregations and

close gaps. Finally, for each pair of envelopes, the ratio between the

intersected surface and the total surface was computed.
3 Results

The labelled dataset is shown in Figure 4, it gives an overview

of the spatial distribution of true and false detections.

True detections are concentrated from the Gulf of Guinea to the

Gulf of Mexico, going through the central Atlantic and the Caribbean

Sea. The false detection distribution was more spread out over the

whole area with some dense areas like offshore Mauritania.

The whole set of features used in the classifier was reduced to

five according to the performance maximisation of the filtering:

NNI, CSDI, PersI, NNAI and the FC standard deviation

(Table 3). Concerning the NNI, the PersI and the NNAI, they

were selected regardless of the neighbourhood radius used and

then calibrated.

Table 3 shows the frequency of use for the five selected

features. NNI is largely the most used while CSDI, PersI and
TABLE 2 Algorithms performance computed with a k-fold operation (k = 50).

SVM NB LDA Decision tree Adaboost GTB XGBoost RF

Accuracy 72.9 84.4 87.2 90.8 92.2 92.0 93.7 95.8

Recall 67.6 82.1 85.8 90.9 94.3 94.0 95.2 96.5

Precision 89.2 93.7 94.5 95.1 94.0 93.0 95.3 97.2
frontiersin
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NNAI are quite equivalent and the FC standard deviation is

rarely used.

Concerning the classification performances, the learning

curves computed on the dataset are presented in Figure 5. These

learning curves show the fast convergence of the method

performance. Both overall accuracy (recall and precision) and

generalisation accuracy (recall and precision) stabilise when

learning with more than half of the dataset. The generalisation

accuracy (recall and precision) stabilises faster than the overall

accuracy (recall and precision). The associated standard deviation

was quite low thus the measurements were robust.

In addition, the final scores of the method are shown in

Table 4. The overall performance of our approach was about 96%

regardless of the predicted class. The generalisation accuracy
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(recall and precision) per year varied between a minimum of

84% (83% and 82% respectively) in 2016 and between a maximum

of 94% (96% and 96%) in 2019. The generalisation accuracy (recall

and precision) is 90% on average (92% and 91%).

Examples of composites before and after the filtering process

at 1 and 50 km spatial resolutions are presented in Figure 6. A full

seasonal cycle for the year 2020 at 50 km is shown in Figure 7.

The filtered products showed a coherent spatial distribution

over the whole time series 2016-2020 (95% of accuracy is

expected). False detections were removed in the areas where

no Sargassum algae presence was reported (for example for

latitudes > 30°N and< 0°N). In the opposite, the detected

aggregations in the new Sargassum distribution area were

retained (Figure 6).
FIGURE 4

Map of true (A) and false (B) Sargassum aggregations from the learning dataset over 5 years. All labelled aggregations were displayed at their
location, with possible overlaps.
TABLE 3 Feature frequency of use (%) for the final classifier (random forest).

NNI CSDI PersI NNAI FC std

44.5 15.6 15.5 14.8 9.5
frontie
The frequencies were averaged over 30 generated forests. The radius used for the metrics NNI, PersI and NNAI were respectively 700 km, 50 km and 700 km.
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The monthly time series of biomass in three different spatial

boxes are displayed in Figure 8. The filtering method developed

here reduced the biomass estimate by 40% in total for the whole

time series and reduced the monthly estimate by 53% (average of

monthly ratios). This is consistent with the estimated ratio of

false detections observed in the learning dataset.

Primarily, over the North Tropical Atlantic, the seasonal cycle

of biomass was rather regular (average of monthly standard

deviation of 66%). The seasonal cycle of growth/decay leads to a

biomass maximum in June and a minimum in November. The

monthly average of biomass was estimated between 3 to 10 million

tons. Biomass quantities were equivalent for 2017, 2019 and 2020

while 2016 and 2018 had respectively low and high biomass

quantities. In addition to the global biomass time series, we

computed separately the biomass from the Eastern and Western

parts of the Tropical Atlantic Ocean to highlight their distinct

dynamics. The Eastern area has lower Sargassum quantities with

two biomass peaks in March and September. The Western area has
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6 times greater biomass with only one peak in June. Concerning the

boxes used for the biomass estimation in Figure 8, the limit of 30°W

between the two areas was chosen both to maximise the differences

between the two dynamics and to visually distinguish the two areas

of high biomass.

For the years 2016-2018, unfiltered and filtered biomass

estimates were compared to the Wang et al. (2019) time series.

Our filtered biomass averaged over the three years was only 1%

greater than Wang et al. (2019) estimate. Comparing month by

month, there was a +4% difference on average, associated with a

standard deviation of 33%. A student t-test was performed

between the two datasets before and after filtering. Unfiltered

data andWang et al. (2019) data were significantly different with

a p-value of 0.02 while filtered data was very similar to their

measurements with a p-value of 0.97. Moreover, the filtered

dataset was also close to their data in terms of spatial distribution

(not shown). Besides, some remaining false detections and some

true detections were absent in the results of Wang et al. (2019),
FIGURE 5

Learning curve of the random forest algorithm. The dataset fraction allocated for training increases from 3% to 90%, the remaining 10% of the data are
used for testing. The displayed curves are the average on 30 computed curves. The blue curve shows the overall accuracy and the red curve the
generalisation accuracy (i.e. training without a year and testing on it). Similar results were observed with the recall and precision scores.
TABLE 4 Algorithms performance scores in percentage.

Train over the dataset except one year

Overall scores Test 2016 Test 2017 Test 2018 Test 2019 Test 2020 Gen. scores

Accuracy 96.28 ± 0.08 84.51 ± 0.9 84.24 ± 0.34 92.35 ± 0.35 93.98 ± 0.4 94.0 ± 0.58 89.97 ± 0.48

Recall 96.9 ± 0.06 82.55 ± 2.07 89.73 ± 0.45 95.7 ± 0.41 95.67 ± 0.19 92.65 ± 0.72 91.89 ± 0.66

Precision 97.5 ± 0.09 82.28 ± 0.88 82.58 ± 0.48 94.96 ± 0.14 95.61 ± 0.49 99.72 ± 0.72 91.23 ± 0.4
f

The computation is made 30 times to reduce random effect. The standard deviation is indicated after the scores. The generalisation scores correspond to the weighted mean of the five
annual tests. The two main scores describing the 5-year time series are in bold.
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while few of their detections were removed in the filtered dataset.

The detailed analysis of these discrepancies could not be

achieved here and was beyond the scope of this study. Finally,

the main improvement of our dataset is the spatial resolution,

1 km for SAREDA filtered against 0.5° (≈50 km) for Wang et al.

(2019) composites.

Lastly, the yearly Sargassum spatial distribution is presented in

Figure 9 with simplified envelopes. By opposition to the high inter-

annual biomass variations, the distribution areas do not differ much

between years except in 2016. For example, the distribution area of

2018 is very similar to the area of 2017 despite the overall biomass

being 3 times larger. In-depth comparison between annual

distributions shows several areas of discrepancy: 1) the Gulf of

Mexico, reached in 2018 and 2019 only; 2) The north of the

Dominican Republic, overrun by Sargassum in 2017 and 2018

only; 3) The Central West Atlantic, where Sargassum algae usually

remain above the equator except in 2019.
4 Discussion

4.1 Interpretation of features used in
the classification

Among the thirty features extracted from the detected

aggregations, only five were used in the final classifier. The
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first selected feature and the most used in the classifier was the

NNI (44.5%). This selection is consistent with visual

observations during labelling, as true detections were mostly

concentrated together in few areas. Besides, the major use of this

feature was likely responsible for the lower classifier

performance in 2016 where aggregations were scarce and

sparse. The CSDI, the PersI and the NNAI completed the

filtering by discriminating respectively the remaining coastal

false detections and the far offshore Northern cloud false

detections, the time-incoherent detections and the detections

neighboured by large false detections due to chlorophyll

concentration. Finally, the addition of the FC standard

deviation increased the generalisation accuracy and the

robustness of the method by preventing overfitting.

Only context indices were retained for the classification, likely

because of the too coarse spatial resolution of the data. In

particular, the elongation was not selected because of the

fragmentation of aggregations. The elongated structures seen in

the images were often split because of the erosion-dilatation

operation used during the retrieval process (Section 2.2). We

chose here to exclude location and temporal features from the

selection. A test showed that including latitude and longitude

coordinates greatly improved accuracy for a single year dataset but

decreased accuracy with a more extended dataset. Furthermore,

since the geographic distribution of the algae changed radically in

2010, we wanted to avoid geographical constraints.
FIGURE 6

Monthly composite of FC for June 2020 at 1 km and 50 km resolution for unfiltered (left) and filtered (right) data. The top panel is a zoom of the
region shown on middle panel.
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4.2 Accuracy of the classification
and generalisation

The performance scores obtained with the classifier were

between 90% and 96%. The filtering quality for new data is

expected to be in the annual generalisation scores range (90%). It

will depend on the consistency of new data with the 2016-2020

dataset. The only lower-performing year was 2016 where the

biomass level was much lower than other years. Overall, the

score should stay around 90% if the current trend of biomass

distribution persists. For the filtering of the 2011-2015 period,

the performance obtained for 2016 should be representative and

an accuracy above 85% is expected.

The learning curve analysis showed that increasing the

learning set does not greatly improve scores. From 50% to

90% of the learning set, the overall score gained less than 1%
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of accuracy while the generalisation score was stable. Adding

data from the same years 2016-2020 to the learning set will

therefore be useless. The only way to noticeably improve the

method would be to add data from other years and make both

scores converge.

The performance is analogous to or better than other works

that used machine learning algorithms for Sargassum

detection. Cuevas et al. (2018) applied a random forest

algorithm over a small dataset using raw reflectances and

derived indices such as AFAI. Their accuracy was close to

our study with an overall score of 93.4%. Arellano-Verdejo

et al. (2019) used deep learning on radiometric inputs from

MODIS to detect Sargassum. Their accuracy was similar to our

results (90%). Finally, studies on Yellow Sea Sargassum algae

(Qiu et al., 2018; Shin et al., 2021) showed similar or

lower performance.
FIGURE 7

Filtered FC of monthly composites for 2020 at 50 km resolution.
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FIGURE 8

Sargassum biomass time series averaged in different boxes during the time period 2016-2020. The top panel displays the 2020 aggregated data
in 1 km-resolution and the boxes used for the biomass computation. (A) presents the biomass time series in the same box as Wang et al. (2019)
and compare it to their data (available until 2018 only). (B, C) are the retrieved Sargassum filtered biomass for Eastern and Western Atlantic
Ocean (boxes B and C on the map). The black lines on the bar-plots indicate the annual mean of filtered data computed over the five years.
FIGURE 9

Annual composites of biomass at 50 km for 2016-2020 associated with the envelope of the area of high Sargassum concentration. The
normalised envelope area with respect to 2018 (10.9 million of km²) is indicated. The last panel shows all the envelopes, its intersection (dotted
line) and its union (dashed line).
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4.3 Limits of the method and
potential improvements

The choice of MODIS imagery implies rather coarse resolution

but recurring observations (twice a day). We used the 1 km bands

for AFAI computation to ensure good signal/noise ratio compared

to 250 - 500 m bands and to better discriminate between Sargassum

and clouds (Wang and Hu, 2016). Comparison of AFAI with high

resolution (20 m)MSI observations have shown that both estimates

are consistent (Wang and Hu, 2020; Descloitres et al., 2021).

MODIS appears as a trade-off between regular mapping of the

Sargassum distribution and resolution.

The method assumed that features distribution is consistent

for all aggregations regardless of their location and of their time

of observation. This is mostly the case over the studied time

period, as the high performance obtained by the method

demonstrates a good spatial and temporal consistency. Yet,

specific regions or periods may show singular distributions of

features. That could be the case for areas where false detections

remained after the filtering process, such as offshore Mauritania

or the Amazon plume area. The global approach could be

limited here and defining regional learning sets and classifiers

may improve the method performance.

The learning set was built to be as representative as possible

of the whole set of true and false detections. Nonetheless, in

some areas (e.g., Gulf of Guinea, Sargasso Sea), discrimination

between true and false detections was more strenuous for

manual labelling. Both low Sargassum concentration and cloud

coverage created ambiguous cases. This induced a lack of

labelled data and most likely a lower filtering accuracy in these

regions. Remote sensing imagery from other sensors with higher

resolution or in-situmeasurements could help to fill this gap and

to ensure the completeness of the dataset.

Since the study focused on basin scale offshore Sargassum

detection, coastal areas were masked. This choice does not have a

large impact on Sargassum estimation as detections in the coastal

areas were mostly false detections. Tests using our classification

algorithm to filter out coastal false detections and avoid masking

coastal waters were not conclusive. In coastal areas, progress in

Sargassum detection can be made using other sensors/indices

with poorer temporal resolution, such as OLCI and Maximum

Chlorophyll Index (Gower and King, 2011), less sensitive to

coastal contamination, or higher resolution sensors such as MSI

(Wang and Hu, 2020, 2021). Those sensors would be useful to

complement MODIS data.
4.4 Uncertainties in the
Sargassum estimates

Sargassum detection is limited by algae observability. In

certain circumstances (low density, vertical mixing in the

upper layer), MODIS cannot distinguish Sargassum from
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background (Woodcock, 1950; Johnson and Richardson, 1977;

Woodcock, 1993; Wang and Hu, 2020). This limitation is

outside the scope of our study.

Concerning the filtered products, clues on their uncertainties

were given by the classifier performance study. For the 2016-

2020 period, the expected errors fraction would be about 2.5% of

false positives and 2.5% false negatives. As the false aggregations

are larger than true ones, false positives would induce a greater

overestimation than false negatives generate an underestimation.

Thus, the filtering errors are expected to produce a small

overestimation with errors on some Sargassum aggregations

locations. For data from other years, the reasoning is the same

but with around 5% of false positives and of false negatives

generating an overestimation twice larger.

Concerning the aggregated products, there is an uncertainty

due to the sampling, limited by the coverage of daily data. With two

observations per day over the whole Tropical Ocean, only 30% of

pixels were retrieved because of the different masks. The solution

used to fill these gaps was to aggregate data spatially or temporally.

In order to keep the best spatial resolution, temporal averaging was

used. If we hypothesise a fully random mask distribution (binomial

distribution for every pixel), 6 days are needed to reach a coverage

of at least 90%. In practice, 12 days were needed. The temporal

composites based on less than 12 days were therefore incomplete

while using more than 12 days reduce mapping accuracy because of

non negligible Sargassum drift.

4.5 Sargassum dynamics over 2016-2020

The biomass fluctuations resulted mainly from advection for 1-2

month timescale (Berline et al., 2020), while biology (growth and

decay) combined to advection drives the fluctuations for longer time

scales. Our results strengthened the scenario of recirculation of the

Sargassum biomass in the North Tropical Atlantic: from the

development of relatively low biomass in the Eastern Atlantic

Ocean in the early months of the year, advection inseminates the

Central Atlantic Ocean and leads to a biomass maximum in June-

July. In addition to the bloom transport in the Caribbean Sea and the

Gulf of Mexico, some Sargassum algae are driven back eastwards by

the North Equatorial Countercurrent (NECC) causing the

September peak of biomass. Finally, the algae globally decay and

return to a global minimum of biomass in November. This cycle,

rather stable over the studied period (2016-2020), is consistent with

the time series from Wang et al. (2019) over 2016-2018.

The eastern and western boxes essentially distinguish the

western and eastern consolidation regions from Franks et al.

(2016). This limit also matches the transition between two

distinct areas of annual biomass production, as shown on the

2020 seasonal biomass cycle (see top of Figure 8). The two

different dynamics and biomass quantities observed in the

Eastern and Western Tropical Atlantic Ocean are consistent

with the simulations from Jouanno et al. (2021a) (their Figure 5)

for the year 2017.
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As a perspective, the 1 km resolution of our dataset may allow

tracking algae aggregations over several days of observations. This

tracking could provide valuable inputs on Sargassum drift patterns.

Such an approach was recently tested with GOES (Geostationary

Operational Environmental Satellite) by Minghelli et al. (2021) with

15-minute observations, but with a lower sensitivity. To validate the

analysis of the Sargassum distribution dynamics and explore the

anomalous 2010 event (Johns et al., 2020), the filtered dataset will be

extended backwards to 2000, i.e. over the full MODIS archive (only

Terra sensor for 2000-2001).
5 Conclusion

With the use of a machine learning algorithm, this study

benefits from an untapped source of information: the spatial

context of Sargassum aggregations. Those new features are

complementary with radiometric data used in previous

approaches and allow to screen false detections induced by

various phenomena. While classic algorithms have known flaws

that induce false detections, the post-processing filtering

technique presented here offers a solution to identify and

mitigate those flaws and produce automatically a high-quality

product over a large-scale area. As the method is time and space

independent and modular, it would be easily generalised to other

Sargassum detection datasets or other application scopes. The

Sargassum annual cycle of the filtered dataset is consistent with

the literature for seasonal and inter-annual fluctuations and we

provided a detailed characterisation of the spatial variability of the

distribution. As a perspective, the filtering process will be

implemented in the SAREDA pipeline to provide near real-time

filtered products and reprocess the past time series. This dataset

will be useful to understand the drivers of Sargassum dynamics at

fine and large scale and validate future models.
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