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Citizen science and machine
learning: Interdisciplinary
approach to non-invasively
monitoring a northern
marine ecosystem
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Najmeh Saffar3, Ahmed B. Ashraf3, Alysa G. McCall4,
Kieran McIver4 and Stephen D. Petersen1

1Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, MB, Canada, 2Fisheries
and Oceans Canada, Winnipeg, MB, Canada, 3Department of Electrical and Computer Engineering,
University of Manitoba, Winnipeg, MB, Canada, 4Polar Bears International, Winnipeg, MB, Canada
Successful conservation efforts often require novel tactics to achieve the

desired goals of protecting species and habitats. One such tactic is to

develop an interdisciplinary, collaborative approach to ensure that

conservation initiatives are science-based, scalable, and goal-oriented. This

approach may be particularly beneficial to wildlife monitoring, as there is often

a mismatch between where monitoring is required and where resources are

available. We can bridge that gap by bringing together diverse partners,

technologies, and global resources to expand monitoring efforts and use

tools where they are needed most. Here, we describe a successful

interdisciplinary, collaborative approach to long-term monitoring of beluga

whales (Delphinapterus leucas) and their marine ecosystem. Our approach

includes extracting images from video data collected through partnerships with

other organizations who live-stream educational nature content worldwide.

This video has resulted in an average of 96,000 underwater images annually.

However, due to the frame extraction process, many images show only water.

We have therefore incorporated an automated data filtering step using

machine learning models to identify frames that include beluga, which

filtered out an annual average of 67.9% of frames labelled as “empty” (no

beluga) with a classification accuracy of 97%. The final image datasets were

then classified by citizen scientists on the Beluga Bits project on Zooniverse

(https://www.zooniverse.org). Since 2016, more than 20,000 registered users

have provided nearly 5 million classifications on our Zooniverse workflows.

Classified images are then used in various researcher-led projects. The benefits

of this approach have been multifold. The combination of machine learning

tools followed by citizen science participation has increased our analysis

capabilities and the utilization of hundreds of hours of video collected each

year. Our successes to date include the photo-documentation of a previously

tagged beluga and of the common northern comb jellyfish (Bolinopsis
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infundibulum), an unreported species in Hudson Bay. Given the success of this

program, we recommend other conservation initiatives adopt an

interdisciplinary, collaborative approach to increase the success of their

monitoring programs.
KEYWORDS
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Introduction

Modern threats to species and habitats demand multi-

faceted and collaborative solutions that engage a diverse set of

stakeholders and expertise. Given the complexities of many

conservation challenges, several authors have proposed

solutions that incorporate multiple disciplines, collaborative

frameworks, and diverse perspectives to find solutions that fit

each issue (Meffe and Viederman, 1995; Naiman, 1999; Dick

et al., 2016). Unprecedented shifts in global climate, habitat loss,

and the rapid loss of biodiversity emphasizes the need for

interdisciplinary approaches now (Dick et al., 2016; Berger

et al., 2019). There are a number of successful examples that

integrate multiple disciplines to enhance conservation actions

for habitats and land use (e.g., reducing deforestation in

Amazonia, Hecht, 2011; climate change risk within land and

water management, Lanier et al., 2018; interdisciplinary

approach to preventing the biodiversity loss, Nakaoka et al.,

2018) as well as protecting individual species (grizzly bear Ursus

arctos, Rutherford et al., 2009; hippopotamus Hippopotamus

amphibius Sheppard et al., 2010). The nature of interdisciplinary

solutions is that many solutions may exist, therefore,

documenting and sharing successful methods increases the

opportunities for tailored solutions to be created for other

species and habitats (Pooley et al., 2013; Dick et al., 2016).

Monitoring is an essential part of many successful

conservation programs as it allows for adaptive strategies and

rapid detection of changes. However, monitoring often receives

limited support after the initial conservation action and can be

difficult to prioritize when a species or habitat is not currently

facing a threat. There is a growing emphasis on improving

monitoring efforts to maximize conservation outcomes,

exemplified by initiatives put forward by the International

Union for Conservation of Nature (IUCN) Species Monitoring

Specialist Group (Stephenson, 2018). However, conservation

monitoring is difficult and often limited by high costs, lack of

trained personnel, or low detectability of target species

(McDonald-Madden et al., 2010; Linchant et al., 2015; Rovang

et al., 2015). Remote locations pose an even greater challenge as
02
even when resources are available, access to the study site may

impede proper monitoring. Therefore, incorporating new

disciplines and novel technologies into monitoring efforts can

increase their effectiveness, scope, and reliability.

Citizen science has been recognized for increasing the

capacity of monitoring projects (Chandler et al., 2017). Citizen

science, also referred to as community science or participatory

science, involves participants contributing to the scientific

process through observations, indexing, and even analyzing

data (Conrad and Hilchey, 2011). The benefits of citizen

science are multifold for both researchers and participants.

Harnessing the efforts of volunteers allows researchers to

expand their data processing capabilities and can provide data

resources for researching and developing machine learning tools

(Swanson et al., 2015; Willi et al., 2019; Anton et al., 2021).

Additionally, citizen science allows volunteers to meaningfully

contribute to scientific endeavors, aiding in increasing scientific

literacy and trust in scientific processes (Tulloch et al., 2013).

There have been notable examples of citizen science projects

resulting in effective conservation management, including

detecting population declines of monarch butterflies (Danaus

plexippus; Schultz et al., 2017), implementing policies to protect

British breeding birds (Greenwood, 2003), and monitoring killer

whale (Orcinus orca) populations (Towers et al., 2019).

Rapid improvement in passive monitoring and data storage

technology have also contributed to monitoring efforts by

dramatically increasing the size and quality of conservation

datasets. Additionally, technological advances have expanded

the variety and availability of non- or minimally invasive means

of monitoring (Marvin et al., 2016; Stephenson, 2018). There are

a growing number of examples where passive acoustic

monitoring (Wrege et al., 2017; Wijers et al., 2019), satellite or

remote sensing (Luque et al., 2018; Ashutosh and Roy, 2021),

and drone monitoring (Burke et al., 2019; Lopez and Mulero-

Pazmany, 2019; Harasyn et al., 2022) are used to increase

monitoring effort while remaining cost-effective and minimally

invasive to the study species. Large datasets collected using these

methods provide conservation scientists and practitioners with

opportunities to explore new research questions; however,
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manually processing these datasets can become extremely time-

consuming, costly, and may increase the likelihood of human

error. Passive monitoring systems need to be implemented in

tandem with solutions that allow rapid processing to ensure

these datasets can be effectively used to maximize benefit.

Machine learning, a subset of the broader term of artificial

intelligence, is an emerging tool that can address the challenges

of processing large datasets for conservation projects (Lamba

et al., 2019). Deep learning models, a part of machine learning,

and in particular convolutional neural networks (CNN), are able

to automatically learn useful feature representations at various

levels of pixel organization (Krizhevsky et al., 2017). As a result,

CNNs have shown highly accurate results for image recognition

and object detection in a variety of applications (Simonyan and

Zisserman, 2015; He et al., 2016; Krizhevsky et al., 2017).

Biologists and land managers have already begun to employ

these models in a variety of contexts, including detecting,

identifying, and counting a variety of wildlife species in

camera trap images (Norouzzadeh et al., 2018; Tabak et al.,

2019; Willi et al., 2019) and underwater video (Siddiqui et al.,

2018; Lopez-Vazquez et al., 2020; Anton et al., 2021). Effectively

applying machine learning tools like deep learning models to

automate essential but time-consuming classifying tasks can

greatly reduce the labor and time-costs of initial data

processing. However, deep learning in conservation is still a

relatively novel application and there is the opportunity to

develop this discipline further.

The need for monitoring Arctic species and ecosystems is

growing as northern regions are being disproportionately

affected by climate change (Dunham et al., 2021). At the same

time, studying Arctic species remains particularly challenging

due to extreme weather, remoteness, and limited infrastructure

(Høye, 2020). This is compounded when studying Arctic marine

mammals as they migrate long distances, can be distributed

widely across the seascape, and are submerged and out of view of

researchers for most of their life (Simpkins et al., 2009). There

have been successful non-invasive monitoring projects in the

Arctic using developing technology, for example the use of

environmental DNA (eDNA; Lacoursière-Roussel et al., 2018),

acoustic monitoring (Marcoux et al., 2017), or drone surveliance

(Eischeid et al., 2021); however, each of these methods used

exclusively can be inhibited by cost, access to the habitat or

species, and may provide limited information about the species

of interest. Thus, Arctic species and ecosystems can particularly

benefit from interdisciplinary, collaborative approaches to

enhance monitoring efforts. In fact, an international

collaborative framework for studying Arctic marine mammals

specifically recognized the need for multi-disciplinary studies to

enhance monitoring in these regions (Simpkins et al., 2009).

Here, we describe a successful multi-year interdisciplinary,

collaborative project for monitoring beluga whales

(Delphinapterus leucas) and their marine ecosystem in the
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Churchill River estuary near Churchill, Manitoba, Canada. We

use the terms “interdisciplinary” and “collaborative”

intentionally, as our study integrates multiple disciplines to

reach a cohesive goal and involves contributions from several

stakeholders. This interdisciplinary approach requires

collaboration with environmental organizations, biologists and

wildlife professionals, research scientists, educators, and

community members. Key objectives for this research project

include: 1) Developing a multi-year photo database of beluga

within the Churchill River estuary, 2) identifying individual

beluga using distinctive markings, and 3) monitoring beluga

and broader ecosystem health. We will provide detail on the

methods we employed as well as the numerous outcomes of this

approach. We hope that this project demonstrates another

example of a successful interdisciplinary, collaborative

monitoring strategy, while providing a framework for other

researchers to implement.
Methods

Study area and species

The Churchill River estuary (58.737138, -94.202522) is one

of three major estuaries along the coastline of western Hudson

Bay where large annual aggregations of the Western Hudson Bay

beluga population occur (Figure 1; Matthews et al., 2017). This

beluga population migrate seasonally from wintering areas in

Hudson and Davis Strait to southern coastal regions and

estuaries in western Hudson Bay (NAMMCO, 2018).The

Churchill River estuary is approximately 13 kilometers in

length and 3 km wide at high tide (Kuzyk et al., 2008).

Hudson Bay experiences a complete annual freeze-thaw cycle,

with ice formation in the Churchill River estuary typically

beginning in October-November and break-up in May-June

(Kuzyk et al., 2008). Large inputs of freshwater mix with the

marine waters of Hudson Bay to produce an ecologically rich

area that supports a complex food web. The diversity and

abundance of animals in the area has given rise to a thriving

tourism industry based in the town of Churchill that attracts

over 530,000 people annually (Greenslade, 2018).

Beluga whales are a highly social, medium-sized species of

toothed whale and the only living member of their genus. They

are endemic to higher latitudes within the Northern Hemisphere

and found throughout the circumpolar Arctic and sub-Arctic

(NAMMCO, 2018). Beluga whales are an ice-adapted species;

they lack a dorsal fin, permitting them to surface between ice

flows and minimizing heat loss (O’Corry-Crowe, 2008).

Globally, many populations of beluga are threatened by direct

and indirect effects of climate change. Indirect effects include

increased human activity in the north with accompanying

increases in noise (Halliday et al., 2019; Vergara et al., 2021)
frontiersin.org

https://doi.org/10.3389/fmars.2022.961095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Westphal et al. 10.3389/fmars.2022.961095
and pollution (Moore et al., 2020), while direct effects include

changing sea ice conditions, shifting prey availability, and

increased exposure to novel pathogens (Lair et al., 2016).
1 https://explore.org/livecams/oceans/beluga-boat-cam-underwater

2 https://www.zooniverse.org/projects/stephenresearch/beluga-bits
Field data collection

Polar Bears International, a non-profit conservation

organization, and explore.org, an online multimedia platform,

manages field data collection which has occurred since 2016 in

the Churchill River estuary and adjacent waters of Hudson Bay.

The observation platform is either a 5.8 meter aluminum hull

boat or a 1.2 m inflatable hull boat with an underwater camera

mounted to the stern or side, respectively. The boat operates for

approximately four hours each day from two hours before high

tide to two hours after high tide. Trips occur daily from early to

mid-July until the first week of September, weather dependent,

every year.

The vessel and camera equipment underwent several

changes and upgrades since the initiation of the project;

however, basic setup remains effectively the same and,

anecdotally, the behavior of whales around the boat has not

changed. The setup includes an underwater camera capturing

video footage below the surface, a hydrophone which records

beluga vocalizations, and microphones on-board for the vessel

operator and onboard guests to commentate during the tour.

The vessel operator’s objective is to maneuver the boat into the
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vicinity of whales without disturbing or altering their behavior

and remain in that area either by drifting or idling to maintain

position. Views of the whales on the camera are entirely reliant

on whales choosing to approach and/or follow the boat and are

permitted each year by Fisheries and Oceans Canada (FWI-

ACC-2018-59, FWI-ACC-2019-17, FWI-ACC-2020-13, FWI-

ACC-2021-23).

Live-stream video broadcast on explore.org1 occurs for the

entirety of the 4-hour trip each day. Additionally, when possible

the video is archived for further analysis. Remote volunteers

from explore.org continually monitor the video/audio feeds,

notifying the vessel operator if technical issues arise during the

live-stream. The vessel operator navigates the boat in the areas of

the Churchill River estuary and adjacent Hudson Bay where Wi-

Fi signal strength can be maintained. During each tour the vessel

operator records GPS tracks of their movements.

Our photo dataset is created by two means: 1) images taken

by viewers watching the live-stream on explore.org, which we

will refer to as snapshots, and 2) still frames extracted from raw

video footage, hereafter referred to as frames. During the live-

stream, moderators and viewers watch and collect snapshots of

beluga or other objects in the water. At the end of the field

season, all snapshots and video are shared with researchers from

Assiniboine Park Zoo, in Winnipeg, Manitoba, Canada. Frames

from the video footage are subsampled at a rate of one frame for

every three seconds (2016-2020) or one frame per second (2021).

Frames are extracted using the av (Ooms 2022) package in R (R

Core Team, 2021).
Data aggregation and validation

Snapshots and frames are classified as part of the Beluga

Bits2 citizen science research project created and managed by

Assiniboine Park Zoo researchers. The Beluga Bits project is

hosted on the Zooniverse platform. Beluga Bits was developed

specifically for Zooniverse to engage citizen scientists around the

world in answering questions about the life history, social

structure, health, and threats of beluga whales inhabiting the

Churchill River estuary. We launched the project on Zooniverse

in 2017 and recruited citizen scientists primarily through the

platform, social media, and Zoo-based educational programs

and presentations.

Image data on Beluga Bits is processed through a hierarchical

series of workflows, where initial workflows are used to filter

images into subsequent workflows of increasing specificity. All

images are first processed as part of a “General Photo

Classification” workflow, where participants annotate images by
FIGURE 1

Map of the Churchill River estuary in northern Manitoba, Canada.
Base maps were obtained from the Government of Manitoba –
Manitoba Land Initiative (Retrieved from: mli2.gov.mb.ca/mli_
data/index.html).
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quality, whether a beluga is present, and content before being

filtered into more question-driven workflows. We design our

Zooniverse workflows to guide citizen scientists through the

image classification process and provide the tools necessary for

accurate assessment. Participants are presented with a tutorial for

each workflow that provides written instructions and visual

examples demonstrating how to complete the tasks asked of

them. Moreover, task responses frequently include an option

that participants can select if they are uncertain. Additional

resources that are not workflow-specific are available as

information pages, FAQs, or “talk” forum discussions.

To assess the reliability and accuracy of citizen scientist

classification, we used images classified within the “General

Photo Classification” workflow. We included images collected

between 2016-2021 and considered each year of data collection

separately to account for differences that field conditions (e.g.,

water color and clarity) and/or workflow structure (i.e.,

providing Yes/No responses vs. placing markers on individual

beluga) may have had on agreement among participants. Each

image was classified by a minimum of 10 participants. We

evaluated the agreement among participants using a Fleiss’

kappa (Fleiss, 1971) measure implemented in the irr package

(Gamer et al., 2019) in R. We then considered the accuracy of

participant responses by comparing them with classifications

provided by researchers. We created a subset of images that had

been classified by both a researcher and participants, filtering for

images where 70% or more participants agreed on whether or

not a beluga was present. This resulted in a dataset of 1,936

images. We then compared classifications provided by

researchers with the aggregated response from participants

using a confusion matrix (caret package, Kuhn, 2022) in R.
Deep learning model development

Extracting frames from the video allows us to greatly expand

our dataset; however, it produces a large number of images that do

not contain species of interest. Anecdotally, this lack of beluga

images reduces the level of participation of citizen scientists

during the image classification steps. Therefore, to increase data

processing efficiency and maintain participant interest, we

developed convolutional neural networks to sort frames that

contain beluga whales from empty (just water) images.

We collected images to train the deep learningmodel from the

“General Photo Classification” workflow. Each photo was seen by

10 participants. A curated, balanced set of 12,678 images where

100% of participants agreed on presence or absence of beluga was

selected to train and test the model. We used cross-validation to

evaluate the generalization of our trainedmodels. Cross-validation

involves dividing the dataset into partitions (commonly referred

to as folds), wherein multiple models are trained and evaluated by

letting different folds assume the role of training and validation
Frontiers in Marine Science 05
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by randomly shuffling the dataset into two subsets of equal size,

designated as D0 (first fold) andD1 (second fold). We then trained

deep learning models on D0 and validated it using D1, followed by

training on D1 and validating on D0. To establish a deep learning

baseline for classifying image frames with and without beluga, we

selected three established CNN architectures for testing. We

implemented our code in Python (using PyTorch framework;

Paszke et al., 2019). All the models were trained on the computing

platform with the following specifications: Intel Core i9 10th

generation processor with 256 GB RAM, and 48 GB NVIDIA

Quadro RTX 8000 GPU. For training, we used the following

parameters: a stochastic gradient descent optimizer with

momentum of 0.9, 50 epochs, learning rate of 0.001, and batch

size of 64 (Goodfellow et al., 2016).

CNN architectures, including AlexNet (Krizhevsky et al.,

2017), VGG-16 (Simonyan and Zisserman, 2015), and ResNet50

(He et al., 2016) were used. Deep neural networks can either be

trained for the task from scratch or models that have been pre-

trained on a large publicly available dataset, such as ImageNet,

can be used to improve the training accuracy and speed of new

models (Deng et al., 2009). The latter approach is referred to as

transfer learning (Ribani and Marengoni, 2019). The extracted

features of the images on the pre-trained network can be

transferred to the new task and do not have to be learned

again. In our work, we have employed transfer learning with two

of the architectures, AlexNet and ResNet50. For VGG-16, we

incorporated attention mechanisms to further improve the

performance (Jetley et al., 2018). Attention mechanisms in

deep neural networks are a class of methods through which

the neural network can learn to pay attention to certain parts of

the image based on the context and the task.

AlexNet (Krizhevsky et al., 2017) is composed of five

convolutional layers followed by max pooling and three fully

connected layers (Figure 2). It has the fewest number of layers

compared to the other two architectures, VGG-16 and ResNet-

50, while it uses larger receptive fields.

The second architecture we trained was VGG-16 combined

with trainable attention modules (Figure 3). VGG architectures

have deeper networks, but with smaller filters. This enhances

their representational powers to implement nonlinear functions

(Simonyan and Zisserman, 2015). This can assist the networks in

discriminating between different classes more efficiently.

Additionally, we applied an attention mechanism to help the

model focus on critical and salient regions most pertinent to the

object of interest (Jetley et al., 2018). We can gain insight into

where the model focuses when it makes predictions by looking at

the attention estimator output of the image frames, paying

particular attention to images the network struggles to identify

or incorrectly assigned class labels (Figure 3).

The attention estimator masks shown above demonstrate

that the neural network learns to pay attention to only those
frontiersin.org
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regions of the image which contain beluga whales. Right: Panels

A-C are the example frames that contained belugas and were

predicted correctly, but were challenging for the network. Panels

D-F are the example frames that were incorrectly classified by

the network, in this instance, bubbles were classified as beluga.

The color bar defines regions with varying attention values,

where the blue and red ends of the spectrum signify lower and

higher attention values, respectively.

The final architecture tested in our study was ResNet-50, a

fifty-layer deep convolutional neural network known as a

residual network (He et al., 2016; Figure 4). A deeper network

increases the efficiency of learning a more complex function;

however, as a network goes deeper, performance will eventually

drop due to vanishing gradient problems. Skip connection has

been introduced in residual networks to address this.

Once a final model was developed, we used it to classify

whether frames did or did not contain a beluga on new image

datasets. Images in which the model was at least 90% confident a

beluga was present were processed and uploaded to the Beluga

Bits project on Zooniverse.
Workflow development and
database applications

After the initial photo processing using deep learning, our

team has addressed more specific questions about belugas and

their environment using curated photo datasets. Many of these

questions were based on initial observations and comments made

by citizen scientists and workflow testers in earlier forms of the

project. In 2019, the “General Photo Classification” workflow was

updated to ask participants to answer questions related to what

parts of the whale are in view. For example, the question “Can you

see the underside of any beluga in this photo” identified images

that could later be used to determine sex by genitalia. In this

workflow, users were also asked “Do any of the beluga in this

photo have major wounds or identifiable marks?”, which would

later be used to identify individuals based on unique markings.

Additionally, after a number of observations from citizen
Frontiers in Marine Science 06
scientists of jellyfish (Cnidaria) and jellies (Ctenophora) in the

photographs, a targeted workflow called “Is that jellyfish?” was

created in 2020 to assist researchers in counting and identifying

jellyfish and jelly species within the estuary. Researchers initially

created the workflow and provided educational materials to

record three species (Lion’s Mane Cyanea capillata, moon

jellyfish Aurelia aurita, and Arctic comb jelly Mertensia ovum)

that had been confirmed within the estuary.
Results

Field data collection

Live-stream viewership and engagement on explore.org

varied across the years of the project (Table 1). The first year

of the project saw its highest number of participants with 276

unique usernames contributing snapshots for the Beluga Bits

project. In 2020, poor water clarity and technical difficulties

likely contributed to lower engagement, with just 30 users

contributing snapshots. Participation on Beluga Bits has grown

continually since its launch on Zooniverse (Figure 5).

We extracted frames from video in each year of the project;

however, the amount of video available to be subsampled varied

each season for logistical and technical reasons. On average,

67.9% (range: 55.1-77.4%) of frames were designated as empty

(i.e., did not contain beluga) and were removed from the dataset.

The remaining frames and snapshots were uploaded to the

Beluga Bits project on Zooniverse.
Data aggregation and validation

Agreement among participants was stronger in more

recent years of the project (Table 2). Frames collected during

years which had generally higher water clarity (2016, 2019, and

2021) did not necessarily have stronger levels of agreement

compared to those which had lower clarity (2017, 2018,

and 2020).
FIGURE 2

Schematic of the AlexNet convolutional neural network architecture.
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Participants had an accuracy of 70.4% (95% CI: 68.3%,

72.4%) and moderate agreement (K = 0.396, Landis and Koch,

1977) when compared with researcher responses (Table 3).

Citizen scientists were better at correctly determining when

beluga were not present (74.2% accuracy) compared to when

they were (65.4%).
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Deep learning model development

Three CNN architectures were trained and tested for the

task of classifying whether frames did or did not contain

beluga whales. All the models performed well on both the

training and testing datasets. We report two performance
A

B

D

E

FC

FIGURE 3

Left: The architecture of VGG-16 with the attention module. Right: Panels (A–C) show correctly classified images that contain beluga and (D–F)
show incorrectly classified images. The colour bar defines regions with varying attention values, where the blue and red extremes signify lower
and higher attention values, respectively.
FIGURE 4

Schematic of a ResNet-50 architecture with skip connections, adding the input of each convolution block to its output.
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metrics: 1) the classification accuracy, with confusion

matrices, and 2) the Area Under Receiver Operating

Characteristics curve (ROC-AUC). The ROC-AUC did not

substantially differ between the models, all with an Area

Under Curve (AUC) of greater than 0.99 for the testing data

and 1.00 for the training data (Table 4). Among all networks

that we used, the best performance was achieved by VGG-16

architecture using attention modules with an AUC of 0.99 and

the class accuracies of 97.48% (with beluga) and 98.22%

(without beluga) (Figure 6).
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Workflow development and
database applications

Using remarks from citizen scientists from the “talk” forum

discussions on Zooniverse, there have been a number of

interesting observations noted about beluga and their

environment. Often, these observations were explored further

through discussions with project partners and experts in their

fields. For example, citizen scientists highlighted a photo of a

whale from 2016 that had a series of dots along the right side of
TABLE 1 Summary of field data collection and contributions by citizen scientists.

Year Snapshots

Snapshots explore.org contributors Extracted frames Image classifications

2016 7372 276 122,851 –

2017* 9645 177 16,875 10,997*

2018 5488 117 56,248 147,628

2019** 14,883 163 108,802 106,306

2020 412 30 76,824 2,220,907

2021 11,390 126 146,541 2,505,119

Total 49,190 – 528,141 4,990,957
*Beluga Bits project officially launched on Zooniverse in April, 2017.
** Entire 2019 dataset was uploaded to Beluga Bits and provided the classifications used in training the deep learning model.
Image classifications are provided by the Beluga Bits project by users on Zooniverse. Summaries are presented as annual totals.
FIGURE 5

Total registered users contributing to Beluga Bits since the project’s inception. Bars represent cumulative users per month per year. Beluga Bits
project officially launched on Zooniverse in April, 2017.
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its dorsal ridge. This same whale was later resighted by

researchers in both 2019 and 2021 during boat-based

observations because of this distinctive dotted lesion at the

same location on its body. Likewise, in 2020 a participant

commented on a photo of a beluga that had distinctive

markings that they suspected was a result of an injury due to a

boat propeller. After consulting with researchers studying wild

beluga, it was determined that this whale’s scars were created by

a previously attached satellite-tracking device and the

observation subsequently published in Ryan et al. (2022).

Soon after the launch of the “Is that a Jellyfish?” workflow,

citizen scientists highlighted images containing species that did

not match the descriptions of those we had previously identified.

These discussions, with consultation with jellyfish researchers,

ultimately confirmed the presence of two jellyfish and three jelly

species in the estuary that had been captured in our images. Two

of these jelly species had not been noted in the original workflow

materials, the first being the melon comb jelly (Beroe cucumis), a

comb jelly that has been observed across northern Atlantic and

Pacific coastlines. The second species, the common northern

comb jelly (Bolinopsis infundibulum), has not previously been

photo-documented or recorded within Hudson Bay to the best

of our knowledge.

Other than these important observations from the photo

database that were revealed by citizen scientists, there are a

number of other observations that have been indicated to

researchers that require further exploration and may dictate

future research objectives such as the high incidence of curved

flippers, wounding around the mouth, interesting skin and

moulting patterns, and the timing and presence of calves with

fetal folds.
Frontiers in Marine Science 09
Discussion

Our results demonstrate the value that an interdisciplinary

approach has brought to this project, particularly in the

integration of wildlife biology, citizen science, and computer

science. In collaborating with project partners and citizen

scientists, we were able to collect thousands of images each

year to index and classify. Overall, citizen scientists had a

classification accuracy of 70.4% (95% CI: 68.3%, 72.4%) when

determining the presence or absence of beluga in frames.

Agreement on presence and absence of beluga did vary from

year to year, with a higher agreement in more recent years. This

variation may be due in part to improvements to workflow

structure over time, as well as varying water quality amoung

years. Of the three deep learning architectures tested, the VGG-

16 architecture had the highest class accuracy of 97.48% (with

beluga) and 98.22% (without beluga). The two other

architectures tested also had high class accuracies, all of which

were over 96%. Our project demonstrates that large-scale image

sorting of underwater images of marine life is viable through

deep learning models. This could be the first of many such

applications towards wildlife research, where building efficient

and engaging processes allow for increased focus on research

questions and monitoring. Ultimately, this will aid in supporting

wildlife management and conservation.

While the CNN models were more accurate than citizen

scientists in predicting whether belugas were present, this does

not discredit the value of these participants in our project. For

instance, although the CNN models performed well in

determining the presence or absence of beluga, there are more

complicated questions we are addressing on Zooniverse. This
TABLE 2 Summary of agreement among citizen scientist responses as measured by Fleiss’ K (Fleiss, 1971).

Year Sample size Fleiss kappa (K) p-value

2016 37,537 0.542 <0.0001

2017 11,055 0.446 <0.0001

2018 13,935 0.422 <0.0001

2019 111,086 0.825 <0.0001

2020 23,285 0.829 <0.0001

2021 22,084 0.757 <0.0001
fronti
TABLE 3 Confusion matrix comparing the aggregated responses of citizen scientists with researcher responses for a subset of images.

Aggregated response

No Yes

Researcher response No 542 (65.4%) 287 (34.6%)

Yes 286 (25.8%) 821 (74.2%)

Total 828 1,108
ersin.org

https://doi.org/10.3389/fmars.2022.961095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Westphal et al. 10.3389/fmars.2022.961095
includes questions that would be challenging for machine

learning models to correctly identify, such as classifying

unique markings on beluga. Moreover, interactions between

participants and researchers on Zooniverse through forum

discussions have led to crucial discoveries and project

developments (i.e., new jellyfish species, the previously tagged

individual). Finally, the aggregated responses from citizen

scientists were necessary for testing and training the computer

models. This data integration among disciplines highlights an

aspect of this approach that we consider essential to the success

of our project. For our project, multiple disciplines have been

integrated with each other, leading to the development of a

shared framework. Citizen scientist classifications would be

necessary for any further model development for this project

and, in turn, the output from the models could create more

engaging workflows for participants in the future. We suggest
Frontiers in Marine Science 10
that other projects that are considering interdisciplinary

methodologies consider how their disciplines and partnerships

can build on each other cohesively to maximize success.

A key objective of the Beluga Bits project was to create a

long-term photo database of beluga within the Churchill River

estuary to identify distinctive markings that would identify

individual beluga, potential threats to belugas, and changes in

the ecosystem. Here we have had several successes capitalizing

on observations from citizen scientists. Scars or other markings

on animals can be used to identify individuals, but they have also

been used to provide insights into broader ecosystem health and

emerging threats (Aguirre and Lutz, 2004; LaDue et al., 2021).

Identifying wounds and scars can provide information about

interactions beluga have within their environment and threats

they may be encountering across their range, for example vessel

strikes or infectious agents. The whale that was originally sighted
FIGURE 6

ROC curves for VGG-16 with attention model (trained on the first fold of the dataset and tested on the second fold).
TABLE 4 Results summary for three CNN architectures: Alexnet, VGG-16, and ResNet-50.

Architecture Training fold AUC Class accuracy with
Beluga (%)

Class accuracy without
Beluga (%)

Average accuracy (%)

Pre-trained Alexnet D0 0.99 96.44 98.56 97.49

Pre-trained Alexnet D1 0.99 98.40 96.81 97.60

VGG-16 with Attention D0 0.99 98.22 97.48 97.85

VGG-16 with Attention D1 0.99 98.11 97.37 97.74

Pretrained Resnet-50 D0 0.99 97.12 98.05 97.58

Pretrained Resnet-50 D1 0.99 97.12 97.03 97.08
The dataset is divided into two folds where the training process is performed on one of the folds and tested on the other fold. Reported are the Area Under the Curve (AUC), class accuracy
(%) of both classification labels (with and without beluga), and the average accuracy (%).
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in 2016 was identified using a distinct dot-like scarring pattern,

referred to as a “morse-code” lesion (Le Net, 2018). Similar

lesions have been attributed to a pox-like viral skin infection in

other beluga populations (Krasnova et al., 2015, Le Net, 2018)

and can persist on the skin for several years (Krasnova et al.,

2015). Epidemiological studies have not found evidence that

poxvirus infections induce high mortality in affected cetacean

populations; however, it has been suggested that neonates or

calves could be at higher risk of mortality, potentially affecting

population dynamics (Van Bressem et al., 1999). Additionally, in

other beluga populations poxvirus lesions are considered

indicators of various pollutants (Krasnova et al., 2015),

therefore monitoring the presence and prevalence of these

infections could provide insight into the environmental

conditions individuals are encountering.

An additional success was sighting a previously satellite-

tagged beluga whale based on a citizen scientist observation.

Satellite-tagging within the Greater Hudson Bay area has

occurred infrequently and resighting a tagged whale is rare.

Confirming this previously tagged whale within our dataset

resulted in a collaboration on a larger project examining

previously tagged whales in both Western Hudson Bay and

Cumberland Sound populations (Ryan et al., 2022). This

resighting provided insights into tag loss, wound healing, and

the long-term impacts of tagging for these animals. These

become important considerations when planning monitoring

activities using satellite-tags on cetaceans in the future.

Ultimately, resighting individual whales over their lifespan can

provide valuable insight into the process of wound healing

(Krasnova et al., 2015; McGuire et al., 2021), long-term

changes in health (Krasnova et al., 2015; McGuire et al., 2021),

and degree of site fidelity (McGuire et al., 2020). By resighting

known whales we are able to gain insight about the use of this

estuary and life history.

The applications of citizen science can extend beyond single

species to multi-species (Swanson et al., 2015) and broader

ecosystem monitoring (Gouraguine et al., 2019). An objective

that emerged from the Beluga Bits project has been to monitor

the health of the Churchill River estuary ecosystem using

jellyfish as an indicator species. Jellyfish have previously been

considered indicators for ecosystem disturbances given their

propensity to thrive in disturbed marine environments (Lynam

et al., 2011; Brodeur et al., 2016). Moreover, many jellyfish

species are expanding their ranges as climate change results in

warmer waters (Hay, 2006). This may be of particular

importance for Arctic oceans, as jellyfish species have been

documented increasing in occurrence and abundance in these

areas (Attrill et al., 2007; Purcell et al., 2010; Geoffroy et al.,

2018). Some researchers are advocating for increased

monitoring of jellyfish species, as invasive jellyfish can have

significant impacts to ecosystems (Brodeur et al., 2016).

Therefore, detecting new jelly and jellyfish species in the

Hudson Bay ecosystem could provide critical insight into the
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potential population or community-level changes that may be

occurring within the estuary or surrounding waters.

Despite numerous successes already in this project, there are

some limitations we are hoping to address in the future, or are

taking steps to address now. Viewership on explore.org does

vary from year to year and can be hard to predict. However,

frame sampling the live-video ensures that regardless of

viewership we are capturing all frames of interest. This will

likewise increase the likelihood of capturing useful images in

years with poor water quality. To that effect, we are also looking

to develop our image capturing technology (such as

implementing a 360 degree camera) to maximize the quality of

photos regardless of water quality. We have also seen

participation on Beluga Bits grow every year since the project

began and we believe implementing new workflows and new

photo data every year will maintain engagement. Additionally,

although we have established relationships with veterinarians,

facilities with animals in care and researchers, we are limited in

the number of parties and disciplines we work with. We would

like to expand our network further, for example, local

Indigenous communities and knowledge keepers hold intimate

knowledge and expertise of beluga and their environment. This

is an essential perspective on how we understand and conserve

beluga within Hudson Bay. Additionally, although our data has

led to important insights into beluga biology in the estuary, the

further we develop our data capabilities, the more opportunities

we have to inform conservation and management decision-

making more directly. For example, linking GPS locations with

underwater images may provide insights into how different

groups of beluga use specific areas of the estuary.

Georeferencing detections of beluga mothers and calves could

inform guidelines for speed zones or temporary restrictions

within the estuary to minimize impacts on vulnerable parts of

the population (also suggested by Malcolm and Penner, 2011).

There are numerous avenues still to explore by expanding the

reach of the project into other adjacent areas and building

connections with nearby communities, knowledge keepers,

and researchers.

As the project grows its reach and research capabilities, there

is great potential to continue expanding this network to

incorporate disciplines and perspectives. For example,

understanding the origins and healing processes of injuries

and infections can be highly informative for conservation and

management. We have established relationships with

veterinarians, facilities with animals in care, and researchers to

share images of distinct injuries and markings to learn more

about them

We have described a successful interdisciplinary,

collaborative monitoring project focusing on beluga whales

and the Churchill River estuary ecosystem. This project has

been built by bringing together concepts and tools from multiple

disciplines with collaborations from diverse partnerships to

produce a comprehensive approach. We have demonstrated
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the successes of applying such an approach to produce

innovative applications for emerging technologies, increase

data collection capabilities, provide critical insights, and

engage a broad audience to participate in conservation

research. As we have shown, we can bring together diverse

perspectives, partners, technologies, and resources to expand

monitoring efforts and deliver tools where they are needed most.
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et al. (2017). Contribution of citizen science towards international biodiversity
monitoring. Biol. Cons. 213, 280–294. doi: 10.1016/j.biocon.2016.09.004

Conrad, C. C., and Hilchey, K. G. (2011). A review of citizen science and
community-based environmental monitoring: Issues and opportunities. Environ.
Monit. Assess. 176, 273–291. doi: 10.1007/s10661-010-1582-5

Core Team, R. (2021). R: A language and environment for statistical computing
(Vienna, Austria: R Foundation for Statistical Computing). Available at: https://
www.R-project.org/.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet:
a Large-scale hierarchical image database. IEEE conference on computer vision and
pattern recognition,” in IEEE Computer society conference on computer vision and
pattern recognition, 248–255. doi: 10.1109/CVPR.2009.5206848

Dick, M., Rous, A. M., Nguyen, V. M., and Cooke, S. J. (2016). Necessary but
challenging: multiple disciplinary approaches to solving conservation problems.
FACETS. 1, 67–82. doi: 10.1139/facets-2016-0003

Dunham, K. D., Tucker, A. M., Koons, D. N., Abebe, A., Dobson, S. F., and
Grand, J. B. (2021). Demographic responses to climate change in a threatened
Arctic species. Ecol. Evol. 11, 10627–10643. doi: 10.1002/ece3.7873

Eischeid, I., Soininen, E. M., Assmann, J. J., Ims, R. A., Madsen, J., Pedersen,
Å.Ø., et al. (2021). Disturbance mapping in Arctic tundra improved by a planning
workflow for drone studies: Advancing tools for future ecosystem monitoring.
Remote Sens. 13, 4466. doi: 10.3390/rs13214466
frontiersin.org

https://doi.org/10.1007/s10393-004-0097-3
https://doi.org/10.1007/s10393-004-0097-3
https://doi.org/10.3897/BDJ.9.e60548
https://doi.org/10.1007/s12524-020-01279-1
https://doi.org/10.4319/lo.2007.52.1.0480
https://doi.org/10.1007/s10584-019-02544-0
https://doi.org/10.1080/03632415.2016.1232964
https://doi.org/10.1080/03632415.2016.1232964
https://doi.org/10.1080/01431161.2018.1558372
https://doi.org/10.1016/j.biocon.2016.09.004
https://doi.org/10.1007/s10661-010-1582-5
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1139/facets-2016-0003
https://doi.org/10.1002/ece3.7873
https://doi.org/10.3390/rs13214466
https://doi.org/10.3389/fmars.2022.961095
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Westphal et al. 10.3389/fmars.2022.961095
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters.
Psychol. Bull. 76, 378–382. doi: 10.1037/h0031619

Gamer, M., Lemon, J., and Singh, I. F. P. (2019) Irr: Various coefficients of
interrater reliability and agreement. Available at: https://CRAN.R-project.org/
package=irr.

Geoffroy, M., Berge, J., Majaneva, S., Johnsen, G., Langbehn, T. J., Cottier, F.,
et al. (2018). Increased occurrence of the jellyfish Periphylla periphylla in the
European high Arctic. Polar Biol. 41, 2615–2619. doi: 10.1007/s00300-018-2368-4

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gouraguine, A., Moranta, J., Ruiz-Frau, A., Hinz, H., Reñones, O., Ferse, S. C. A.,
et al. (2019). Citizen science in data and resource-limited areas: A tool to detect
long-term ecosystem changes. PLoS One 14, e0210007. doi: 10.1371/
journal.pone.0210007

Greenslade, B. (2018). Tourism industry in Churchill taking hit since rail line
wash-out last spring. Global News. https://globalnews.ca/news/3982336/tourism-
industry-in-churchill-taking-hit-since-rail-line-wash-out-last-spring/.

Greenwood, J. J. D. (2003). The monitoring of British breeding birds: A success
story for conservation science? Sci. Total Environ. 310, 221–230. doi: 10.1016/
S0048-9697(02)00642-3

Høye, T. T. (2020). Arthropods and climate change – arctic challenges and
opportunities. Curr. Opin. Insect Sci. 41, 40–45. doi: 10.1016/j.cois.2020.06.002

Halliday, W. D., Scharffenberg, K., Whalen, D., MacPhee, S. A., Loseto, L. L., and
Insley, S. J. (2019). The summer soundscape of a shallow-water estuary used by
beluga whales in the western Canadian Arctic. Arct. Sci. 6, 361–383. doi: 10.1139/
as-2019-0022

Harasyn, M. L., Chan, W. S., Ausen, E. L., and Barber, D. G. (2022). Detection
and tracking of belugas, kayaks and motorized boats in drone video using deep
learning. Drone Syst. Appl. 10, 77–96. doi: 10.1139/juvs-2021-0024

Hay, S. (2006). Marine ecology: Gelatinous bells may ring change in marine
ecosystems. Curr. Biol. 16, R679–R682. doi: 10.1016/j.cub.2006.08.010

Hecht, S. B. (2011). From eco-catastrophe to zero deforestation?
Interdisciplinarities, politics, environmentalisms and reduced clearing in
Amazonia. Environ. Conserv. 39, 4–19. doi: 10.1017/S0376892911000452

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE computer society conference on computer
vision and pattern recognition. doi: 10.1109/CVPR.2016.90

Jetley, S., Lord, N. A., Lee, N., and Torr, P. H. S. (2018). “Learn to pay attention,”
in 6th international conference on learning representations, ICLR 2018 - conference
track proceedings. arXiv. doi: 10.48550/ARXIV.1804.02391

Krasnova, V., Chernetsky, A., and Russkova, O. (2015). Skin defects in the
beluga whale Delphinapterus leucas (Pallas, 1776) from the Solovetsky gathering, as
revealed by photo-identification analysis. Russ J. Mar. Biol. 41, 372–383.
doi: 10.1134/S1063074015050077

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification
with deep convolutional neural networks. Commun. ACM. 60, 84–90. doi: 10.1145/
3065386

Kuhn, M. (2022). Caret: Classification and regression training. Available at:
https://CRAN.R-project.org/package=caret.

Kuzyk, Z. A., Macdonald, R. W., Granskog, M. A., Scharien, R. K., Galley, R. J.,
Michel, C., et al. (2008). Sea Ice, hydrological, and biological processes in the
Churchill River estuary region, Hudson Bay. Estuar. Coast. Shelf Sci. 77, 369–384.
doi: 10.1016/j.ecss.2007.09.030

Lacoursière-Roussel, A., Howland, K., Normandeau, E., Grey, E. K.,
Archambault, P., Deiner, K., et al. (2018). eDNA metabarcoding as a new
surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 8, 7763–7777.
doi: 10.1002/ece3.4213

LaDue, C. A., Vandercone, R. P. G., Kiso, W. K., and Freeman, E. W. (2021).
Scars of human–elephant conflict: Patterns inferred from field observations of
Asian elephants in Sri Lanka. Wildl Res. 48, 540–553. doi: 10.1071/WR20175

Lair, S., Measures, L. N., and Martineau, D. (2016). Pathologic findings and
trends in mortality in the beluga (Delphinapterus leucas) population of the St.
Lawrence Estuary, Quebec, Canada, from 1983 to 2012. Vet. Pathol. 53, 22–36.
doi: 10.1177/0300985815604726

Lamba, A., Cassey, P., Segaran, R. R., and Koh, L. P. (2019). Deep learning for
environmental conservation. Curr. Biol. 29, R977–R982. doi: 10.1016/
j.cub.2019.08.016

Landis, J. R., and Koch, G. G. (1977). The measurement of observer agreement
for categorical data. Biometrics 33, 159–174. doi: 10.2307/2529310

Lanier, A. L., Drabik, J. R., Heikkila, T., Bolson, J., Sukop, M. C., Watkins, D. W.,
et al. (2018). Facilitating integration in interdisciplinary research: lessons from a
south Florida water, sustainability, and climate project. Enviro. Manage. 62, 1025–
1037. doi: 10.1007/s00267-018-1099-1
Frontiers in Marine Science 13
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