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Barystatic and steric sea
level variations in the Baltic
Sea and implications of water
exchange with the North Sea
in the satellite era
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Stockholm, Sweden, 2Department of Geosciences, Virginia Tech, Blacksburg, VA, United States,
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Satellite altimetry, satellite gravimetry, and in-situ subsurface salinity and

temperature profiles are used to investigate the total, barystatic, and steric

sea level variations in the Baltic Sea, respectively. To estimate the steric sea

level, the density variations are weighted in deeper layers to prevent

overestimation of their contribution. We show that the sum of barystatic and

steric components exhibits excellent cross correlation (0.9) with satellite

altimetry sea level variations and also explains up to 84% of total signal

variability from 2002 to 2019. Considering the dominance of barystatic sea

level variations in the basin and the limitation of satellite gravimetry in resolving

the mass change in water-land transition zones (known as the leakage

problem), the mismatch is likely attributed to the inadequate accuracy of the

barystatic datasets. The total sea level and its contributors are further

decomposed into seasonal, interannual, and decadal temporal components.

It is shown that despite its insignificant contributions to seasonal and

interannual changes, the steric sea level plays an important role in decadal

variations. Additionally, we show that the interannual variations of the barystatic

sea level are governed by the North Atlantic Oscillation in the basin. The sea

level variation in the North Sea is also examined to deduce the water exchange

patterns on different time scales. A drop in the North Sea level can be seen from

2005 to 2011 which is followed by the Baltic Sea level with a ~3-year lag,

implying the outflow from the Baltic Sea to the North Sea.
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Introduction

The need for a better understanding of regional drivers and

patterns of sea level signifies as climate change shows severer

impacts. To this extent, space-borne observations are now

providing us with reliable data sets for the last three decades.

Satellite altimetry and satellite gravimetry missions are two of

these sources that measure the total and barystatic sea level

changes, respectively. The barystatic sea level is the mass

component of the sea level, representing the change in the

hydrostatic pressure above the ocean bottom (Gregory et al.,

2019; Dobslaw et al., 2020). The difference in observation

systems of these two space-borne techniques makes them

complementary tools to conduct analyses, draw conclusions,

and validate their results (Barnoud et al., 2021).

The Baltic Sea is a semi-enclosed shallow basin in northern

Europe and is connected to the North Sea through the Danish

Strait. Sea level variation of the basin has rather complex

dynamics due to various factors, e.g., water exchange with the

North Sea (Ekman and Mäkinen, 1996; Gustafsson, 1997;

Passaro et al., 2015), the influence of the North Atlantic

Oscillation (Andersson, 2002; Yan et al., 2004; Hünicke et al.,

2015), the north-south gradient because of the salinity difference

(Meier and Kauker, 2003; Kniebusch et al., 2019), presence of

seasonal sea ice in the Gulf of Bothnia (Omstedt et al., 2004;

Kudryavtseva and Soomere, 2016; Kudryavtseva and Soomere,

2017), and substantial land uplift due to Glacial Isostatic

Adjustment (GIA; Richter et al., 2012; Madsen et al., 2019;

Vestøl et al., 2019). The fact that a major part of the Baltic Sea

coasts is safe from sea level rise, thanks to land uplift, does not

obviate the need for an in-depth analysis of the contributors to

sea level change in the basin. As such, various investigations have

been carried out to understand the dynamics and shed light on

the role of different drivers in sea level variation of the Baltic Sea

(all references hitherto and Hünicke and Zorita, 2006; Karabil

et al., 2017; Karabil et al., 2018; Gräwe et al., 2019).

North Atlantic Oscillation (NAO) is a major driver of the sea

level variation in the Baltic Sea. Several studies (Andersson, 2002;

Yan et al., 2004; Hünicke et al., 2015; Xu et al., 2015; Karabil et al.,

2018; Passaro et al., 2021) have demonstrated its impact on different

time scales. Dangendorf et al. (2014) and Gräwe et al. (2019) report

that the influence of NAO on sea level variations of the Baltic Sea is

through weakening/strengthening westerly winds which leads to

outflow/inflow to/from the North Sea. Passaro et al. (2021) show

that NAO in the Baltic Sea is responsible for 1) the general

variability of the sea level on the full-basin scale excluding the

area close to the Danish Strait, and 2) the sea level gradient between

the south-west and the north of the basin. They demonstrate that

this is mainly due to winter conditions, where the strength and

direction of the dominant wind pattern are driven by the NAO

phase. Additionally, they report that, on a timescale of a couple of

decades, such a pattern also translates into different sea level trends
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depending on the sub-basin. Hünicke and Zorita (2006; 2008) and

Lehmann et al. (2011) indicate that NAO controls the precipitation

regime in the basin and impacts freshwater input from

surrounding catchments.

The contributions to sea level change are generally divided

into three categories of atmospheric surface pressure, ocean

bottom pressure, and steric elements (Dangendorf et al., 2014).

Here, we do not discuss the role of GIA; its impact is removed

from the datasets. Elaborate investigations about GIA can be

found in Tamisiea and Mitrovica (2011). When analysing the

contribution of bottom pressure, we assume that it is completely

due to the barystatic sea level variations (i.e., the contribution of

seabed deformation is negligible). Even though the GIA causes

changes in the seabed close to the coastal area, this change is

linear in the time frame of this study. Thus, it does not affect the

results of this study since the linear trend is not within the scope

of this study.

The datasets of Gravity Recovery And Climate Experiment

(GRACE; Tapley et al., 2004) from 2002 to 2017 and its follow-

on mission (GRACE-FO; Landerer et al., 2020) since mid-2018

are used. The average depth of the basin is 55m; this shallowness

leads to the dominance of barystatic sea level in the basin as

shown in Virtanen et al. (2010) and Dangendorf et al. (2021).

Salinity and temperature profiles have been collected in the

Baltic Sea since the 1970s but only sporadically until 1995. Since

then, these in-situ observations are measured almost regularly.

Satellite altimetry data is employed to quantify the total sea level.

Unlike tide gauge data, satellite altimetry data are not prone to

any vertical land movement and they have the advantage of

better spatial coverage compared to locally collected sea level

measurements by tide gauges. The satellite altimetry

measurements of the basin are meticulously reprocessed

(Passaro et al., 2021). The need for reprocessing stems from

the rugged coasts, numerous small islands, and the presence of

sea ice in the northern part of the basin in the winter seasons.

There has been only one attempt to discretise the components

of sea level to steric and barystatic in the Baltic Sea. Virtanen et al.

(2010) analysed 5-year data of GRACE, tide gauges, and two

hydrodynamic models for the basin. They concluded that 110 mm

and 140 mm of residual root mean square (RMS) for two GRACE

datasets and around 70% of observed variance by tide gauge could

be explained by these datasets. The role of the steric sea level is

neglected in this study because of its small amplitude. They did

not extend their results to the linear trend as it is not possible to

render a meaningful result considering the basin size and shape as

well as the versatility of the GRACE signal in such a basin.

Royston et al. (2020) concluded that the sea level trend budget

closure cannot be established on regional scales with the current

GRACE dataset.

We used satellite altimetry, satellite gravimetry, and in situ

temperature and salinity profiles to examine the role of steric

and barystatic sea levels on seasonal, interannual, and decadal
frontiersin.org

https://doi.org/10.3389/fmars.2022.963564
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Karimi et al. 10.3389/fmars.2022.963564
time scales. Here, we seek answers to two questions: 1) what is

the role of steric and barystatic contributors to sea level change

in the basin on different temporal scales? and 2) How do these

changes relate to the sea level variation in the North Sea and to

the NAO index? The accuracy of the barystatic datasets is also

investigated by comparing them to the total sea level provided by

satellite altimetry.
Data and steric sea level estimation

Datasets for total, barystatic, and steric sea levels are

acquired through three different methods of observation.

Satellite altimetry uses a pointwise approach to measure the

range between the satellite and the sea surface. GRACE/GRACE-

FO consisted of tandem satellites in which the distance between

them is used to estimate the surface mass change in the Earth

system with an effective spatial resolution of ~300 km and

monthly sampling. Salinity and temperature profiles collected

to a certain depth compose the dataset to estimate the density

variations and hence, the steric sea level in the basin. The first

two datasets are ready-to-use, however, the latter one needs

processing tailored to the basin. All time series are subtracted by

their means from 2004 to 2010.

Two salinity and temperature datasets are evaluated for

steric sea level estimations, in-situ observations from three
Frontiers in Marine Science 03
stations in the Baltic Proper, and profiles from a reanalysis

model over the whole basin. Detailed information regarding the

estimation process and results using two datasets are provided in

Supplementary Materials. Even though both datasets lead to

similar results in the analyses of the next section, the steric sea

level estimated by observations shows slightly better

compatibility with total sea level when it is added to the

barystatic sea level. Thus, we used it in the rest of the

study (Figure 1B).

The satellite altimetry data for the basin are acquired from

the output of the Baltic SEAL project (Passaro et al., 2021). This

project aimed at reprocessing the altimetry data collected in the

basin from 1995 to 2019. Measurements from nine satellite

altimetry missions (Topex/Poseidon, Jason-1, Jason-2, ERS-2,

Envisat, SARAL, Cryosat-2, Sentinel-3A, Sentinel-3B) are

retracked, corrected by geophysical and standard corrections,

and gridded for the basin. This dataset was extensively validated

against tide gauges and showed the best performances in terms

of the agreement in trend estimation compared to other global

datasets such as the Copernicus Marine Environment

Monitoring Service (CMEMS) service and the European Space

Agency’s Sea Level Climate Change Initiative (Passaro et al.,

2021, Figure 2 of the reference). Compared to the global dataset,

Baltic SEAL has the advantage of a large number of additional

sea level estimations retrieved close to the coast and from leads

among sea ice, which are typically absent or not correctly
A

B
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FIGURE 1

Datasets used in the study: (A) The extent of altimetry (blue), GRACE CSR (red), and location of the stations for subsurface salinity and
temperature data. (B) Estimated steric sea level from three stations. (C) Total sea level (altimetry), barystatic (GRACE mascons from CSR, JPL,
GSFC), and steric sea level. The barystatic data is shifted by arbitrary value for visual presentation. (D) Comparison of total sea level (altimetry) to
sum of contributors (Eq. 1) and, (E) Residuals (ϵ) of Eq. 1.
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retrieved in standard altimetry products (Benveniste et al., 2019;

Quartly et al., 2019). Since this study is focused on basin-scale

variations, the gridded time series are averaged to form a single

time series (Figures 1A, C). The satellite altimetry products of a

similar project conducted over the North Sea are also used for

investigating the water exchange between basins (not shown).

Similar methods to the Baltic SEAL are used for this project

(Dettmering et al., 2021). The time series for the North Sea is

multiplied by 2.5 to scale the water volume with the Baltic Sea

since we use the average time series for each basin.

Three mass concentration (mascon) solutions of GRACE/

GRACE-FO data processed by CSR – University of Texas at

Austin, NASA Jet Propulsion Laboratory (JPL), and NASA

Goddard Space Flight Center (GSFC) are used to study the

barystatic sea level variations in the Baltic Sea. The mascon

solutions use spatial constraints to reduce the noise in the data

which makes it unnecessary to apply a posteriori filtering/

smoothing like that used in spherical harmonic solutions.

Moreover, the spatial constraints used in mascon solutions

minimize the leakage between land and sea/ocean mass change

signal, which results in resolving the mass-driven sea level

changes with higher accuracy compared to the spherical

harmonic solutions. From herein, the solutions for different

centres will be denoted as CSR (Save et al., 2016; Save, 2020),

JPL (Watkins et al., 2015; Landerer et al., 2020), and GSFC

(Loomis et al., 2019). The data points within the basin are

separated and averaged to create the mean time series for each

dataset (Figures 1A, D). Unfortunately, there is a gap between

GRACE and GRACE-FO missions, causing a ~ 1-year

discontinuity in the time series from mid-2017 to mid-2018.

The coarse spatial resolution and leakage effect (between sea

and land signals) are two of the well-known limitations of the

GRACE data for regional studies. The recent advancement in

GRACE data processing (e.g., Watkins et al., 2015) has improved

the accuracy and spatial resolution of GRACE data and reduced

the leakage effect, enabling GRACE to be used for monitoring

the mass change in relatively small seas. For instance, Loomis

and Luthcke (2017) and Feng et al. (2014) used GRACE data for

the Red Sea which is as narrow as the Baltic Sea. In another

example, the Mediterranean Sea has been the subject of some

studies (e.g., Fenoglio et al., 2012; Loomis and Luthcke, 2017).
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The Adriatic Sea of the Mediterranean Sea is also a narrow

and semi-enclosed basin (in a similar size and width to the

Baltic Sea). Additionally, Virtanen et al. (2010) also investigated

the Baltic Sea level by GRACE as it was stated in the

previous section.

In addition to the datasets above, the North Atlantic

Oscillation index is used to interpret the patterns of the sea

level on different time scales (Hurrell and Deser, 2009). The

dataset is acquired through the Climate Data Guide initiative

(Schneider et al., 2013).
Total, barystatic, and steric sea
level variations

Theoretically, the sum of steric and barystatic components

needs to be equal to the total sea level (Leuliette and Miller,

2009):

SLT tð Þ = SLS tð Þ + SLB tð Þ + ϵ (1)

where SLT, SLS, SLB are total, steric and barystatic sea level at

time t and e represents the accumulative error stem from all

datasets. On the global scale, Eq. 1 yields promising results

(WCRP Global Sea Level Budget Group, 2018), but on regional

scales, e is considerable due to limitations of the measurements,

mainly in the barystatic datasets (Figure 1D). The sum of

contributors captures the variations of total sea level

successfully by a correlation coefficient of ~ 0.9 (Table 1).

There are considerable misclosures in the amplitudes of two

signals as they are reflected in terms of residual RMS. Among the

barystatic time series of different centers, the JPL dataset shows

the smallest residual RMS when they are subtracted from the

total sea level. Adding the steric sea level to barystatic

component reduces these RMS values further by 4.5%, on

average, although the share of GSFC is rather smaller

compared to the other datasets. The sea level variation in the

Baltic Sea is dominated by the barystatic component. This has

already been shown by Virtanen et al. (2010) who showed that

the steric signal is only 10% of the total sea level when peak to

peak amplitude is considered. In our study, a similar conclusion

can be reached as the contribution of the steric sea level is one
TABLE 1 Correlation and discrepancies between total sea level and the barystatic datasets and the sum of contributors in terms of RMS.

CSR JPL GSFC

RMS (mm): SLT–SLB 68.3 56.6 63.5

RMS (mm): SLT–(SLB + SLS) 64.7 53.9 62.2

Correlation coefficient (SLT, SLB + SLS) 0.9 0.92 0.9

RMS reduction of SLS 5.7% 4.9% 2%

Explained variance 0.75 0.84 0.77
frontie
The p-values for all correlation coefficients are smaller than 10-8 at 0.05 significance level.
The standard deviation of the altimetry time series is 130 mm.
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order lower than the barystatic signal. If we use the standard

deviation of the time series as a measure of their signal

variability, the figures for total, barystatic, and steric sea levels

are 130, 95, and 15 mm, respectively.

It is worth mentioning that when the weighting is not

applied to the steric time series at different depths, the residual

RMS (e) exceeds SLT– SLB figures. Thus, it can be argued

weighting the steric sea level is, in fact, a better estimation for

the basin than the regular integral over different depths.

Hydrological leakage (i.e., leakage of larger hydrologic mass

change into smaller sea level change) is the main downside of the

barystatic time series provided by GRACE in small basins with

irregular shapes (Loomis and Luthcke, 2017). Since the

technique is not measuring pointwise observations, separation

of the mass change signal around water-land transition zones is

hard to achieve. Despite the assiduous efforts by researchers to

minimize this effect, a part of the true mass signal either leaks in

or out in the transition zones. In the case of this study, the basin

is shaped in the form of different bifurcations such as the Gulf of

Riga and Gulf of Finland which exposes the barystatic data to

severe leakage effect. There are also small basins nearby, (e.g.,

Lake Ladoga, to the east of the Gulf of Finland), which aggravate

the accuracy of the barystatic dataset. The residuals of Eq.1

(Figure 1E) do not demonstrate any substantial correlation with

barystatic data. It is respectively 0.48, 0.40, 0.38 for CSR, JPL,

and GSFC. This shows that the main problem is not amplitude

but out of phase variations. This can be linked to the phase

difference between the hydrological and barystatic sea level

signals (Virtanen et al., 2010). Moreover, the estimated steric

sea level does not reflect the accurate density related changes

basin-wide either. Despite the fact that the Gulf of Bothnia is not

very deep compared to the Baltic Proper, the lack of dataset in

this part of the basin may underestimate the role of freshwater

and water temperature in the estimated steric sea level. Even if

the steric sea level from the reanalysis model is used, the

estimation is impacted by the uncertainties raising from ocean

model, atmospheric forcing dataset, and other factors (Storto

et al., 2019). Such deficiencies in the datasets, as well as the

satellite altimetry errors, are responsible for the mismatch

between the sum of contributors and total sea level variations.

Compared to Virtanen et al. (2010), the only similar study in the

Baltic Sea, there is a significant improvement in terms of RMS.

The minimum RMS they could reach was 115 mm, while it is

maximum 65 mm in our analysis. They also used “explained

variance (1–var(SLT–(SLs + SLB))/var(SLT))” to evaluate their

results and the highest figure they reached was 0.70. This

parameter in this study yields 0.75, 0.84, and 0.77 for CSR,

JPL, and GSFC solutions, respectively. Despite the deficiencies in

the datasets, the sum of barystatic and steric components

explains up to 84% of the total sea level variations.

Since the amplitudes of high frequency variations are

masking the long-term changes in satellite altimetry and
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GRACE data, we applied a signal decomposition method to

the datasets to analyse seasonal, internannual, and decadal

components. This will help on eliciting information on the

role of total sea level and its contributors on different time

scales. To this end, we opt for the multiresolution analysis based

on the maximal overlap discrete wavelet transform

(MODWTMRA). In MODWTMRA (Percival and Walden,

2000; Whitcher et al., 2000), the signal is decomposed into

different levels and a residual. The number of levels can be

between 2 to n, n< ln(N) where N is the size of the dataset. Each

level covers a range of frequencies. In this study, all signals are

partitioned into six levels in which the first two levels render the

high frequency variability with periods shorter than the seasonal

signal. Since the study aims at variations over longer periods, we

did not use these two levels. Level three (6 months to 1.3 years)

corresponds to seasonal variability and levels four to six cover

the internannual changes (1.5 years to 9 years). The residual will

represent the decadal variation of each time series. The NAO

index is similarly decomposed into different time scales. The

transformation requires evenly sampled data with no gaps. To

fill the gaps in steric and barystatic sea level, linear interpolation

was carried out.

Figure 2 (left panels) shows the result of decomposition for

the Baltic Sea and Table 2 reports the correlation coefficients

between total sea level variations and the contributors at

different time scales. The barystatic datasets are coherent with

total sea level variations on the seasonal time scale (correlation

coefficient > 0.83), while the amplitudes are not completely

compatible. The discrepancies are expectedly more

pronounced over the gap period between GRACE and

GRACE-FO. Note that the time-variable seasonal cycle (from

one year to the next) in altimetry data, which agrees with that of

GRACE/GRACE-FO data, is clearly extracted by the

decomposition method employed here. The conventional

Fourier approach fails to capture such variability in the

seasonal signal. The seasonal steric sea level has around 3-4

months lag w.r.t barystatic and total sea level with substantially

smaller but more consistent amplitude in the study period. The

peaks for barystatic and total sea level are in November or

December. On the interannual scale, the steric sea level has a

negligible contribution to the sea level variation in the basin. The

coherency between the total and barystatic sea level changes is

substantial on this time scale (correlation coefficient > 0.80),

disregarding the data over the gap period. The high correlation

between sea level and NAO indicates that the interannual sea

level variability is governed by this pattern in the basin

(Andersson, 2002; Yan et al., 2004; Hünicke et al., 2015). The

mass signals in the Baltic Sea agree with the sea level signal in the

North Sea and NAO on interannual signal. This indicates that

NAO likely affects the Baltic Sea level by inflow/outflow from/to

the North Sea on interannual time scale. This happens by

strengthening/weakening the currents and westerly winds as
frontiersin.org
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FIGURE 2

Left panels: decomposition of total (altimetry), barystatic (CSR, JPL, and GSFC), and steric sea level in the Baltic Sea on different time scales.
Right panels: comparison of sea level variations in the North Sea, Baltic Sea. The shaded area and right axes represent the NAO. Left axes show
sea level variations in mm.
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reported by Passaro et al. (2021). To support this argument,

Gräwe et al. (2019) show that a substantial amount of sea level

variation in the basin is caused by external factors (see Figure 4

of the reference). Despite all these factors, a deeper investigation

is required for understanding the role of NAO on sea level

variation of the Baltic Sea.

In contrast to seasonal and interannual time scales, the

barystatic datasets do not show high agreement on the decadal

scale, likely due to limited data. Among them, the GSFC dataset

shows a relatively coherent variation (0.78 correlation

coefficient) when it is compared with the total sea level. At the

decadal time scale, the most remarkable point is the relatively

large amplitude of steric sea level changes compared to total seal
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level variations. Despite its insignificant contribution on the

interannual scale, the peak-to-peak amplitude of the steric sea

level in the decadal signal is 40% of the total sea level. However,

the steric sea level variations are out-of-phase w.r.t total sea level,

similar to the case of seasonal changes.

From a GRACE data perspective, the data from different

centres have good agreement with each other on seasonal and

interannual time scales. They also agree with the satellite

altimetry data on these time scales. On decadal time scales,

GRACE data are not in agreement with the altimetry data due to

the short length of the data and leakage effect.

The decomposition method is also applied to the mean sea

level of the North Sea to investigate the similarities with the

Baltic Sea (see the right panel in Figure 2). The amplitude of the

seasonal signal in the North Sea is slightly greater than in

the Baltic Sea while both have similar amplitudes on the

interannual scale. The correlations between them are also

substantial on these time scales despite differences in

interannual signals from 2003 to 2006 which can be attributed

to local drivers. On the decadal scale, the sea level in the North

Sea falls substantially from 2004 to 2011. A similar decrease, but

with lower amplitude, can be seen in the Baltic Sea with a few

years lag. This could imply an outflow from the Baltic to the

North Sea. However, after this period, the North Sea level

recovers while the Baltic Sea continues to hover below average.

This might be linked to the decadal variation of the steric sea

level since it follows a downward trend since 2014.
TABLE 2 The correlation coefficients between total sea level in the
Baltic Sea and the data indicated on the first column.

Seasonal Interannual

Steric 0.74 (3) -0.09*

CSR 0.84 0.80

JPL 0.85 0.80

GSFC 0.83 0.82

NAO 0.4 0.72

North Sea 0.84 0.75
The numbers in the parentheses show the time lag in months. The p-values for all
correlation coefficients are smaller than 10-12 at 0.05 significance level except for * which
is 0.7.
frontiersin.org

https://doi.org/10.3389/fmars.2022.963564
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Karimi et al. 10.3389/fmars.2022.963564
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Author contributions

AK carried out conception, design, and analyses. AK, KG-F,

and MP contributed to manuscript writing, revision, read, and

approved the submitted version.
Acknowledgments

We would like to thank the Climate Data Guide initiative,

Baltic SEAL, CSR, JPL, GSFC, and Copernicus Marine Service to

provide us with high quality datasets which made this

study possible.
Frontiers in Marine Science 07
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

anddonotnecessarily represent thoseof theiraffiliatedorganizations,

or those of the publisher, the editors and the reviewers. Any product

thatmay be evaluated in this article, or claim thatmay bemade by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fmars.2022.963564/full#supplementary-material
References
Andersson, H. C. (2002). Influence of long-term regional and large-scale
atmospheric circulation on the Baltic sea level. Tellus A: Dynamic Meteorol.
Oceanogr. 54, 76–88. doi: 10.3402/tellusa.v54i1.12125

Barnoud, A., Pfeffer, J., Guérou, A., Frery, M.-L., Siméon, M., Cazenave, A., et al.
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