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Examining the expansion of
Spartina alterniflora in coastal
wetlands using an MCE-CA-
Markov model

Dandan Yan, Jingtai Li , Siying Xie, Yao Liu, Yufeng Sheng
and Zhaoqing Luan*

College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in
Southern China, Nanjing Forestry University, Nanjing, China
The spread of Spartina alterniflora (smooth cordgrass) has put biodiversity and

ecosystem function at risk since it was introduced to China just a few decades

ago. A better understanding of how the range of S. alterniflorawill expand in the

future will help manage the invasion of this species in coastal wetlands.

However, it is difficult to model the future extent of Spartina saltmarshes in

China. To address this issue, we combined multi criteria evaluation with

traditional CA Markov model to provide robust forecasting of the spatial

expansion of S. alterniflora for the next ten years, at Dafeng Milu National

Nature Reserve, Jiangsu, China. Our results showed that, compared with the

interpretation results of high-resolution remote sensing images in 2020, the

kappa coefficient of verification accuracy was 82.63%, indicating that the MCE-

CA-Markov model has good prediction results. Therefore, the model can

forecast the expansion process of S. alterniflora over the next ten years. The

model predicts that the area of S. alterniflora continued to decrease from

910.25 ha in 2020 to 881.21 ha in 2030. The spatial distribution of S. alterniflora

has been decreasing on the landward side while it has been expanding towards

the sea on the seaward side. This study provides some suggestions for effective

management and control of invasive species, which could be important for

wetland biodiversity conservation and resource management.
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1 Introduction

Coastal wetlands are located in marine-terrestrial interlaced

zones, which are critical in maintaining global biodiversity and

ecological balance, offering important ecological service functions

and economic values (Edwards and Mills, 2005; Zhang et al.,

2005). Meanwhile, coastal wetlands are also a typically

ecologically sensitive ecosystem,particularly within the context

of increasing human activity and global change, and hence they

are vulnerable to invasion by alien organisms (Ehrenfeld, 2010;

Comeaux et al., 2012). Because Spartina alterniflora (S.

alterniflora) is adaptable and has a high diffusion capacity, it

has expanded extensively along the coast of China. Indeed, it has

been one of the most widespread invasive plants in coastal

wetlands (Liu, 2018a; Liu et al., 2018b; Yan et al., 2021; Yan

et al., 2022). Tremendous researches has demonstrated that the

invasion of S. alterniflora has resulted in severe ecological crises

through its reshaping of the structure and function of the original

coastal wetland ecosystem (Grosholz et al., 2009; Page et al.,

2010). Consequently, accurate modelling and forecasting of the

temporal and spatial dynamics of S. alterniflora expansion in the

future is urgently needed. Moreover, anticipating the expansion

of S. alterniflora in coastal wetlands will be a significant step

towards the protection and ecological management of coastal

ecosystems (Luan et al., 2020; Yan et al., 2021).

With the continuous improvement of remote sensing and

geographic information systems, the research on the expansion

of S. alterniflora community tends to be more accurate (Luan

et al., 2020). Research into the spatial dynamic change of S.

alterniflora in China mainly focuses on the spatial expansion

and driving mechanisms of this species (Milzow et al., 2010;

Wang, 2014; Luan et al., 2020). Wang et al. (2017) inverted the

aboveground biomass of S. alterniflora using hyperspectral

data and LiDAR data in Dafeng, Jiangsu Province. The

biomass of S. alterniflora in coastal wetlands was recorded

with high precision, providing an accurate and effective

monitoring method for the spatial patterns of invasive S.

alterniflora (Wang et al., 2017). Zhou et al. (2017) inversed S.

alterniflora plant height by constructing two parameters of

vegetation coverage and aboveground biomass based on

SPOT6 high-resolution remote sensing images. The results

showed that the estimation error of this method is small and

the inversion result is feasible (Zhou et al., 2017). Therefore,

high spatial resolution remote sensing images can reflect the

geometric structure and texture information of ground objects

in more detail. To better understand the invasion dynamics

and driving mechanisms of S. alterniflora, simulation

prediction models are important for dynamically simulating

and predicting the spatial dispersal process of S. alterniflora

(Zheng et al., 2015; Xie and Han, 2018). At present, the models

for researching landscape pattern dynamics mainly include

Markov chain models (Markov), cellular automata models
Frontiers in Marine Science 02
(CA), and cellular automata-Markov (CA-Markov) models

(Ruishan and Suocheng, 2013; Qin et al., 2020; Zhang et al.,

2021; Yao et al., 2022a). The CA Markov model has the

advantages of Markov models for time series and CA models

for spatial forecasting (Mitsova et al., 2011; Yang et al., 2014;

Zheng et al., 2015; Yao et al., 2022a). Huang et al. (2008) input

elevation parameters to the transition rules and controlled the

expansion speed by the selective Moore radius in the CA model

(Huang et al., 2008). Zhang et al. (2021) only considered the

asexual reproduction of S. alterniflora, and simulated the

expansion dynamics of this species with a cellular automata

model based on the spatial distribution of S. alterniflora, in the

Yellow River Delta from 2014 to 2018 (Zhang et al., 2021).

Multi criteria evaluation (MCE) is applied to the suitability

atlas module of the CA-Markov model, which can combine

multiple factors into restrictive factors of the transformation

model, making the model both more scientific and more

practical. Qiu and Lu (2018) added driving mechanisms for

suitability analysis and predicted the expansion dynamics of S.

alterniflora in 2018, 2022, 2026, and 2030 with a CA Markov

model (Qiu and Lu, 2018). Qin et al. (2020) constructed an

MCE-CA-Markov composite model to simulate landscape

pattern changes using four Landsat remote sensing images

from 2000–2015 (Qin et al., 2020). However, the above

researches only concentrated on the spatial expansion law of

S. alterniflora to predict its possible expansion dynamics. These

models are only empirical in essence, and the spatial resolution

of remote sensing images is not high. Moreover, internal

driving factors such as hydrology and soil that affect the

expansion of S. alterniflora failed to consider the suitability

atlas module of the CA-Markov model. Therefore, the way to

predict the spatial expansion dynamics of S. alterniflora is still

not well understood and needs to be improved. Numerous

studies have shown that tidal inundation and soil salinity are

the key factors affecting the ecological characteristics of S.

alterniflora (Burns, 2011; Moffett and Gorelick, 2016; Luan

et al., 2020). Yan et al. (2022) showed that elevation and soil

salinity are the main internal environmental drivers affecting

the growth of S. alterniflora, and the number of elk and

artificial ditches are the external factors affecting the growth

of S. alterniflora (Yan et al., 2021). Therefore, fully considering

the natural and human factors affecting the expansion of S.

alterniflora is important for examining the expansion of

S. alterniflora.

The biggest innovation of the present study is that we

combined high resolution remote sensing images and the

natural and human factors affecting the expansion of S.

alterniflora to provide robust predictions for spatial

expansion of S. alterniflora at Dafeng Milu National Nature

Reserve over the next 10 years, with MCE-CA-Markov. In

summary, the aims of this study were as follows: (1) to generate

suitability maps of S. alterniflora based on the multi-criteria
frontiersin.org
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evaluation module (MCE); and (2) to forecast the expansion of

S. alterniflora for the next 10 years by combining MCE with a

traditional CA Markov model. This study not only provides

suggestions for effective management and control of invasive

species, but also provides scientific guidance for the promotion

of coastal ecosystem protection and ecological management

in Jiangsu.
2 Materials and methods

2.1 Study area

Dafeng Milu National Nature Reserve (DMNNR; 32°56′ N–
33°36′ N, 120°42′ E–120°51′ E) is located in the southeast of

Dafeng, Yancheng, in Jiangsu. The DMNNR was considered to

be the first and largest wildlife nature reserve in the world for

Elaphurus davidianus (Père David’s deer). The Ramsar Wetland

Convention Organization designated the DMNNR as a wetland

of international importance, in 2002 (Lu et al., 2018; Yan et al.,

2021). The present study took the third core area of DMNNR

and its tidal flat as the research area (25 km2), which silted up in

the last 30 years (Figure 1). The third core area is a coastal tidal

wetland and a wild pasture for E. davidianus, with few

human activities.

Soil and water salinity is more than 30‰ all year round,

which is especially suitable for the growth of S. alterniflora. Thus,

S. alterniflora spreads rapidly in coastal tidal flats, encroaching

on a large area of light beaches. At present, S. alterniflora

accounts for 70% of the study area and is becoming the single,

absolutely dominant, species in the study area (Ping et al., 2012;

Zhu et al., 2016; Liu et al., 2018b). To effectively control the

invasion of S. alterniflora and create a suitable habitat for birds

and wild E. davidianus in DMNNR, since 2011 the government

has been building small embankments and artificial ditches. A

total of 2.5 km of small dykes and 10 km of artificial freshwater

ditches were built to meet the needs of various wild animals and

to control the spread of S. alterniflora (Figure 1). DMNNR

reported that the number of wild E. davidianus individuals

increased from 9 in 1999 to 1820 in 2020, which resulted in a

decrease in S. alterniflora by foraging and trampling (Yan

et al., 2021).
2.2 Data acquisition and preprocessing

2.2.1 Remote-sensing imagery and
preprocessing

Land cover data were acquired from WorldView-2 (WV-2)

and UAV Dabai-II high-resolution images from 2010 to 2020.

The WV-2 image was purchased from AIRBUS, including a

panchromatic band of 0.5 m spatial resolution and four multi-
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spectral bands (blue: 450–510 nm; green: 510–580 nm; red: 630–

690 nm and near-infrared: 770–895 nm) at 1.8 m spatial

resolution. The optical image of the WV-2 satellite on

November 9, 2010 was obtained during a low tide period that

was free from cloud coverage (Figure 2A). WV-2 images were

preprocessed with ENVI 5.4 for radiometric calibration,

atmospheric correction, pan-sharpening, and image

registration. We applied the Gram-Schmidt pan sharpening

method to merge the panchromatic and multi-spectral bands

of the WV-2 image. Ground control points (GCPs) were

measured by Trimble R8 GNSS RTK for the geographic

registration of images with at least 50 GCPs evenly distributed

in WV-2 image. The root mean squared error (RMSE) of

geometric rectification was less than 0.5 pixels. Two UAV

flights (wingspan 2.7 m; flight height: 500 m; flight speed: ∼30
m/s) were conducted during the low tide, on August 13, 2020. To

avoid the impact of lighting conditions on the flight, the UAV

flights were completed within a short time frame (<1 h). There

was sufficient image overlap for image processing (>60% forward

overlap and > 40% side overlap). More than 1000 camera images

were collected. Finally, a set of position and orientation system

dates (POS) and original RGB images were processed, in

Photoscan, to generate a very high resolution (40 cm) RGB

orthophoto and point cloud with 40 points/m2 covering the

entire study area.

To reduce positioning error, the digital orthophoto map

(DOM) and point cloud data were spatially registered based

on 50 ground control points (Figure 2B). To reduce the

potential position errors among these images, all images

were resampled to a pixel size of 0.5 × 0.5 m and projected

to the Universal Transverse Mercator (UTM). We applied

object-oriented and visual interpretation to map the spatial

distribution of different features from 2010 to 2020

(Figures 2C, D). To analyze the accuracy of S. alterniflora

data, we performed field sampling in August 2020. Ground

surveys were conducted, with 140 sampling points (Figure 1)

and overall was greater than 85%. The spatial distribution of

artificial ditches was extracted by vectorizing the central axis

of the ditches using visual interpretation based on ArcGIS

spatial analysis tools.

2.2.2 Field sampling and lab analysis
Large-scale field vegetation sampling was conducted in the

August 2020. It collected 140 sample points with a 500 m

measurement interval. Three quadrats (100 cm × 100 cm) were

laid out at each sample point, and a total of 420 sampling sites

were collected (Figure 1). Geographical information was recorded

for each sample point using a Trimble Geo7X differential GPS. At

the same time, soil was collected from 0 to 20 cm depth using a

soil drill, and then sieved through a 2 mm screen mesh. To

measure soil salinity using the drying method, a 1:5 soil: water

extract solution was prepared (Bao, 2000).
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2.2.3 Digital elevation model and spatial
distribution of soil salinity

Based on the point cloud with 40 points/m2 from UAV high-

resolution images, first, digital surface model (DSM) was

constructed based on the grid and texture of the point cloud

using the multi-view 3D reconstruction technology in Agisoft

PhotoScan 1.2.5 (Agisoft LLC, 2014). The point cloud have

different color, classification value, intensity value, etc. So we

can identify vegetation points from ground points based on 3D

point cloud with real object colors and geometric characteristics.

However, the point cloud cannot reach the bare surface due to

the dense S. alterniflora canopies. Therefore, we measured the

elevation data for dense S. alterniflora canopies using a Trimble

R8 GNSS GPS-RTK with 5 mm positioning accuracy, obtaining

123 elevation data (Figure 3A). Finally, we combined 123

elevation data for dense S. alterniflora canopies and ground

points to generate digital elevation model (DEM) with 40 cm

resolution (Figure 3A).

Inverse distance weighting (IDW) is based on the principle of

similarity. It assumes that each simulated value is affected by the

distance of the sampling point, and the influence on that sampling

point decreases as the distance increases (Hammam andMohamed,

2020). IDW interpolation is especially suitable for a uniform and

dense distribution of sampling points (Zhao et al., 2019; Sheng et al.,

2020). Thus, 140 soil samples were collected from 0–20 cm depth
Frontiers in Marine Science 04
(Figure 1). The spatial distribution map of soil salinity was drawn

by IDW interpolation in the geostatistical toolbox of ArcGIS

10.5 (Figure 3B).
2.3 Methodologies

2.3.1 Cellular automata model (CA)
The cellular automata model is a discrete spatiotemporal

dynamic system, and each cell is a local feature (Chui, 2015). The

model depends on the proximity relat ionship and

transformation rules between local cells to simulate complex

spatiotemporal dynamics during a specific period of time. A

cellular automaton is composed of the cell itself, the state of the

cell, a cell neighborhood, and transformation rules (Wolfram,

1984; Sanchayeeta and Jane, 2012). The cell is the most basic

unit, and the cell at each time point has a corresponding state.

The “S. alterniflora” and “mudflat” in this study are specific cell

states at the current time. The neighborhood of a cell is a

collection of cells and their surrounding adjacent cells. The

distance between adjacent cells is mainly divided into square

grids based on Euclidean space, where each cell has eight

neighbors. Each cell only depends on the state of the cell and

neighboring cells. Its rationale is that the state of a cell

automaton at time (t+1) is a function of its state at time (t)
FIGURE 1

The location of the DMNNR, Jiangsu, China. The background image is the high resolution unmanned aerial vehicle (UAV) image with a natural
true color composition (acquisition date: 2020/08/13).
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(Tiné et al., 2019). A cellular automaton is defined as follows

f : St+1 = f (St ,N), (t = 1, 2,…, n) (1)

where f is the transition rule or function of the local space; S is

the set of finite and discrete states of the cell; t、t+1denotes the

transition step, and N is the number of cell neighbors.
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CA has powerful spatial-operation capabilities which are

suitable for simulating the temporal and spatial dynamics of

land cover. However, the factors affecting land cover change

are often nonlinear. It is difficult to accurately predict the

spatio-temporal dynamics of S. alterniflora by only using the

local transformation rules of cellular automata (Qiu and Lu,

2018; Guo, 2019).
A B

FIGURE 3

Digital elevation model in the DMNNR (A), and spatial distribution of soil salinity (B).
A B

C D

FIGURE 2

The spatial dynamics of Spartina saltmarshes between 2010 and 2020 in the DMNNR. (A) Data from WorldView-2 in 2010, (B) UAV Daibai-II
image in 2020, and (C) wetland landscape classification results in 2010 and in (D) 2020.
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2.3.2 Markov model
The Markov model is a spatial transformation model based

on raster data. It is a mathematical method for predicting the

probability of events. The state and development trend of

incidents were predicted by a transition probability matrix

between the different time states (Sanchayeeta and Jane, 2012;

Song, 2020). The equation is as follows:

Nt+1 = NtPij (2)

where, Nt, Nt+1 represent the land cover types at the two time

points; t is time; Pij is the matrix of state transition probabilities.

The temporal and spatial change processes of land cover will

be affected by a variety of complex factors. Thus, the

transformation between various land cover types is often

associated with many uncertain factors. There are certain

limitations to predicting the spatial change of land cover by

the Markov model. It can accurately simulate the quantitative

change of land cover in the future, but cannot simulate the

spatial dynamic change of land cover (Song, 2020; Yao

et al., 2022a).

2.3.3 MCE-CA-Markov
CA and Markov can both dynamically simulate the spatial

changes of land cover. Although the CA model has a powerful

spatial analysis function, it is not as good as the Markov model in

terms of quantitative numerical calculations. The Markov model

is focused mainly on quantitatively simulating changes in land

cover types over a long period of time, but cannot predict their

spatial distribution. The CA model and Markov model are

combined to generate a CA Markov model that has both the

capacity of the CA model to simulate the spatial variation of

complex systems and the numerical analysis capacity of the

Markov model to forecast the long-term dynamic change. The

CA Markov model can predict the temporal and spatial patterns

of land cover change with high precision (Qiu and Lu, 2018; Qin

et al., 2020; Yao et al., 2022a).

The change of land cover types is not only related to the state

of the cell itself and its local environment, but is also affected by

natural, social, economic, and other factors. Therefore, the

biggest innovation of the present study is in fully considering

the natural and human factors affecting the expansion of S.

alterniflora in DMNNR. The suitability atlas of S. alterniflora

was established through the multi standard evaluation system,

and the spatial expansion of S. alterniflora in DMNNR was

modelled and predicted using the CA-Markov model in the

IDRISI software. Due to the IDRISI software has unique vector

and raster data formats, meanwhile, all the data have the same

geographic coordinate system, projection system, spatial

resolution, and boundary range. Therefore, Data generation

was conducted in three parts using the IDRISI software: First,

we converted all raster data into the same projected coordinate

system, and then set the raster size of the land cover type, DEM
Frontiers in Marine Science 06
elevation, and soil salinity spatial distribution to 15 x 15 m. The

raster data in ACSII format and the vector data of the Milu

affected area and artificial ditch were imported into the IDRISI

software and then reclassified. The transfer probability matrix of

different land cover from 2010 to 2020 was generated using a

Markov model. Second, the elevation, soil salinity, number of elk

and artificial ditches were the main drivers affecting external

factors affecting the growth of S. alterniflora. They all were

quantitatively analyzed with the MCE model to generated

suitability maps of wetland landscapes. Third, the transition

matrix and suitability maps of S. alterniflora were integrated to

simulate the expansion of S. alterniflora in the reserve in 2020

using the MCE-CA-Markov model. Finally, the spatial

distribution of S. alterniflora through interpretation of high

resolution remote sensing and the simulation results in 2020

were verified using the Kappa coefficient. After the verification

for accuracy was passed, the spatial distribution of S. alterniflora

in the reverse was simulated and predicted in 2030. The

workflow for the MCE-CA-Markov model used in this study is

shown in Figure 4.
3 Results

3.1 Markov transfer area and
probability matrix

The research have revealed the expansion dynamics of S.

alterniflora first increased during 1993–2010 but decreased

substantially during 2011–2020 after ecological after ecological

hydrological engineering and the increase in E.davidianus

numbers (Yan et al., 2021). Therefore, to fully considerate the

natural and human factors affecting the expansion of S.

alterniflora in DMNNR and generate suitability maps of S.

alterniflora, we chose spatial distribution map of wetland

landscape types from 2010 to 2020 to examine the expansion

of S. alterniflora in coastal wetlands. The landscape type transfer

area matrix and the probability matrix describe the area change

of each landscape type. Meanwhile, it also was considerated as

conversion rule to simulate and predict the trends in land cover

change in the next time period. Based on the spatial distribution

map of wetland landscape types in 2010 and 2020 (Figures 2C,

D), we generated the transition area matrix, transition

probability matrix, and state transition atlas of wetland

landscape types in the DMNNR from 2010 to 2020 using the

Markov module in the IDRISI software. The transfer direction,

spatial process, and transfer area matrix of wetland landscapes in

the reverse from 2010 to 2020 are shown in Table 1. The results

indicate that the area of S. alterniflora decreased from 1511.26 ha

in 2010 to 910.25 ha in 2020, and mainly changed to mudflats.

The area of mudflats mainly changed to S. alterniflora, while the

total area converted to S. alterniflora was less than that converted

to mudflats. Spatial-temporal dynamics of S. alterniflora in area
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and distribution were clearly observed from 2010 to 2020. S.

alterniflora on the landward side of the study area transformed

to mudflats, and the area of S. alterniflora decreased. The

distribution of S. alterniflora on the seaward side has been

expanding towards the sea, mainly occupying mudflats. The

change in water area is greatly affected by tides, which are not the

focus of the present study. Therefore, the wetland landscape type

transfer area matrix and probability matrix from 2010 to 2020

were used to simulate and predict the dynamic changes of

wetland landscape types in 2020.
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3.2 Suitability maps of wetland landscape

The landscape type suitability atlas is an important part of

the transformation rules in the CA Markov model, which refers

to the spatial probability distribution map of landscape type

being transformed into other landscape types. The suitability

maps of wetland landscape types are based on the MCE. The

MCE consists of a Boolean, the sequential weighted average, and

the weighted linear combination method. Evaluation criteria

mainly include constraint factors and influence factors. The
FIGURE 4

Workflow for the MCE-CA-Markov model.
TABLE 1 Area transfer matrix of wetland landscape type change from 2010 to 2020.

Wetland landscape type 2010

S. alterniflora Mudflats Water Other vegetation Total

2020 S. alterniflora 17171 18201 2267 78 37717

Mudflats 20983 35164 114 33 56294

Water 205 2065 2044 0 4314

Other vegetation 178 87 0 350 615

Total 38537 55517 4425 461 197880
frontier
The unit is the number of grids, which is the calculation unit of the transfer matrix.
sin.org
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constraint factor uses the Boolean method to generate restrictive

conditions, and the influence factor uses different function

modules to generate suitability layers. In the present study,

due to tidal flooding, the distribution of water was formed in

places with relatively low elevations of tidal creeks. The

possibility of such areas transforming into S. alterniflora in a

short time is low. Therefore, the distribution of water as the

constraint factor of S. alterniflora suitability atlas. Based on the

wetland landscape type data in 2020 (Figure 2D), the constraint

image of the area of water was obtained by reclassification, where

0 represents the water areas in 2020 and 1 indicates non-water

areas in 2020 (Figure 5).

Elevation, soil salinity, artificial ditch, and Milu influence

range are the influencing factors to generate the S. alterniflora

suitability atlas. The fuzzy module provides monotonically

increasing and decreasing S, J, linear, and symmetric parabolic

functions. The field investigation found that the influence of

artificial ditches and Milu on S. alterniflora was monotonically S

increasing. The farther the S. alterniflora was from the tidal creek

and the influence range of Milu, the better it grew. The distance

of artificial ditches and the range of elk influence was calculated

with the distance tool in the IDRISI software. We set the distance

from the tidal ditch at 300–5000 m and the range from the Milu

distribution area as 500–5000 m (Table 2). Yan et al. (2021)

found that the relationship between S. alterniflora and flooding

depth, soil salinity showed the same trend and was consistent

with the Gaussian model. The plant biomass and height of S.

alterniflora first increased and then decreased with elevation and

soil salinity. Based on the optimal ecological range of elevation

and soil salinity, the range of elevation was 9.74–11.02 m, and

the range of soil salinity was 6.48–15.98 g/kg (Table 2). The

layers for each influential factor were standardized using a fuzzy

geometric function (Figure 6). The resulting standardized layers

were mainly distributed from 0 to 255. The closer to 255, the

more suitable, while the closer to 0, the less suitable, and the

range of the suitable factor distribution was basically consistent
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with the spatial distribution of S. alterniflora. Finally, the

constraint factors and influence factors are weighted and

linearly combined to generate the suitability atlas of S.

alterniflora based on the MCE.
3.3 The simulation and prediction of S.
alterniflora by MCE-CA-Markov model

In the CA-Markov model, we input the S. alterniflora data

for 2010 and 2020, transfer area and probability matrix of 2010-

2020, and the suitability atlas of S. alterniflora. The research

interval and the prediction interval should be the same. The

optimal parameters of the simulation effect of this study were as

follows: number of iterations: 10; filter size: 5 × 5. After long-

term operation simulations, the simulation and prediction map

of S. alterniflora in 2020 and 2030 was obtained (Figure 7).

First, we compared the interpretation result of S alterniflora in

2020 (Figure 7B) with the simulation and prediction map of S.

alterniflora in 2020 (Figure 7A). The simulation results showed that

the area of S. alterniflora changed little, with a total reduction of

5.7 ha. The spatial distribution of S. alterniflora was consistent with

the interpretation result in 2020. The S. alterniflora turned into

mudflats on the landward side, and the expansion of S. alterniflora

to the sea was slow on the seaward side (Figure 7A). We tested the

accuracy of the simulation result with a kappa coefficient by using

the VALIDATE module in the IDRISI software. The kappa

coefficient was obtained from statistics on the 2020 interpretation

result and 2020 simulation map, which quantitatively reflected the

accuracy of the model simulation. The kappa index exceeded 0.8,

reflecting the high credibility of the simulation results and

indicating that the MCE CA Markov model could be used to

simulate the state of S. alterniflora invasion succession in a typical

coastal wetland at DMNNR in the future.

The area and spatial distributions of S. alterniflora in 2030

are shown in Figure 7C. The simulation results showed that the
FIGURE 5

The constraint image of the area of water, where 0 represents the water areas in 2020 and 1 indicates non-water areas in 2020.
frontiersin.org

https://doi.org/10.3389/fmars.2022.964172
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yan et al. 10.3389/fmars.2022.964172
change of S. alterniflora from 2020 to 2030 in DMNNR was

consistent with the change from 2010 to 2020. The S. alterniflora

area in the reserve decreased from 910.25 ha in 2020 to 881.21 ha

in 2030. Compared with 2010–2020, the change of S. alterniflora

from 2020 to 3030 was small. Spatial-temporal dynamics of S.

alterniflora in area and distribution were clearly observed in

2030. Due to the construction of freshwater canals for wild E.

davidianus, the amount of wild E. davidianus in the reserve

increased, which resulted in a subsequent downward trend in S.

alterniflora on the landward side. The spatial distribution of S.

alterniflora has been decreasing on the landward side, and

transformed into mudflats. However, S. alterniflora on the

seaward side continued to expand towards the sea. S.

alterniflora has invaded the mudflats of the entire study area

on the seaward side. In addition, artificial ditches and E.

davidianus in the northwest of the study area have had a
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considerable impact on S. alterniflora from 2010 to 2020. As S.

alterniflora continued to expand to the sea, the impacts of

artificial ditches and E. davidianus on S. alterniflora have

weakened, and in the future S. alterniflora will continue to

expand towards the sea (Figure 7C).
4 Discussion

4.1 The expansion of S. alterniflora in
2030

According to simulations of the spatial-temporal dynamics

of S. alterniflora in the reverse during 2020–2030, the area of S.

alterniflora continued to decrease from 910.25 ha in 2020 to

881.21 ha in 2030 (Figure 7). The spatial distribution of S.
FIGURE 6

Fuzzy standardization of suitability atlas for S. alterniflora: DEM (A); soil salinity (B); artificial ditch (C); Milu influence range (D).
TABLE 2 Conversion of suitability atlas constraints of S. alterniflora.

Influence factors Parameter Constrain function Weight

Elevation 9.74-11.02 m symmetric parabolic 0.2

Soil salinity 6.48-15.98 g/kg symmetric parabolic 0.2

Artificial ditch 300–5000 m S monotonically increasing 0.3

Milu influence range 500–5000 m S monotonically increasing 0.3
front
iersin.org

https://doi.org/10.3389/fmars.2022.964172
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yan et al. 10.3389/fmars.2022.964172
alterniflora has been decreasing on the landward side, while S.

alterniflora has continued to expand towards the sea on the

seaward side (Figure 7C). In our literature review, we did not

find previous studies simulating and predicting the S. alterniflora

area in DMNNR. Therefore, to date, the simulation result of S.

alterniflora in our study is the only dataset showing the

dynamics of S. alterniflora in DMNNR from 2020 to 2030.

Several studies have reported the changing of S. alterniflora. Yan

et al. (2021) found that the area occupied by S. alterniflora

increased first and then decreased at DMNNR, Jiangsu, China

from 1993 to 2020. The invasion exhibited a bi-directional

pattern -the expansion of S. alterniflora was not only toward

the seaward side but also colonized the mudflat area in the

opposite direction, from 1993 to 2010. It continued to expand

towards the sea on the seaward side from 2010 to 2020 (Yan

et al., 2021). Li (2021) used the ANN-CA model to simulate and

predict the expansion dynamics of S. alterniflora in Jiuduansha

Nature Reserve. The results showed that S. alterniflora will

expand further although the expansion rate will decrease, and

it will mainly expand towards the sea, competing with Scirpus

mariqueter (Li, 2021). Huang et al. (2008) simulated the
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community dynamics of S. alterniflora and Phragmites

australis in Jiuduansha based on the cellular automata model.

Their model predicted that S. alterniflora will continue to

expand toward the sea for a long time into the future (Huang

et al., 2008).The findings of these previous studies are generally

consistent with the results of the present study.
4.2 Potential and reliability of the MCE-
CA-Markov model

The integrated MCE-CA-Markov model was used to

simulate the future S. alterniflora pattern in DMNNR. First,

the simulated S. alterniflora distribution pattern for 2020 was

compared with the actual pattern through spatial visual

comparison, and kappa coefficient was 82.63%. This indicates

that factors influencing the progression of S. alterniflora from

2010 to 2020 can be used effectively to extract transition rules in

order to predict the S. alterniflora pattern for 2030. There are

two main factors that needed to be accounted for successfully

simulate S. alterniflora in this piece of research: high-precision
A B

C

FIGURE 7

Comparison of the area and spatial distribution of S. alterniflora in DMNNR: (A) interpretation result of S. alterniflora in 2020; (B) prediction of S.
alterniflora in 2020; (C) prediction of S. alterniflora in 3030.
frontiersin.org

https://doi.org/10.3389/fmars.2022.964172
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yan et al. 10.3389/fmars.2022.964172
spatial distribution dates of S. alterniflora and suitability atlas of

S. alterniflora. For this work, high spatial resolution remote

sensing images can reflect the geometric structure and texture

information of ground objects in more detail. Analysis of land

use characteristics at high levels of precision is important to

reveal the internal laws and driving mechanisms of land use

change (Jiang et al., 2021; Wang and Wang, 2022). Wang and

Wang, (2022) undertook quantitative research on the

characteristics of land use structure from 2005 to 2025, and

the result showed that land use research involves different

spatiotemporal scales, and different scales can only answer

different ecological problems (Wang and Wang, 2022). The

expansion of the S. alterniflora community is mainly affected

by hydrological, climatic, soil, and topographic environmental

factors, and S. alterniflora is mainly distributed in the direction

parallel to the coastline (Burns, 2011; Li, 2018). Numerous

studies have shown that tidal inundation and soil salinity are

the key factors affecting the ecological characteristics of S.

alterniflora (Burns, 2011; Moffett and Gorelick, 2016; Luan

et al., 2020). Yan et al. (2022) showed that elevation and soil

salinity are the main internal environmental drivers affecting the

growth of S. alterniflora, and the height, biomass, flooding depth,

and soil salinity all conformed to the Gaussian model. Thus,

based on the optimal ecological range of elevation and soil

salinity, we obtained the range of elevation and soil salinity

(Yan et al., 2022). Yan et al. (2021) analyzed the spatial-temporal

change of S. alterniflora in coastal wetlands during 1993–2020

based on GEE and Landsat images. The results showed that the

number of elk and artificial ditches are the external factors

affecting the growth of S. alterniflora (Yan et al., 2021).
4.3 Uncertainty and limitations of S.
alterniflora predictions

To better predict S. alterniflora invasions, we selected the

remote sensing images from 2010 to 2020 combined with

information about the influencing factors as the basic data to

simulate and predict the future expansion of S. alterniflora at

DMNNR in 2030 with an MCE-CA-Markov model. As part of

this analysis, there were two sources of error in predicting the future

expansion of S. alterniflora. First, although the study used multi-

source high-resolution remote sensing images to extract the spatial

distribution of S. alterniflora with high accuracy, the long research

time led to the data for S. alterniflora fluctuating greatly, which

cannot fully reflect the long-term changes of S. alterniflora in the

reserve. Thus, to minimize potential errors, the research period

needs to be extended and the number of data nodes increased, in

turn enabling a comprehensive understanding of the changes of S.

alterniflora in the reserve (Yan et al., 2021). Second, the expansion

of S. alterniflora is a complex process of change, which is affected by

many factors. The transformation of the transient spatial pattern of

S. alterniflora from vegetation colonization to expansion only took
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2-3 years, and soil nutrients may be the main controlling factor (Xie

et al., 2019; Yao et al., 2022b). When making the S. alterniflora

suitability atlas, the present study comprehensively considered the

effects of tidal inundation, soil salinity, artificial ditches, and elk-

affected areas on the distribution of S. alterniflora based on previous

research results. The simulation results have certain limitations,

therefore nutrient availability, temperature, and benthic organisms

(Deegan et al., 2012; Xie et al., 2019; Lu et al., 2020) should be

included in future studies to improve the accuracy of the results.

Meanwhile, our study suggest that S. alterniflora will continue to

expand towards the sea in the future. Therefore, the control of S.

alterniflora in coastal wetlands and the science based conservation

and management of coastal wetland ecosystems must be placed on

the agenda for ecological interventions
5 Conclusions

Present CA-Markov models fail to account for the influence of

environmental factors and are therefore inadequate for accurately

simulating the expansion of S. alterniflora marshes. This paper

combined MCE with traditional CA Markov models to provide

robust predictions about the spatial expansion of S. alterniflora over

the next 10 years. This approach enhanced CA Markov models by

integrating the influence of elevation, soil salinity, artificial ditches,

andMilu influence range. The resultant accuracy of the simulated S.

alterniflora expansion was 82.63%. This simulation suggests a good

predictive result from the MCE-CA-Markov model. The area of S.

alterniflora is predicted to continue to decrease from 910.25 ha in

2020 to 881.21 ha in 2030. The spatial distribution of S. alterniflora

has been decreasing on the landward side, while S. alterniflora has

continued to expand towards the sea on the seaward side. These

findings suggest that S. alterniflora will continue to expand towards

the sea in the future. Therefore, the control of S. alterniflora in

coastal wetlands must be placed on the agenda of ecological

interventions. In addition, the proposed predictions approach for

spatial expansion of S. alterniflora could be used to other regions.

However, for S. alterniflora potentially characterized by a differing

plant structure surrounded by other types of land covers, the

predictions approach used need to be tested.
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