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Effects of tidal variations on
total nitrogen concentration,
speciation, and exchange flux in
the Shuidong Bay coastal water,
South China Sea

Peng Zhang, Weisheng Luo, Miaojian Fu, Jibiao Zhang*,
Mingyue Cheng and Jiale Xie

College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
Nitrogen (N) plays an important role in marine ecosystems as a biogenic element

for phytoplankton. The tidal cycle had major influence on various biogeochemical

parameters of the bay and changed nutrients input with the ebb and flow of the

tide. In this study, we collected samples from Shuidong Bay (SDB) in China, in

August 2021, to explore the periodic variations in coastal waters during spring and

neap tides. The effects of spring and neap tides on different speciation of nitrogen

in the SDB and the exchange fluxes between the SDB and the South China Sea

(SCS)were investigated. The results indicated that the concentrations of particulate

nitrogen (PN) andN-NO2
-were significantly different between the spring and neap

tides (P < 0.05). The total nitrogen (TN) concentrations in SDB during the spring

and neap tides were 258.12 ± 89.49 mmol/L and 231.77 ± 56.86 mmol/L. During the

spring and neap tides, total dissolved nitrogen (TDN) accounted for 54.1% and

52.2% of TN, respectively. In addition, dissolved organic nitrogen (DON) accounted

for 81.4% and 69.9% of the TDN during the spring and neap tides, respectively.

Furthermore, the net exchange fluxes of different speciation of nitrogen showed

that the net exchange fluxes of TN were transported from SDB to SCS during the

spring and neap tide, with the net exchange fluxes of 37.7 t and 8.8 t, respectively.

The net exchange flux of TN during spring tide was 4.3 times higher than that of

neap tide. In addition, a significant negative correlation was observed between

dissolved inorganic nitrogen (DIN) and salinity in SDB during the spring and neap

tides (P < 0.001), indicated that DIN was mainly influenced by terrestrial sources

inputs. A significant positive correlation (P < 0.01) was observed between PN and

Chlorophyll-a in SDB during the spring and neap tides, implied that the assimilation

of a large number of planktonic organisms promoted PN formation. The present

results revealed that tidal variation played an important role in regulating N

speciation and exchange flux in coastal waters, which had great implications for

N biogeochemistry and water quality improvement in SDB.
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1 Introduction

Nitrogen is an essential nutrient for the growth and

reproduction of marine organisms (Tian, 1990; Dittmar and Lara,

2001; Xia et al., 2007; Fang et al., 2008; Gao et al., 2009; Cheng et al.,

2020). Nitrogen is the basis of marine primary productivity and

food chain and play an important role in marine biogeochemistry,

which affects the biomass of marine ecosystems and community

structure, causing the eutrophication of water bodies (Loh, 2000;

Berman et al., 2003; Han et al., 2003; Zhou et al., 2003; Xin et al.,

2010; Lin et al., 2013; Sui et al., 2016). The nitrogen cycle is a crucial

part of biogeochemical processes that control the availability of

nitrogenous nutrients and productivity levels of organisms in

marine ecosystems (Galloway, 2005; Zhong and Li, 2014; Huang,

et al., 2021; Lin and Lin, 2022). The major sources of nitrogen in the

ocean are terrestrial runoff, surface water and groundwater input,

sewage discharge, atmospheric deposition, and nitrogen fixation

(Watson et al., 1993; Howarth, 2008; White et al., 2013; Guo et al.,

2019; Du et al., 2020). Extremely high nutrient content caused the

eutrophication of water bodies and even disasters, such as red tides

(Sun et al., 2005; Zheng, 2010; Carey et al., 2011; Liu et at., 2011;

Fatemi et al., 2012; Guo et al., 2012; Zhang et al., 2020c). In contrast,

extremely low nutrient content may cause dysfunctional nutrient

structures, preventing the normal growth of phytoplankton, and

affecting the stability of marine ecosystems (Bricker et al., 2003;

Geeraert et al., 2021; Niu et al., 2016; Xu et al., 2020; Zhou, 2021). In

the water column, nitrogen is characterized by variable speciation.

DIN is involved in the speciation of N-NO3
-, N-NO2

-, and N-NH4
+.

The changes in DIN speciation affecting the primary production,

changing competitiveness among species, and altering biodiversity

in water column (Collos, 1998; Feng et al., 2012; Tang et al., 2013

Kang et al., 2020; Li et al., 2020). Phytoplankton constitutes an

indispensable link in the aquatic food chain, and they grow by

absorbing nutrients from the water column in a certain proportion

(Eppley and Peterson, 1979; Falkowski, 1997; Joseph et al., 2008; Li

et al., 2008; Liu et al., 2011; Li et al., 2017; Xiu et al., 2019). DIN is

taken up by phytoplankton and then released in the DON forms,

which primarily contains humic substances, urea, free amino acids,

amides, and vitamins. Particulate organic nitrogen included organic

nitrogen debris, bacteria, and phytoplankton components ( Yang et

al., 1990; Moneta et al., 2014; Kanuri et al., 2018; Xiu et al., 2019).

PN is an important speciation of nitrogen in the ocean and plays an

important role in the transport of various elements of the ocean and

in the supply of nutrients and biogeochemical processes. Changes in

the ratio and concentration of PN plays an important role in the

maintenance of primary productivity in the offshore (Fernandes,

2011; Yu et al., 2012; Zhou et al., 2019). The multiple species of

nitrogen make its circulation in the marine environment

relatively complex.

The tidal cycle has major influence on various physicochemical

parameters of the bay and changes nutrients and organic matter

input with the ebb and flow of the tide. The coastal zone is a key
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area for marine biogeochemical reactions, and the physical

processes has a significant impact on biogeochemical reactions

(Yin and Harrison, 2000; Qu et al., 2007; Fang et al., 2012; Li,

2021). Tidal forces are important factors controlling water–

sediment dynamics in estuarine and coastal systems, including

regulated water stratification and influenced the transport of

freshwater and sediment from rivers into estuaries, further

affecting the dynamics of organic and inorganic components

(Tian, 1990; Dittmar and Lara, 2001; Xia et al., 2007; Fang et al.,

2008; Gao et al., 2009; Cheng et al., 2020). The high intensity human

activities had caused the ecological degradation of the bay, which

were unique nearshore weak exchange hydrodynamic

environments, were among most eutrophic water environments

in the ocean under the influence of high-intensity human activities

(Bricker et al., 2003; Daniel et al., 2009; Liu et al., 2011; Wang, 2019;

Cui et al., 2020; Li et al., 2020). In recent years, nutrients in bay

water have been influenced primarily by anthropogenic activities,

resulting in the increase of terrestrial nutrients into coastal water

(Zhang 2007b; Santos et al., 2008; Li et al., 2013; Amato et al., 2020).

The distribution of nitrogen in coastal waters was influenced by

tides, winds, convective diffusion, biological activities, and water-

sediment interface exchange (Li, 2021; Liu et al., 2017; Zhang et al.,

2016; Zhang et al., 2022). Therefore, nutrients had different

biogeochemical processes and showed different spatial patterns

under the influence of tidal variations, which further affect

primary production and thus the nitrogen cycle in coastal waters

(Zhou et al., 2003; Sun, 2008; Guo et al., 2014; Yuan et al., 2016).

Shuidong Bay (SDB) is a semi-enclosed bay, formed by the

recent slight rise in the Earth’s crust (Li et al., 2015). The bay is

slightly curved, with its wide mouth facing south, and

surrounded by a large sand dam. The tides in SDB were

characterized by semi-diurnal tidal variations (Qin et al., 2014;

Li et al., 2015; Feng et al., 2017). Semi-diurnal tidal variations

may have a considerable influence on the dynamics of nutrients

in SDB (Peng, 1987; Yang et al., 2011; Qin et al., 2014; Li et al.,

2015; Feng et al., 2017). In addition, the input and output of

nutrients and hydrological conditions of coastal bays determined

the residence time of nutrients, and the combined influence of

adjacent waters further complicates the biogeochemical

processes of the nutrients involved (Hopkins et al., 1993; Li,

2021). As different speciation of nitrogen flow between SDB and

SCS with seawater, some nutrients may be consumed or

produced during transport. That would result in high or low

nutrient concentrations during tidal changes (Li, 2021).

However, with the rapid development of mariculture in recent

years, it had caused a decrease in the exchange capacity of SDB

waters and an increase in water eutrophication (Qin et al., 2014;

Li et al., 2015; Li et al., 2016; Feng et al., 2017). At present, studies

had focused on the mechanisms of tides and their effects on

hydrodynamics (Song et al., 2011; Wu et al., 2011; Cheng et al.,

2020) and distribution patterns of nutrients in estuarine bays

(Guo, 2020; Lu et al., 2020; Liu et al., 2021; Zhang et al., 2021; Ke
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et al., 2022). However, previous studies on SDB had primarily

focused on the natural environment and dynamic conditions;

previous studies lack real-time observations, particularly the

simultaneous changes in nutrients during the spring and neap

tidal cycles. In addition, most previous studies had focused on

DIN for nitrogen speciation (Wang et al., 2016; Jiang et al., 2019;

Yang et al., 2020; Zhang et al., 2020; Zhang et al., 2020b).

However, the effects of tidal cycling on nitrogen species

variations, particularly on PN and DON, were still scarce.

Therefore, to better understand the tidal effects on nitrogen

speciation, we analyzed continuous observation data from four

stations (S1, S2, S3, S4) in SDB to reveal the effects of tidal cycles

on the concentrations of different nitrogen species and to

analyze the causes of tidal variations affecting them. Thus, the

main research objectives of this study were to explore (1) the

effects of spring and neap tides on different nitrogen species, (2)

exchange fluxes between SDB and SCS, and (3) caused of tidal

variations in different nitrogen species. In this study, the effects

of spring and neap tides on nitrogen speciation in SDB were

assessed for the first time. Our results provided new insights into

the analysis of the distribution and transport of different

nitrogen species in coastal waters, which had great

implications for nitrogen biogeochemical and water quality

improvement in eutrophic SDB.
2 Materials and methods

2.1 Study areas

SDB is a semi-enclosed bay (Figure 1). It is connected to the

SCS through a tidal channel that is 12.7 km long, 500–800 m

wide, and 5–15 m deep (Li et al., 2015). The surface area of SDB

is approximately 32 km2 narrow at the mouth. SDB had a wide
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range of water, topography of the seafloor in SDB was complex,

distribution of deep troughs was remarkable, and mudflat area

was large (Feng et al., 2017). The rivers flowing into SDB include

the Xijian, Danchang, Zaitou, and Nanhai rivers (Li et al., 2015).

The marine dynamic environment of SDB was dominated by

tidal action, and the tidal type was irregular semi-diurnal tide,

with a maximum average flow velocity of 0.3–0.5 m/s and

maximum flow velocity of 1.0 m/s in the tidal channel (Qin

et al., 2014). The development of coastal aquaculture and

increasing terrestrial pollutants in SDB had recently caused the

gradual shrinking of the water area in SDB and deterioration of

water quality conditions, even directly changing the tidal pattern

in SDB (Qin et al., 2014; Li et al., 2015; Feng et al., 2017).

Therefore, in this study, we collected data on spring and neap

tides from four stations in SDB, and water sampling was

conducted according to the tidal characteristics and hydrology

of SDB. The coastal water monitoring stations in SDB were

selected according to the method specified in the Specification of

Oceanographic Survey (General Administration of Quality

Supervision, Inspection, and Quarantine of the People’s

Republic of China).
2.2 Field sampling and pre-treatment

The current state of SDB environmental quality were

surveyed and monitored under the hydrodynamic conditions

of spring tide (August 22-23, 2021) and neap tide (August 29-30,

2021) in the summer. Four hydrodynamic monitoring stations

and water quality monitoring stations (S1, S2, S3, S4) were

deployed at sea on this simultaneous survey cruise for 24-h

continuous monitoring, with hydrodynamic conditions

monitored every 1 h and surface seawater sampling performed

every 3 h. T1 was a tide gauge station for monitoring the tidal
FIGURE 1

Geographic location of SDB (A) and field seawater monitoring stations in the SDB (B).
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height at different times. Considering the shallow the coastal

water in the SDB, samples were collected from the depth of 0.5m

in the surface layer. All samples were collected, processed, and

preserved until analysis, according to the methods specified in

the Marine Monitoring Code (GB17378-2007). Seawater

samples were collected through a CTD-Rosette system using

Teflon-coated bottles (10 L, Sea Bird Inc., USA) equipped with

temperature, salinity, and fluorescence sensors. The collected

water samples were packed in 100 ml acid-washed HDPE bottles

and stored at -20°C. Approximately 1 L of seawater was filtered

through pre-acid-washed and pre-assembled (held at 450°C for

4 h) 45 mm diameter Whatman GF/F glass fibre filters. Filtrate

samples for TDN, N-NH4
+, N-NO3

-, and N-NO2
- determination

were collected in acid-washed HDPE bottles and stored at -20°C

until laboratory analysis. Water environmental factors

(temperature, salinity, and pH) were determined in situ using

a multiparameter water quality tester (Aquaprobe AP-7000).
2.3 Chemical analysis in the laboratory

Owing to the complexity of DON and PN, it was difficult to

perform single component determination. Therefore, in this

experiment, we used the potassium persulfate oxidation method

to determine the concentration of TN and TDN in water bodies; the

detection limit of this method was 2.64 mmol/L. The DON and PN

concentrations were then calculated. The DON concentration was

determined as the difference between TDN and DIN, and PN

concentration was determined as the difference between TN and

TDN. DIN was the sum of the N-NO3
-, N-NH4

+, and N-NO2
-

concentrations. The N-NH4
+, N-NO3

-, and N-NO2
- concentrations

in the water samples were determined via the hypobromite

oxidation, zinc–cadmium reduction, and diazo–azo methods,

respectively, and the detection limits were 0.03 mmol/L, 0.05

mmol/L, and 0.02 mmol/L, respectively. All of the above methods

were measured at 543 nm using a UV-visible spectrophotometer

(Shimadzu UV2600i). Suspended particulate matter (SPM) was

measured by weight method. Chlorophyll-a was determined by

spectrophotometric method. The relative standard deviation of the

above methods was <5% for repeatability, reproducibility and

precision. All samples were collected, pretreated, and analyzed in

strict accordance with the Marine Monitoring Code (GB17378-

2007), and full monitoring quality control was implemented

(AQSIQ, 2007a).
2.4 Net exchange flux of nitrogen
calculation during tidal cycle

The fluxes of different nitrogen species exchanged between

the SCS and SDB in the positive direction of the designated flow

to SDB were estimated using the method described next.
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SDB was connected to the SCS by only a narrow bay channel,

and sites S1, S2, and S3 were away from the bay mouth.

Therefore, the fluxes of different nitrogen species from the bay

mouth of SDB to the SCS were estimated from the S4 site of SDB,

which represented the fluxes of different nitrogen species from

the bay mouth of SDB. The flow velocity and direction of

seawater in the surface layer of S4 were measured

continuously with an electromagnetic current meter (AME-

USB, JFE, Japan). When the flow direction was 45°-225° it

showed the flow from SDB to SCS. When the flow direction

was 225°-360° and 0°-45° it showed the flow from SCS to SDB.

Calculated the flux of water through S4 at different times by

equation (1). Then, the net exchange flux of different nitrogen

species between SDB and SCS was estimated by multiplying the

water flux by the concentrations of different nitrogen species in

the net coastal inflow water column by equation (2). The net

exchange fluxes of different speciation of nitrogen between SDB

and SCS at other moments were estimated on the transects of

both sides of the bay according to the temporal variation of the

flow velocity, and then the net exchange fluxes of different

speciation of nitrogen between SDB and SCS in one day

were calculated.

Q = W × D × V (1)

Where Q was the net water flux at the mouth of SDB per unit

time (L/h) in the vector, W was the width of S4 (m), D was the

depth of S4 (m), V was the flow velocity at different times of S4

(cm/s).

FN = CN × Q × 10-6 × MN (2)

Where FN was the net exchange of different nitrogen

species at the mouth of SDB (t/h), CN was the concentration

of different nitrogen species flowing through the mouth of SDB

per second (mmol/L), and MN was the relative atomic mass

of nitrogen.
2.5 Statistical analysis

Student’s t test was used to test the normality of the

concentrations of different speciation of nitrogen during spring

and neap tides, but the data did not show a normal distribution.

Then a non-parametric Mann-Whitney U test was used for

analysis to find significant differences between different

speciation of nitrogen during spring and neap tides (Sánchez-

Carrillo et al., 2009). Spearman correlation analysis was used to

determine the correlation between the variables by

environmental factors and the concentration of different

speciation of nitrogen (Zhang et al., 2020). In addition, a

linear regression analysis was performed to analyze the

relationship between fluxes and flow velocity of different

speciaton of nitrogen in spring and neap tides. If P < 0.05, it

indicates a significant difference between the variables.
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3 Results

3.1 Hydrographic conditions in SDB

The environmental factors for the different stations of the SDB

were presented in Table 1. SDB was an irregular semi-diurnal tide,

with two high tides and two low tides in one day. During the SDB

spring tide, two high tides occurred at 10:00 and 23:00, with tide

heights of 382 cm and 254 cm respectively and two low tides

occurred at 17:00 and 4:00, with tide heights of 47 cm and 130 cm

respectively, and the tidal difference during the spring tide was

335 cm. During the neap tide in SDB, two high tides occurred at

14:00 and 3:00, with tide heights of 230 cm and 280 cm, and two

low tides occurred at 20:00 and 9:00, with tide heights of 140 cm

and 153 cm, respectively, and the tidal difference during the neap

tide was 140 cm. During the spring and neap tides, the average flow

velocity of all four stations in SDB were S3 > S4 > S2 > S1. During

the spring and neap tides, the maximum flow velocity of S3 was

42.22 ± 24.64 cm/s and 25.38 ± 12.07 cm/s, respectively.

Furthermore, the average salinity of all four stations in SDB were

S4 > S3 > S2 > S1 during the spring and neap tides. The salinity of

S4 was maximum during spring and neap tides with 27.91 ± 0.49‰

and 30.51 ± 0.80‰, respectively. During the SDB spring tide, the

maximum tidal exchange from the SDB to the SCS occurred at

15:00 with a tidal exchange of 1.0×1010 t/h. The maximum tidal

exchange from the SCS to the SDB occurred at 22:00 with a tidal

exchange of 8.2×109 t/h. During the SDB neap tide, the maximum

tidal exchange from the SDB to the SCS occurred at 16:00 with a

tidal exchange of 6.1×109 t/h. The maximum tidal exchange from

SCS to SDB occurred at 22:00, with a tidal exchange of 5.9×109 t/h.

During the SDB spring and neap tides, the net tidal exchange was

from SCS to SDB, the net tidal exchange is 4.4×109 t and 2.3×109

t respectively.
3.2 Dynamics of TN in SDB during the
spring and neap tides

3.2.1 Dynamics of TN in SDB during the spring
and neap tides

The TN concentrations did not differ between the spring and

neap tides (P > 0.05), but the PN concentrations differed between
Frontiers in Marine Science 05
the spring and neap tides (P > 0.05). The concentrations of

different nitrogen species were presented in Table 2. The range

of the TN concentration during the spring (Figure 2A) and neap

tides (Figure 2B) was 77.79–421.79 mmol/L and 113.62–350.55

mmol/L, respectively, with averages of 258.12 ± 89.49 mmol/L and

231.77 ± 56.86 mmol/L, respectively; thus, the range of the average

concentration during the spring and neap tides was small. The

maximum value of the TN concentration occurred at 23:00 in S1,

and the minimum value occurred at 23:00 in S4 during the spring

tide. The averages of TN during the spring and neap tides in SDB

indicated that S1 >S2 >S3 >S4 and S4 >S3 >S2 >S1, respectively;

these results indicated that the TN concentration in SDB was

influenced by the tide. The TN concentration in SDB during the

spring tide was higher than that in the bay mouth, whereas the

opposite was true during the neap tide. The TN concentrations of

S1, S2, and S3 during the spring tide were higher than those

during the neap tide; however, the TN concentration of S4 during

the spring tide was lower than that during the neap tide. TDN

accounted for 54.1% and 52.2% of TN during the spring and neap

tides, respectively. This indicated that TDN was the dominant

species of TN. The range of the PN concentration during the

spring and neap tides was 8.51–304.66 mmol/L and 12.76–246.71

mmol/L, respectively, and the average concentrations were 118.51

± 84.57 mmol/L and 110.74 ± 63.18 mmol/L, respectively; the

average PN concentration of S1 was higher during the spring tide

than during the neap tide, and the average PN concentration of S4

was lower during the spring tide than during the neap tide.

3.2.2 Dynamics of TDN in SDB during the
spring and neap tides

The TDN concentrations did not differ between the spring

and neap tides (P > 0.05). The range of the TDN concentration

during the spring (Figure 2C) and neap tides (Figure 2D) was

31.53–356.93 mmol/L and 27.81–204.86 mmol/L, respectively,

and the average concentrations were 139.61 ± 66.09 mmol/L and

121.03 ± 41.77 mmol/L, respectively. The average TDN

concentration during the spring and neap tides changed little;

however, the variations in the TDN concentration during the

spring tide was more evident, and the maximum TDN

concentration occurred at 20:00 in S1. In addition, DON

accounted for 81.4% and 69.9% of the TDN during the spring

and neap tides, respectively. This indicates that DON was the
TABLE 1 Mean values of environmental factors for each station of SDB.

Environmental Factors S1 S2 S3 S4

Spring tide Neap tide Spring tide Neap tide Spring tide Neap tide Spring tide Neap tide

Temperature (°C) 32.38 ± 0.72 30.60 ± 0.52 32.15 ± 0.65 30.45 ± 0.45 32.00 ± 0.63 30.43 ± 0.39 31.49 ± 0.44 29.72 ± 0.34

Salinity (‰) 24.78 ± 0.55 23.24 ± 0.41 25.09 ± 2.08 24.39 ± 1.80 26.69 ± 0.87 27.37 ± 1.19 27.91 ± 0.49 30.51 ± 0.80

pH 8.04 ± 0.11 7.49 ± 0.09 7.99 ± 0.12 7.83 ± 0.21 8.05 ± 0.09 7.81 ± 0.07 8.17 ± 0.04 7.88 ± 0.07

SPM (mg/L) 23.82 ± 9.85 5.38 ± 3.27 18.49 ± 8.60 7.05 ± 3.52 21.49 ± 4.64 5.11 ± 2.43 24.27 ± 10.66 8.49 ± 4.42

Flow velocity (cm/s) 12.75 ± 12.72 5.23 ± 1.93 29.35 ± 18.52 15.43 ± 8.70 42.22 ± 24.64 25.38 ± 12.07 37.68 ± 17.31 25.30 ± 9.36
fro
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A

FIGURE 2

Dynamics of TN (A),, TDN (C), DIN (E) and DON (G) during the spring tide in SDB and dynamics of TN (B), TDN (D), DIN (F) and DON (H) during
the neap tide in SDB.
TABLE 2 Mean values of nitrogen species concentrations at each station in SDB (mmol/L).

Nitrogen
Species

S1 S2 S3 S4 All stations

Spring
tide

Neap
tide

Spring
tide

Neap
tide

Spring
tide

Neap
tide

Spring
tide

Neap
tide

Average of
spring tide

Average of
neap tide

TN 343.58 ±
50.71

198.07 ±
37.20

289.70 ±
50.33

216.50 ±
69.15

260.16 ±
54.01

251.30 ±
44.35

139.05 ±
39.13

261.22 ±
46.70

258.12 ± 89.49 231.77 ± 56.86

TDN 160.08 ±
74.42

118.79 ±
34.64

169.30 ±
62.66

115.24 ±
40.85

155.24 ±
45.77

158.19 ±
31.58

73.83 ±
6.49

91.91 ±
29.09

139.61 ± 66.09 121.03 ± 41.77

PN 183.49 ±
84.57

79.28 ±
39.81

120.40 ±
67.70

101.26 ±
65.18

104.92 ±
66.66

93.11 ±
50.33

65.22 ±
42.01

169.32 ±
52.71

118.51 ± 84.57 110.74 ± 63.18

DON 139.35 ±
74.98

56.85 ±
30.85

134.81 ±
71.90

74.40 ±
40.97

129.67 ±
43.42

131.53 ±
28.09

50.48 ±
11.33

75.39 ±
31.50

113.58 ± 67.38 84.54 ± 43.51

DIN 20.73 ±
9.56

61.94 ±
13.20

34.49 ±
27.83

40.84 ±
23.83

25.57 ±
16.26

26.66 ±
17.28

23.35 ±
11.44

16.52 ±
8.09

26.03 ± 18.49 36.49 ± 23.81

N-NH4
+ 4.76 ±

1.09
10.77 ±
0.35

4.93 ±
2.77

5.55 ±
2.63

4.53 ±
1.67

4.80 ±
2.66

4.09 ±
1.31

3.02 ±
1.09

4.58 ± 1.86 6.03 ± 3.48

N-NO3
- 15.67 ±

8.89
49.39 ±
13.17

28.87 ±
25.43

34.47 ±
21.35

20.64 ±
16.31

21.19 ±
14.67

19.06 ±
10.93

13.33 ±
8.05

21.06 ± 17.37 29.60 ± 20.37

N-NO2
- 0.30 ±

0.32
1.78 ±
0.12

0.69 ±
0.52

0.82 ±
0.74

0.40 ±
0.27

0.67 ±
0.29

0.20 ±
0.11

0.16 ±
0.11

0.40 ± 0.38 0.86 ± 0.71
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dominant species of TDN. The average concentrations of TDN

in SDB during the spring and neap tides were S2>S1>S3>S4 and

S3>S1>S2>S4, respectively. S4 was less affected by tide, and the

TDN concentration in SDB was higher than that at the mouth of

the bay.
3.3 Dynamics of DIN in SDB during the
spring and neap tides

There were no significant differences in the concentrations of

DIN, N-NO3
- and N-NH4

+ during the spring and neap tides (P >

0.05), but the N-NO2
- concentrations were significantly different

during the spring and neap tides (P < 0.05). The ranges of DIN

during the spring (Figure 2E) and neap tides (Figure 2F) were

4.67–97.78 mmol/L and 3.68–92.70 mmol/L, respectively, with

averages of 26.03 ± 18.49 mmol/L and 36.49 ± 23.81 mmol/L. The

DIN concentration during the spring tide exceeded the seawater

quality index category II standard, whereas the DIN

concentration during the neap tide exceeded the seawater

quality index category IV standard. Only S2 exceeded the

second category of seawater quality index during the spring

tide, while S1 and S2 exceeded the fifth category of seawater

quality index during the neap tide, and the DIN concentration of

S1 was considerably higher than that of S2. During spring tide,

N-NH4
+, N-NO3

-, and N-NO2
- accounted for 17.6%, 80.9%, and

1.5% of DIN, respectively. During the neap tide, N-NH4
+, N-

NO3
-, and N-NO2

- accounted for 16.5%, 81.1%, and 2.4% of

DIN, respectively. DIN was primarily dominated by N-NO3
-,

followed by N-NH4
+, and N-NO2

-. The N-NO3
- concentration

ranged from 2.38 to 84.93 mmol/L and from 1.00 to 78.95 mmol/

L during the spring and neap tides, respectively, with averages of

21.06 ± 17.37 mmol/L and 29.60 ± 20.37 mmol/L, respectively,

and the N-NO3
- concentrations were higher in the neap tide

than in the spring tide. The N-NO3
- concentrations were lower

during the S1 spring tide than during the neap tide, whereas the

N-NO3
- concentrations were higher during the S4 spring tide

than during the neap tide. The ranges of N-NH4
+ concentrations

during the spring and neap tides were 1.17–10.94 mmol/L and

1.95–11.65 mmol/L, respectively, with averages of 4.58 ± 1.86

mmol/L and 6.03 ± 3.48 mmol/L, respectively. The ranges of N-

NO2
- concentrations during the spring and neap tides were

0.02–1.91 mmol/L and 0.02–2.25 mmol/L, respectively, with

averages of 0.40 ± 0.38 mmol/L and 0.86 ± 0.71 mmol/L,

respectively. Although N-NH4
+ and N-NO2

- only accounted

for a small part of DIN, the average concentration of N-NH4
+

was still considerably larger than that of N-NO2
-, and both N-

NH4
+ and N-NO2

- had higher concentrations in the neap tide

than in the spring tide. The averages of DIN, N-NO3
-, and N-

NH4
+ during the spring and neap tides in SDB were S2 >S1 >S3

>S4 and S1> S2> S3> S4, respectively. The average

concentrations of N-NO2
- during the spring and neap tides in

SDB were S2 >S3 >S1 >S4 and S1 >S2 >S3 >S4, respectively. The
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DIN concentrations (including N-NO3-, N-NO2-, and N-NH4

+) all exhibited higher concentrations in the bay than at the

mouth of the bay.
3.4 Dynamics of DON in SDB during the
spring and neap tides

There were no significant differences in the concentrations of

DON during the spring and neap tides (P > 0.05). The ranges of

DON concentrations during the spring (Figure 2G) and neap

tides (Figure 2H) were 5.08–342.37 mmol/L and 5.87–175.54

mmol/L, respectively, with averages of 113.58 ± 67.38 mmol/L

and 84.54 ± 43.51 mmol/L, respectively. The concentration and

range of DON at spring tide were higher than neap tide. The

average DON concentrations in SDB during the spring and neap

tides were S1 >S2 >S3 >S4 and S3 >S4 >S2 >S1, respectively,

which indicated that the tide had a great influence on DON

concentration. The DON concentration at stations S1 and S2

was higher during the spring tide than during the neap tide, and

DON concentration at S3 and S4 was slightly lower during the

spring tide than during the neap tide.
3.5 The net exchange TN flux with SCS
during the spring and neap tides in SDB

During spring and neap tides, the net exchange fluxes

between SDB and SCS were different. During the SDB spring

tide (Figure 3A) and neap tide (Figure 3B), the daily net

exchange fluxes of TN and PN flowed from SDB to SCS.

However, the daily net exchange fluxes of TDN (including

DIN and DON) flowed from SCS to SDB during the SDB

spring tide (Figure 3C) and neap tide (Figure 3D). In addition,

the daily net exchange fluxes of TN and PN during spring tide

were 37.7 t and 44.3 t, respectively, and the daily net exchange

fluxes of DIN and DON were 1.9 t and 4.7 t, respectively.

Furthermore, the daily net exchange fluxes of TN and PN during

neap tide in SDB were 8.8 t and 15.0 t, respectively, and the daily

net exchange fluxes of DIN and DON were 0.8 t and 5.4 t,

respectively. The net exchange flux of TN in spring tide was 4.3

times higher than that of neap tide. Therefore, SDB was a source

of TN for SCS.
4 Discussion

4.1 Comparison of the TN levels in
estuaries and coastal waters worldwide

A comparison of the nitrogen concentrations in SDB with

other semi-enclosed bays in China and the world was presented

in Table 3. SDB had the highest TN concentration, which was
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higher than estuaries and bays with human influence such as

Liusha Bay, Chesapeake Bay, Yangtze Estuary and Mississippi

Estuary (Turner et al., 2007; Cao et al., 2011; Harding et al., 2016;

Ge et al., 2021). In addition, TDN/TN in SDB was only 53.2%,

which was considerably lower than the corresponding values in

Daya bay and Yangtze Estuary (Zhou et al., 2019; Ge et al., 2021).

The highest PN concentration was found in SDB, which was

much higher than that in Daya Bay and Yangtze River Estuary

(Zhou et al., 2019; Ge et al., 2021). By comparing the

Chlorophyll-a of SDB with that of Jiaozhou Bay and

Zhanjiang Bay (Li et al., 2005; Zhou et al., 2021), the highest

Chlorophyll-a was found in SDB, indicated the high biomass of

SDB. The high concentration of PN in SDB may be due to

assimilat ion of DIN during the photosynthesis by

phytoplankton. Furthermore, the DIN concentration in SDB

was lower than that in Mississippi Estuary and Pearl River

Estuary (Turner et al., 2007; Ke et al., 2022), but higher than

that in Jiaozhou Bay, Persian Gulf and Daya Bay (Lu et al., 2016;

Zhou et al., 2019; Maryam et al., 2021). The N-NO3
- content in

SDB was second only to that in the Pearl River Estuary (Zhao

et al., 2000; Wu, 2014; Zhou et al., 2019; Ge et al., 2021; Maryam

et al., 2021; Ke et al., 2022), and N-NO3
- was the dominant

component of DIN in SDB. With the increase of population and

development of mariculture in SDB (Qin et al., 2014; Li et al.,

2015; Li et al., 2016; Feng et al., 2017), containing higher

concentrations of N-NH4
+ was discharged into the SDB with
Frontiers in Marine Science 08
the river and will be oxidized with the shoreline to N-NO3
-

(Archana et al., 2018). The high nitrogen load in SDB may be

caused by the untreated urban polluted wastewater and large

amount of farming wastewater discharged into SDB.

Furthermore, the TDN/TN ratios were 53.3%, 55.8%, 61.3%

and 44.15% for S1, S2, S3 and S4 during the spring and neap

tides in SDB, respectively. This indicated that TDN was the

dominant component in S1, S2 and S3, but PN was

the dominant component in S4. During spring and neap tides,

the net exchange fluxes of different speciation of nitrogen in SDB

showed that TN and PN flowed from SDB to SCS, while TDN

(including DIN and DON) flowed from SCS to SDB, which

resulted in larger TDN/TN ratios in S1, S2 and S3 than in S4.
4.2 Hydrodynamics induced by tidal
variations on nitrogen species dynamics

The correlation between different nitrogen species and

environmental factors during the spring and neap tides were

shown in Figure 4A and Figure 4B, respectively. A significant

positive correlation existed between PN and Chlorophyll-a

during the spring and neap tides (P < 0.01), which was related

to the strong biological action of particulate matter (Lin et al.,

2013). The assimilation of a large number of planktonic

organisms promoted PN formation. Moreover, the living
B

C D

A

FIGURE 3

During the spring tide, TN (A) and TDN (C) in the exchange flux between SDB and SCS. During the neap tide, TN (B) and TDN (D) in the
exchange flux between SDB and SCS.
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fraction of PN influenced DIN by producing secretions

(Chowdhury et al., 2016), detritus, and excretions (Belcher

et al., 2016), whereas the non-living fractions buffer DIN via

processes such as adsorption–desorption (Lebo et al., 1991). The

quality and source of PN determines its impact on coastal water

quality. DON can be microbially converted to DIN, which can

adversely affect the water quality of the bay (Stedmon et al., 2007;

Mesfioui et al., 2012; Seitzinger and Sanders, 1997). Coastal

waters were mainly influenced by ocean currents, as SDB and

SCS exchange tidal currents through the mouth of the bay,

which facilitates the dilute mixing of SDB seawater (Bejaoui

et al., 2016; Bancon-Montigny et al., 2019). When the flow

velocity slowed down, the particulate organic matter being

settled down will be decomposed by bacteria (Yin et al., 2000).

Simultaneously, sediment resuspension caused strong changes in

the chemical composition of the overlying water column,

released nutrients that may be available to pelagic species

(Bancon-Montigny et al., 2019). With the rapid development

of mariculture in the SDB, had caused a large amount of

pollutants containing DON to enter the SDB (Qin et al., 2014;
Frontiers in Marine Science 09
Li et al., 2015; Feng et al., 2017). Since DON and PN were likely

to be absorbed by microorganisms and converted into DIN,

coupled with the rich microbial population in the bay, the

impact of DON and PN on the water quality of the bay should

be taken seriously (Lu et al., 2020).

During spring and neap tides, TDN and DON showed a

significant positive correlation (P < 0.001), and DON, as the

main substance of TDN, influenced the concentration of TDN

through the migration transformation of DON. During SDB

spring tide, DIN showed a significant negative correlation with

tidal height (P < 0.05), indicating that DIN was tidally influenced

during spring tide, with DIN concentration decreasing with high

tide and increasing with low tide. However, there was a

significant negative correlation between DIN and salinity

during spring and neap tides (P < 0.0001). Nutrient was

higher in waters with low salinity, which was consistent with

the findings in Chongming Dongtan and Hongwan (Wang,

1999; Qu et al., 2007; Li et al., 2012; Fu et al., 2020; Zhou et

al., 2022). This suggested that terrestrial input may be

responsible for influencing the variation of DIN. In addition, a
TABLE 3 Nitrogen species in SDB and its adjacent waters and bays around the world (mmol/L).

Latitude Longitude Region Time N-
NO2

-
N-

NO3
-

N-
NH4

+
DIN DON TDN PN TN TDN/

TN
References

25°50′-27°
0′N

55°00′-57°00′
E

Persian Gulf 2021 1.34
±0.81

6.41±4.64 0.004
±0.003

7.75
±5.45

— — — — — Maryam
et al., 2021

30°59′-31°
00′N

122°24′-123°
11′E

Yangtze Estuary 2018 0.42
(0.05-
0.80)

13.53
(0.46-
32.62)

1.13
(ND-
11.56)

13.97
(2.04-
33.83)

13.97
(ND-
44.08)

27.96
(8.26-
63.57)

5.39
(0.75-
27.42)

34.35
(3.42-
90.86)

81.4% Ge et al.,
2021

21°80′-23°
00′N

113°40′-114°
00′E

Pearl River Estuary 2018 7.00
±5.57

56.01
±30.65

5.24
±4.16

68.25
±35.69

— — — — — Ke et al.,
2022

22°45′-22°
85′N

114°45′-114°
85′E

Daya Bay 2015-
2016

0.90 6.11 4.60 11.29 12.29 24.50 8.20
±4.75
(2.63-
26.24)

32.7 74.9% Zhou et al.,
2019

36°00′-36°
12′N

120°80′-120°
20′E

Jiaozhou Bay 2012-
2013

— — — 24.91
(12.69-
60.14)

36.07
(17.70-
59.21)

60.98 16.71
(4.69-
28.58)

77.68
(48.74-
139.60)

— Lu et al.,
2016

20°30′-21°
28′N

108°15′-109°
53′E

The northern part
of the Beibu Gulf

2011 0.46
(0.03-
4.45)

1.17
(ND-
12.5)

0.91
(0.21-
5.42)

2.54
(0.35-
13.6)

— — — 16.8
(5.58-
29.3)

— Wu, 2014

20°22′-20°
27′N

109°54′-109°
59′E

Liusha Bay 2008 — — — 4.43
(2.64-
13.79)

— — — 49.21
(22.93-
72.64)

— Cao et al.,
2011

37°26′-37°
38′N

121°24′-121°
38′E

Forty Mile Bay 1997 1.58
(1.15-
2.03)

1.66
(1.07-
2.93)

3.37
(0.64-
9.41)

6.61
(3.13-
13.24)

— — — — — Zhao et al.,
2000

30°45′ N 91°23′E Mississippi Estuary 1980-
1993

61.43
±2.86

— — 99.6 — — — 127.14
±3.79

— Turner et al.,
2007

36°50′-39°
50′N

75°50′-77°50′
E

Chesapeake Bay 1945-
2012

— — — — — — — 118.57 — Harding
et al., 2016

21°45′-21°
55′N

111°00′-111°
15′E

SDB 2021 0.63
±0.62
(0.02-
2.25)

25.33±
19.41
(1.00-
84.93)

5.31
±2.88
(1.17-
11.65)

31.26
±21.95
(3.68-
97.78)

99.06
±58.54
(5.08-
342.37)

130.32
±56.06
(27.81-
356.93)

114.63
±71.84
(8.51-
304.66)

244.95
±76.12
(77.79-
421.79)

53.2% The study
fr
() was the range of different speciation of nitrogen; "—" indicated not detected; ND indicated non-detected values.
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significant positive correlation (P < 0.001) existed between N-

NO3
-, the dominant species of DIN, and DIN during the spring

and neap tides, indicating a similarity in the transformation and

transport between N-NO3
- and DIN. A significant negative

correlation (P < 0.01) was found between N-NH4
+ and salinity

during neap tide, indicating that N-NH4
+ was mainly influenced
Frontiers in Marine Science 10
by terrestrial inputs, and with the development of terrestrial

aquaculture in the SDB, effluents containing high concentrations

of N-NH4
+ was discharged into the SDB (Chen et al., 2011; Liu

et al., 2011). Furthermore, there was a negative correlation

between N-NH4
+ and DON during neap tides (P < 0.05). This

demonstrated that N-NH4
+ and DON transformed their
B

A

FIGURE 4

Correlation analysis of nitrogen species with environmental factors during spring tide (A) and neap tide (B) in SDB.
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concentrations through mutual migration. In addition, DON

can be converted to N-NH4
+ via microbial activity (Lu et al.,

2016; Pisam, et al., 2017). Additionally, the respiratory activity of

marine organisms was a key process in nutrient regeneration.
4.3 Impacts of the exchange of TN
speciation flux between SDB and SCS

Figure 5A and Figure 5B showed the TN and TDN flux as a

function of the flow velocity during the spring and neap tides,
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respectively. When the flow velocity was greater than 0, it indicated

that the exchange flux flowed from SCS to SDB, and the flow

velocity was less than 0 indicated that the exchange flux flowed

from SDB to SCS. The results indicated that there were significant

relationships between the flow velocity and nitrogen flux. During

the spring tide and neap tide in SDB, FTN was significantly

negatively correlated (P < 0.01) with flow velocity when the net

exchange flux of TN flowed from SDB to SCS. Furthermore, FTN
was significantly positively correlated with flow velocity, when the

net exchange flux of TN flowed from SCS to SDB during the spring

tide and neap tide in SDB (P < 0.05). The high TN in the SDB was
B

A

FIGURE 5

Linear regression analysis of FTN (A) and FTDN (B) with flow velocity.
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discharged from the terrestrial pollutants and flowed from the SDB

to the SCS. The high flow velocity tended to greatly increase the

exchange flux of different nitrogen species between SDB and SCS.

Therefore, the hydrological conditions of the sea area predominated

the transport of different species of nitrogen in coastal waters (Zhao

et al., 1998; Passeri et al., 2015; Chen et al., 2019). Thus, the flow

velocity of coastal water between the open ocean and bay was

influenced by hydrodynamic conditions, resulting in the net

exchange fluxes of different nitrogen species both into and out of

SDB during the day.

4.4 Implications for the effective
improvement of water quality in SDB

Under the implementation of the 14th Five-Year Plan forMarine

Ecological Environment Protection in Guangdong Province and the

programme of key engineering measures for marine ecological

protection and restoration in SDB (Department of Ecological

Environment in Guangdong Province, 2022), terrestrial pollutant

inputs should be reduced based on the characteristics of SDB to

improve water quality (Li et al., 2018; Zhang et al., 2019; Zhang et al.,

2019b; Zhou et al., 2020). In this study, we revealed that terrestrial

sources and hydrodynamics jointly dominated the nitrogen under

tidal variations. On the one hand, SDB and SCS should be

considered as a single system to prevent nitrogen pollution. Owing

to the high intensity of anthropogenic activities during the past

decades, land reclamation decreasing seawater area, resulting in a

sharp decline in water exchange and purification capacity (Feng,

2017). However, to achieve accurate terrestrial source reduction in

SDB, there should be a shift from only control DIN to control TN in

water. The discharge of land-source pollutants should be reduced

based on environmental capacity, considering local urban sewage,

industrial wastewater, and sewage from livestock breeding and

aquaculture. However, there were inconsistencies in the current

monitoring nitrogen indicators of river (TN) and coastal water

quality (DIN). The total control of land-source pollution in polluted

areas and management of river nutrient discharges into the sea

should be strengthened (Strokal et al., 2017; Zhang et al., 2020), and

the future coastal seawater quality should be linked to the

management of the flux control of TN (Zhang et al., 2020). In

addition, mangrove systems should be restored to reduce terrestrial

nitrogen sources in SDB, particularly in marine aquaculture.

Therefore, the long-term monitoring of nitrogen continued in

SDB and SCS, as it will help us improve our understanding of the

influence of tidal variations on the different nitrogen species in SDB.

The establishment of a land–ocean space can effectively control and

manage the water quality conditions of SDB.
5 Conclusions

In this study, we investigated the variations in nitrogen species

in SDB during the spring and neap tides. The results indicated that
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the concentrations of PN and N-NO2
- were significantly different

between the spring and neap tides (P < 0.05). The TN

concentrations in SDB during the spring and neap tides were

258.12 ± 89.49 mmol/L and 231.77 ± 56.86 mmol/L, respectively.

During the spring and neap tides, TDN accounted for 54.1% and

52.2% of TN, respectively. DIN and DON exhibited semi-diurnal

cyclic variation, indicating a period of high concentration at low tide

and relatively low concentration in hight tide. In addition, the

contribution of DON to TDNwas the largest. A significant negative

correlation was observed between the concentration of DIN and

salinity (P < 0.001), and a significant positive correlation was

observed between PN and Chlorophyll-a in SDB during the

spring and neap tides (P < 0.01). This indicated that the

concentration of different nitrogen species in SDB was not only

controlled by tidal variations but also by the terrestrial source input.

Moreover, the net exchange fluxes of different speciation of nitrogen

between SDB and SCS showed that the TN were transported from

SDB to SCS during the spring and neap tide, with the daily net

exchange fluxes of 37.7 t and 8.8 t, respectively. The net exchange

flux of TN in spring tide was 4.3 times higher than that of neap tide.

Thus, SDB was a source of TN for SCS. Semi-diurnal tidal

variations may drive the changes in the concentrations of

different nitrogen species, thereby affecting the transport flux,

biogeochemical behavior of nitrogen, and primary production.

The present results provided scientific basis and key parameters

for studying the tidal behaviors of different nitrogen species.
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