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Underwater image enhancement is a fundamental requirement in the field of

underwater vision. Along with the development of deep learning, underwater

image enhancement has made remarkable progress. However, most deep

learning-based enhancement methods are computationally expensive,

restricting their application in real-time large-size underwater image

processing. Furthermore, GAN-based methods tend to generate spatially

inconsistent styles that decrease the enhanced image quality. We propose a

novel efficiency model, FSpiral-GAN, based on a generative adversarial

framework for large-size underwater image enhancement to solve these

problems. We design our model with equal upsampling blocks (EUBs), equal

downsampling blocks (EDBs) and lightweight residual channel attention blocks

(RCABs), effectively simplifying the network structure and solving the

spatial inconsistency problem. Enhancement experiments on many real

underwater datasets demonstrate our model's advanced performance and

improved efficiency.

KEYWORDS

generative adversarial networks, efficiency, spatial inconsistency, underwater image
enhancement, lightweight
1 Introduction

In recent years, underwater robots such as remotely operated vehicles (ROVs) have

been widely used in important tasks such as deep-sea exploration (Whitcomb et al.,

2000), marine species migration, coral reef monitoring (Shkurti et al., 2012) and the

salvage of sunken ships. ROVs use large-size (e.g., 960p (1280 × 960) (Goodman, 2003)
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underwater vision data to perform the above engineering tasks

(Jenkyns et al., 2015). However, the absorption and scattering of

underwater light cause problems such as low contrast, color

deviation, and blurred details, seriously affecting the

performance of further vision tasks such as exploration,

intelligent analysis or subsea operations. Although there has

been some progress in the study of underwater image

enhancement (Fabbri et al., 2018; Islam et al., 2020; Naik

et al., 2021), these models can only process small-size (e.g.

256×256) images in real time, so designing a practical

underwater enhancement model for real-time large-size

underwater image processing is still challenging.

Some early underwater image enhancement approaches,

such as CLAHE (Pizer et al., 1990), can provide a fast and

real-time solution. However, these approaches always suffer

from heavy color distortion and noise caused by scattering and

absorption (Lu et al., 2017). Due to the success of deep learning,

data-driven approaches provide a potential solution for

underwater image enhancement (Li et al., 2020; Naik et al.,

2021). As one of the most popular areas of deep learning, GAN-

based image-to-image (I2I) methods provide a general

framework for underwater image enhancement (Islam et al.,

2020). However, most I2I-based methods suffer from the

contradiction between image quality and processing speed,

especially when the input image is large. A larger input image

always leads to larger feature maps and greater computational

complexity. Some researchers have indicated that the model

parameters and processing time could be reduced by using

knowledge distillation (Ren et al., 2021). However, for

underwater image enhancement tasks, reducing channels and

layers is more likely to cause color shifting and distortion (Guo

et al., 2019; Han et al., 2020; Zhuang, 2021). Simultaneously

improving underwater image quality and translation efficiency is

challenging. zhang2022underwater.

To alleviate this problem, FUnIE-GAN is used for upsampling

and downsampling to reduce the feature map size and speed up the

enhancement process. However, the channel efficiency is not

considered in FUnIE-GAN, which makes this approach

insufficient for handling the real-time large-size underwater

enhancement task. Even a low-cost underwater camera can

provide a large-size video flow (e.g., 720p, 960p or 1080p). These

deep learning-based models are unable to be deployed on ROVs

due to their high computation costs, which hinder their further

applications. In ShuffleNetv2 (Ma et al., 2018), when the input

channels are equal to the output channels, the memory access cost

(MAC) can be minimized to improve the model inference speed.

Inspired by the “equal channel strategy” proposed in ShuffleNetv2,

we propose an equal upsampling block (EUB) and equal

downsampling block (EDB) to build a more efficient underwater

image enhancement model.

It has been shown that many GAN-based models can improve

the perceptual quality of underwater images as well as their contrast

and color saturation (Han et al., 2020; Islam et al., 2020). However,
Frontiers in Marine Science 02
GAN-based models can also generate spatially inconsistent styles

and introduce artifacts (Li et al., 2019; Wang et al., 2021; Yang et al.,

2021b). Based on experiments, we found that a lightweight GAN-

based model is more likely to lead to spatial inconsistency due to its

limited layer channels. To alleviate this problem without excessively

increasing the parameters, we include residual channel attention

blocks (RCABs).

To improve the efficiency of the model while maintaining

the quality of the enhanced images, we propose an end-to-end,

fast and efficient framework for large-size underwater

enhancement tasks. Our generator is a lightweight encoder

and decoder network with equal upsampling blocks (EUBs)

and equal downsampling blocks (EDBs). In addition, we

introduce a lightweight RCAB in the generator to solve the

problem of spatial inconsistency, further improving the visual

quality of the enhanced images. Our contributions are

summarized as follows:
• We propose an efficient underwater image enhancement

model based on a generative adversarial network,

namely, FSpiral-GAN, which can handle a 960p

enhanced underwater image task at a running speed of

40 FPS with a GPU (Figure 1).

• We propose an equal upsampling block (EUB) and equal

downsampl ing block (EDB) to improve the

computational efficiency so that a real-time large-size

underwater image enhancement task can be handled by

minimizing the MAC.

• We propose a novel architecture that includes RCABs

and follows the U-Net design principles in the field of

underwater image enhancement. Experimental results

show that our architecture can effectively solve the

problem of spatial inconsistency, and the color

transition of images generated by the proposed model

is more continuous, without obvious boundaries.

• We provide qualitative and quantitative comparisons

with other advanced methods on real underwater

datasets. Experimental results prove that the proposed

model has fewer floating-point operations (FLOPs) and

faster image processing speed than state-of-the-art

models while maintaining generated images with good

visual quality.
2 Related work

2.1 Traditional underwater image
enhancement methods

Traditional underwater image processing methods can be

divided into model-free enhancement methods and physical

model-based restoration methods.
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Model-free methods do not consider the degradation

principle of underwater imaging and improve the sharpness of

the image by adjusting its pixel value. Ancuti et al. (Ancuti et al.,

2012) proposed an algorithm based on a fusion strategy that

enhances underwater images and videos by using multiscale

fusion that combines contrast-enhanced images and color-

corrected images. In addition, many researchers have focused

on retinex-based methods to improve the quality of underwater

images. Fu et al. (Fu et al., 2014) proposed a retinex-based

underwater image enhancement algorithm, which includes color

correction, layer decomposition, and contrast enhancement. By

using bilateral and trilateral filtering in the three channels of an

image in the CIELABcolor space, Zhang et al. (Zhang et al.,

2017) proposed a retinex-based algorithm to enhance the image.

Lu et al. (Lu et al., 2016) enhanced underwater optical images

using weighted guided triangular filtering and artificial lighting

correction. Zhuang et al. (Zhuang et al., 2021) proposed a

Bayesian retinex-based algorithm, which enhances underwater

images through multistep priors of reflection and illumination.

Most model-free methods are fast but can suffer from

overenhancement, color distortion, and color shifting (Lu

et al., 2017).

Physical model-based underwater enhancement methods

need to estimate the parameters of the underwater imaging

model and reconstruct a high-quality image through the inverse

degradation process, in which background light and the

transmission map need to be estimated. Carlevaris-Bianco et al.

(Carlevaris-Bianco et al., 2010) proposed a prior method to

estimate the depth of the scene using the attenuation difference

between the three color channels of the underwater image to

eliminate the influence of underwater haze. Inspired by the image

haze removal algorithm using a dark channel prior (He et al.,

2010), researchers applied the dark channel prior theory to

underwater image processing. By introducing scene depth into

the dark channel prior theory and atmospheric scattering model,

Cosman (Peng and Cosman, 2017) proposed a scene depth

estimation method based on image blur and light absorption for
Frontiers in Marine Science 03
underwater image restoration. To improve underwater visual

quality, Li et al. (Li et al., 2017) proposed an underwater image

dehazing algorithm based on the propagation characteristics of

light in water and a learning strategy to estimate the transmission

map. It is still challenging to restore the color of images containing

different underwater scenes with a single model. Akkaynak et al.

(Akkaynak and Treibitz, 2019) proved that because the physical

model-based underwater image restoration models generally use

the atmospheric imaging model and proposed a more accurate

physical model Sea-thru. However, the scene depth and optical

parameters of underwater scenes are not always available (Islam

et al., 2020).
2.2 Data driven-based
enhancement methods

Recently, GANs and CNNs have demonstrated powerful

capabilities in various image-to-image translation tasks,

including image denoising, dehazing, and superresolution

(Zhang et al., 2018; Guo et al., 2020; Shao et al., 2020; Wang

et al., 2020). Fabbri et al. (Fabbri et al., 2018) first used the

image-to-image translation model CycleGAN (Zhu et al., 2017)

to generate underwater images and then used the paired data to

train an underwater GAN (UGAN). The UGAN architecture is

similar to that of U-Net tep2015U and consists of an encoder,

decoder, and skip connections. Instead of relying only on the

final output feature maps of the encoder to learn all the

information of the input image, the spatial information

generated by the encoder are retain using this structure. Li

et al. (Li et al., 2019) proposed a gated fusion network

architecture called WaterNet, which uses images generated by

three enhancement methods to help the network learn the most

significant features of the input image. The training datasets for

WaterNet (Li et al., 2019) contain a variety of different

underwater scenes, effectively improving the adaptability of the

network. Han et al. (Han et al., 2020) also formulated the
A B

FIGURE 1

(A) Raw underwater image at 960p resolution (1280 × 960), (B) enhanced underwater image generated by our model at a running speed of 40 FPS.
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underwater image enhancement task as an application in image

translation and proposed Spiral-GAN, which is a novel spiral

generative adversarial framework to alleviate the problem of

poor generalization performance. To solve the problems of color

casts and low contrast caused by wavelength and distance, Li

et al. (Li et al., 2021) proposed an underwater image

enhancement network that integrates medium transmission-

guided and multicolor space. Although these models can

improve the visual quality of distorted images, they have high

storage requirements and are computationally expensive, which

creates a bottleneck problem when real-time underwater

exploration equipment is deployed (Naik et al., 2021).

To promote the practical application of deep learning in

underwater image enhancement tasks, researchers have focused

on designing efficient neural networks. Islam et al. (Islam et al.,

2020) considered the nonlinear mapping between distorted

underwater images and enhanced underwater images as an

example of an application in image-to-image translation tasks

and proposed FUnIE-GAN, which uses a simpler generator

structure with fewer parameters to achieve fast inference on

256×256 images. Chen et al. (Chen et al., 2019) proposed a

single-shot network that can restore the quality of underwater

images with higher computational efficiency. Li et al. (Li et al.,

2020) proposed a lightweight underwater image and video

enhancement model called UWCNN. Since the entire network

structure contains only ten convolutional layers, fast and

effective training and inference processes can be conducted.

Naik et al. (Naik et al., 2021) proposed a shallow neural

network architecture to make underwater real-time image

enhancement tasks feasible. Yang et al. (Yang et al., 2021b)

proposed a lightweight network based on an adaptive feature

fusion module and residual module, which can effectively reduce

the number of parameters. The aim of the above methods (Chen

et al., 2019; Islam et al., 2020; Naik et al., 2021) was to design a

lightweight network with acceptable recovery performance.

Although these lightweight networks have some effect on

improving the speed of the model, they ignore the effect of

channel settings on inference speed, and they cannot handle

real-time large-size underwater image enhancement tasks. In this

paper, to alleviate this problem, we consider the underwater

image enhancement task as an application in image translation
Frontiers in Marine Science 04
and use the “equal channel strategy” to process large-size

underwater images in real time.
3 Proposed model

There is always a trade-off between speed and visual quality

in the field of image enhancement. In this paper, we develop a

fast and efficient model called FSpiral-GAN that can greatly

accelerate the processing speed for large-size images and

maintain a high quality of the enhanced images. Our model,

which is based on a generative adversarial framework, has one

generator and N discriminators following the spiral strategy of

Spiral-GAN (Han et al., 2020). To improve the efficiency of the

model and maintain good quality in the generated images, we

design a lightweight generator structure by using the encoder

and decoder structure with equal upsampling blocks (EUBs),

equal downsampling blocks (EDBs) and RCABs. We also

introduce RCABs to alleviate the spatial inconsistency problem

that always occurs in the field of underwater image enhancement

with GAN-based models (Yang et al., 2021b).
3.1 Network architecture

The overall structure of our model is shown in Figure 2. We

follow the training setup of UGAN (Fabbri et al., 2018) and

Sprial-GAN (Han et al., 2020) to enhance large-size images. To

stabilize the adversarial training process and reduce the impact

of overfitting, we take advantage of our previous work, Spiral-

GAN (Han et al., 2020), and follow the spiral strategy to train the

proposed generator and discriminators. Our model has one

generator and N discriminators, where N is the number of

spiral loops. In addition, these N discriminators are

independent of each other without sharing weights. In the ith
spiral loop, the output of the generator in the previous loop (the

(i-1)th loop) is used as the input to the current loop. The

generator G attempt to fool the discriminator Di (i = 1,…,N)

by making the generated image xi look more like the true image

y, and the discriminator Di attempts to learn to distinguish

between the true image and the generated image. The structure
FIGURE 2

The overall structure of our model.
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of our discriminator is the same as that described for Spiral-

GAN (Han et al., 2020). Our discriminator is an extension of

PatchGAN (Isola et al., 2017), which can output a true-false

matrix instead of a single value. Since there is no further need

for discriminators in the test phase, we focus solely on

the improvement of the generator while leaving the

discriminators unchanged.

The detailed structure of our generator is shown in Figure 3,

which follows the principles of U-Net (Ronneberger et al., 2015).

Our generator has an encoder-decoder structure composed of a

number of equal upsampling blocks (EUBs), equal

downsampling blocks (EDBs) and RCABs with skip

connections. When completing experiments, we found that the

upsampling and downsampling operations in encoders and

decoders can introduce more parameters [49], but these

operations have more advantages when dealing with large-size

images. Please refer to Section 5.4 for more detail.

Enlightened by this point, we design our encoder and decoder

structure with equal upsampling blocks (EUBs) and equal

downsampling blocks (EDBs) to handle a large-size underwater

image processing task. Specifically, to avoid quality degradation

caused by the change in generator structure, we directly use the

upsampling and downsampling blocks of Spiral-GAN (Han et al.,

2020). In ShuffleNetv2 (Ma et al., 2018), the MAC required to

access the intermediate feature maps occupies a large part of the

inference speed in the convolutional layers and is a key factor in

consumption. It was proposed that minimizing MAC with equal

channel width could improve the models inference speed. The

influence of MAC on the network inference speed is not

considered for the generator in Spiral-GAN. The input channels

of the convolutional layers are not equal to the output channels in

the upsampling and downsampling blocks. Therefore, inspired by

this conclusion, we make the input channels and the output

channels equal in the downsampling and upsampling blocks to

design an efficient generator. We refer to these downsampling and

upsampling blocks with equal channels as equal downsampling

blocks (EDBs) and equal upsampling blocks (EUBs), respectively.

Please note that the skip connection will concatenate the output

feature maps of the encoder and decoder in the channel

dimension, so the number of input channels of the
Frontiers in Marine Science 05
deconvolution layer in an EUB will inevitably change. With

each skip connection, the input channels will further increase.

To keep the total number of channels in the model equal,

regardless of the input channels of the deconvolution layer in

an EUB, we redesign the generator architecture to force the output

channels of the deconvolution layer to be 16. The details of our

generator can be found in Figure 3. The width of the line

represents the number of input and output feature maps per

function block, where k4n16s2 denotes a convolutional layer with

4×4 filters,16 convolution kernels and a stride of 2.

Generated images from GAN-based models for underwater

image enhancement often have spatially inconsistent styles

(Yang et al., 2021b), which reduces the visual quality of the

generated image. To improve the quality of the generated

images, we introduce RCAB into a generator that follows the

U-Net design principles. We carefully study how the location

and the number of RCABs affect the results and propose a

configuration with the best underwater enhancement

performance. Compared with the RCAB in the encoder, the

RCAB in the decoder can learn the input of the previous layer

and the input of the skip connections to reconstruct the

enhanced underwater image. The feature map information

that can be learned is richer, which is beneficial for RCAB

when extracting important features. The size of the output

feature maps of the deconvolution layer is twice its original

size. To make the model have a faster inference speed, we place

RCABs before each deconvolutional layer in the four EUBs in

the decoder. This combination can effectively solve the spatial

inconsistency phenomenon by allowing the color transitions of

the enhanced images to be more continuous. An RCAB is a

functional block that integrates channel attention (CA) into a

residual block (Zhang et al., 2018). Through the experiments,

we found that the lack of CA can lead to undersaturation. A full

RCAB can alleviate the issue of spatial inconsistency. The

structure of the RCAB is shown in Figure 4, and we can see

the parameter settings of the convolutional layers in the RCAB.

If the size of the input of the RCAB is H×W×C, H denotes the

height, W denotes the width, and C denotes the number of

feature maps, where k3nCs1 denotes a convolution layer with

3×3 filters, C convolution kernels and a stride of 1. In the
FIGURE 3

The architecture of the generator.
frontiersin.org

https://doi.org/10.3389/fmars.2022.964600
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guan et al. 10.3389/fmars.2022.964600
RCAB, the number of input feature maps is equal to the

number of output feature maps. We show that some images

exhibit spatial inconsistency with undesirable artifacts in

Figure 5. From Figure 5E, we can see that when RCABs are

not introduced into the proposed model (w/o RCAB), there are

obvious edges and artifacts in the water portion of the

enhanced images. This phenomenon also exists in the

enhanced images of other GAN-based models, such as

UGAN-P, FUnIE-GAN, and Spiral-GAN (Figures 5B–D).

When we introduced RCABs into the proposed model, the

color of the image after RCAB processing, as shown in

Figure 5F, is more continuous and realistic, without obvious

boundaries. This demonstrates the superiority of RCAB in

dealing with the spatial inconsistency problem. We also

consider the success of UResNet [26] by adding a batch

norm (BN) to the ResBlock modules in the field of

superresolution to improve the visual quality of the images.

We add a BN layer after the first and second convolutional
Frontiers in Marine Science 06
layers of each RCAB to increase the contrast of the generated

image. Please note that although each RCAB incurs additional

computational cost, the experimental results show that 4

RCABs only slightly affect the processing speed. Please refer

to Section 5.3 for more details.
3.2 Objective

Generative adversarial networks (GANs) contain at least one

generator G and discriminator D. A typical conditional

generator (Isola et al., 2017) attempts to fool the discriminator

by learning the mapping of the source domain to the target

domain to make the generated image look more realistic. Let x

denote the underwater image and y denote the ground truth

image without distortion. G attempts to learn the mapping from

x to y. The loss function of a standard conditional GAN can be

represented by

min  max  
G,D

Ex,y∼pdata x,yð Þ log  D x, yð Þ½ �+

Ex∼pdata x,yð Þ log  (1 − D x,G xð Þð Þ½ Þ�
(1)

where pdata (x,y) represents the joint distribution of x and y.

The L2 loss computes the L2 distance between the generated

image and ground truth. The L2 loss amplifies the gap between

the larger error and the smaller error and will make the network

focus on distorted colors. To restore the distortion color, we

adopt the L2 loss function:

LL2 Gð Þ = Ex,y∼pdata x,yð Þ jj y − G xð Þ jj2½ � (2)

Due to the absorption and scattering of light under water

when collecting images from the deep ocean, the camera is

equipped with lighting equipment, and the collected datasets are
A B C D E F

FIGURE 5

The phenomenon of spatially inconsistent styles (w/o RCAB indicates that the proposed model does not use RCAB). From left to right, (A) shows
the raw underwater images, (B-F) are the results of UGAN-P (Fabbri et al., 2018), FUnIE-GAN (Islam et al., 2020), Spiral-GAN (Han et al., 2020),
w/o RCAB and the proposed model, respectively.
FIGURE 4

The structure of the residual channel attention block (RCAB).
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affected by light, leading to overexposure problems. To remove

this effect, we use the angular loss (Sidorov, 2020). The angular

loss calculates the angular distance of the generated image and

the ground truth image in the RGB color space, stabilizes the

training process, and prevents the generated image from

undergoing color distortion. The function can be written as

follows:

Langular Gð Þ = Ex,y∼pdata x,yð Þ ∠ y,G xð Þð Þ½ � (3)

To alleviate the lack of diversity in the underwater paired

data generated by CycleGAN [54], Spiral-GAN introduces a

spiral strategy. Following the spiral strategy in Spiral-GAN, the

above three loss functions can be expressed as:

min  max  
G,D

Lspiral _ cGAN G,Dð Þ = Ex,y∼pdata x,yð Þ log  D x, yð Þ½ �+

o
N
Ex∼pdata x,yð Þ½log  (1 − D(x,G (…G(

|fflfflfflffl{zfflfflfflffl}

n

x)…)
|{z}

n

))� (4)

Lspiral _ L2 Gð Þ =o
N
Ex,y∼pdata x,yð Þ½jj y − G (…G(

|fflfflfflffl{zfflfflfflffl}

n

x)…)
|{z}

n

jj2� (5)

Lspiral _ angular Gð Þ =
o
N

Ex,y∼pdata x,yð Þ½∠ (y,G (…G(
|fflfflfflffl{zfflfflfflffl}

n

x)…)
|{z}

n

)� (6)

where N is the number of spiral loops. x and y represent the

input image and the corresponding ground truth image,

respectively. Lspiral_cGAN, Lspiral_L2 and Lspiral_angular represent the

conditional GAN loss, L2 loss and angular loss after applying the

spiral strategy, respectively. G (…G(
|fflfflfflffl{zfflfflfflffl}

n

x)…)
|{z}

n

ndicates the generated

images of generator G in the n spiral loop. The final objective

function of our proposed FSpiral-GAN is as follows:

L = min
G

 max
D

 Lspiral _ cGAN G,Dð Þ+

l1Lspiral _ L2 Gð Þ + l2Lspiral _ angular Gð Þ
(7)

where L1 and L2 are the weights of Lspiral_L2 and

Lspiral_angular, respectively.
4 Experiments

4.1 Underwater datasets

4.1.1 EUVP Dataset
The EUVP dataset is a large dataset collected by FUnIE-

GAN researchers (Islam et al., 2020). It includes more than 12K

paired images and 8K unpaired images of good and poor visual

quality. The underwater images were taken during experiments

and explorations under different underwater scenarios and water

quality conditions. These images contain a variety of water

quality types and scenes. We randomly selected 4129 images

for our model testing.
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4.1.2 UIEB dataset
The UIEB Dataset (Li et al., 2019) includes images of

underwater scenes taken by Li et al. and images collected from

the internet. It contains images with varying degrees of

distortion and complex scenes, including coral and marine life.

We selected 890 images with reference images for testing, and all

images were resized to 768×512. Please note that we highlight

the best scores in bold type in Tables 1–10.

4.1.3 RUIE dataset
The RUIE Dataset (Liu et al., 2020) contains a large number

of underwater images divided into an underwater image quality

set (UIQS), underwater color case set (UCCS) and underwater

higher-level task-driven set (UHTS) due to different evaluation

objectives. The UIQS is used to evaluate the ability of underwater

image enhancement algorithms to improve image quality. The

UCCS is intended to test the ability of the algorithms to correct

the color cast. The UHTS is used to test the ability of algorithms

to improve visual perception. We tested our model on the UCCS

of the RUIE dataset, and all images were resized to 512×512.

4.1.4 D3 dataset
The D3 dataset (Akkaynak and Treibitz, 2019) contains 68

images taken from various angles of a single reef scene along

with corresponding depth maps. We selected all images for our

model testing, and all images were resized to 7968×5312.
4.2 Evaluation metrics

We use the peak signal-to-noise ratio (PSNR) and structural

similarity index measure (SSIM) (Hore and Ziou, 2010) to assess

the quality of the generated images. The PSNR and SSIM are two

full-reference metrics used to measure the reconstruction quality

and similarity of the reference images. We also use the full

reference metric patch-based contrast quality index (PCQI)

(Wang et al., 2015) to assess the quality of images with contrast

changes. The closer the contrast of the generated image is to that

of the reference image, the higher the PCQI score.

We use UIQM (Panetta et al., 2015) to evaluate underwater

image quality, which is made up of the underwater colorfulness

measure (UICM), underwater image sharpness measure (UISM)

and underwater image contrast measure (UIConM). The UIQM

metrics can be written as follows:

UIQM = c1*UICM + c2*UISM + c3*UIConM (8)

According to the original work, we set the three parameters as

c1 = 0.0282, c2 = 0.2953, and c3 = 3.5753. We use underwater color

image quality evaluation (UCIQE) (Yang and Sowmya, 2015),

which consists of a linear combination of color intensity,

saturation, and contrast, to evaluate the degree of low contrast,

blur, and color casts in underwater images. We also use a metric
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TABLE 1 Quantitative evaluation on the UIEB dataset.

Method CLAHE OMGD FUnIE-GAN WaterNet UWCNN Shallow-UWnet Spiral-GAN Ours

SSIM 0.8459 0.8002 0.7481 0.6902 0.6977 0.8198 0.8435 0.8450

PSNR 18.58 18.51 16.91 15.06 14.61 18.18 19.02 19.16

PCQI 0.9783 0.6366 0.7263 0.6027 0.6017 0.6693 0.8440 0.8226
F
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ne Science
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 frontie
The bold indicates the best scores.
TABLE 2 Quantitative evaluation on the UCCS subset of the RUIE dataset.

Method CLAHE OMGD UGAN-P FUnIE-GAN WaterNet UWCNN Shallow-UWnet Spiral-GAN Ours

UISM 6.521 6.749 6.611 6.739 6.623 6.606 6.703 6.544 6.473

UICM 1.791 2.917 1.905 1.131 2.955 0.864 0.742 2.892 3.336

UIConM 0.743 0.681 0.699 0.603 0.626 0.580 0.512 0.724 0.807

UIQM 4.631 4.511 4.498 4.179 4.277 4.050 3.830 4.602 4.892

UCIQE 0.493 0.5181 0.547 0.4957 0.4999 0.4579 0.4397 0.6137 0.6148

CCF 20.14 14.01 18.85 14.51 12.68 12.24 11.83 27.64 26.43
The bold indicates the best scores.
TABLE 3 Quantitative evaluation on the EUVP dataset.

Method CLAHE OMGD UGAN-P FUnIE-GAN WaterNet UWCNN Shallow-UWnet Spiral-GAN Ours

UISM 7.191 6.968 6.827 7.128 6.984 7.139 7.298 6.873 6.864

UICM 1.405 2.354 2.318 0.677 4.335 1.219 0.889 3.438 4.370

UIConM 0.542 0.560 0.608 0.439 0.531 0.473 0.354 0.767 0.852

UIQM 4.101 4.125 4.255 3.693 4.083 3.834 3.446 4.868 5.146

UCIQE 0.440 0.4857 0.530 0.4313 0.4812 0.4356 0.3975 0.6166 0.6213

CCF 13.68 11.46 14.33 10.06 9.75 8.90 9.30 22.87 21.08
The bold indicates the best scores.
TABLE 4 Frames per second (FPS) of different methods on the underwater video.

Method CLAHE OMGD FUnIE-GAN WaterNet UWCNN Shallow-UWnet Spiral-GAN Ours

1280×960 137.7 20.4 13.1 1.5 10.6 7.1 22.4 40.0

256×256 820.7 185.0 36.1 15.2 267.7 68.4 222.8 246.3
The bold indicates the best scores.
TABLE 5 Parameters and FLOPs of different methods on the 1280×960 underwater video.

Method CLAHE OMGD FUnIE-GAN WaterNet UWCNN Shallow-UWnet Spiral-GAN Ours

Parameters – 137347 4215843 1090668 39972 219456 4993539 133987

FLOPs(G) – 53 233 2679 98 406 138 20
The bold indicates the best scores.
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TABLE 6 Quantitative evaluation on 7968×5312 images.

Methods FPS UCIQE UIQM

Fusion 0.0061 0.653 4.630

Sea-thru 0.0003 0.674 4.783

Ours 0.9118 0.667 4.690
F
rontiers in Marine Science
 09
The bold indicates the best scores.
TABLE 7 The result of mutual information.

Method CLAHE OMGD FUnIE-GAN WaterNet UWCNN SUWnet Spiral-GAN Ours

score 0.547 0.6416 0.623 0.691 0.701 0.695 0.644 0.722
frontie
The bold indicates the best scores.
TABLE 8 PCQI, SSIM, PSNR, and FPS comparison on the UIEB dataset using different RCAB numbers.

Method PCQI SSIM PSNR FPS

N=3 0.8107 0.844 18.961 41

N=4(Ours) 0.8226 0.845 19.164 40

N=5 0.7942 0.843 18.972 32
The bold indicates the best scores.
TABLE 9 Comparison of RCAB and BN using the UIEB dataset. Method w/o RCAB w/o CA w/o BN.

Method w/o RCAB w/o CA w/o BN ours

PCQI 0.8203 0.8062 0.8203 0.8226

SSIM 0.837 0.839 0.841 0.845

PSNR 18.99 18.13 19.12 19.16

FPS 41.7 40.4 40.7 40.0
The bold indicates the best scores.
TABLE 10 Comparison of upsampling and downsampling operations during underwater video processing.

Input size equal channel upsampling and downsampling Parameters FLOPs(G) FPS(img/s)

256 × 256
✕ ✓

3.303M 2.806 242

1280 × 960 3.303M 52.61 32.24

256 × 256
✓ ✕

0.110M 6.794 95.12

1280 × 960 0.110M 127.4 4.96

256 × 256
✓ ✓

0.134M 1.086 246.3

1280 × 960 0.134M 20.37 40.32
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based on imaging analysis of underwater absorption and scattering

properties, called CCF (Wang et al., 2018), which effectively

quantifies absorption and scattering-induced color shifts

and blurring.

We consider FLOPs (He et al., 2016; Tan and Le, 2019) and

frames per second (FPS) to evaluate the efficiency of our model.
4.3 Implementation details

In our experiment, we use a training dataset from UGAN

(Fabbri et al., 2018), with a total of 6128 pairs of images. The size

of the input image is 256×256. We use the ADAM optimizer

with a learning rate of 1e-4. The batch size is set to 32, and spiral

loops N=10, L1 = 100 and L2 = 0.1 according to the settings of

Spiral-GAN. The reduction ratio r in the channel attention is set

to 1. We trained our model on the PyTorch framework for 100

epochs on a GeForce GTX 1080 Ti.
4.4 Comparative experiments with
other methods

To evaluate the performance of our model, we select 10

state-of-the-art methods: CLAHE (Pizer et al., 1990), Fusion
Frontiers in Marine Science 10
(Ancuti et al., 2012) and Sea-thru (Akkaynak and Treibitz,

2019), three traditional methods; OMGD (Ren et al., 2021), a

fast image translation method; and UGAN-P (Fabbri et al.,

2018), FunIE-GAN (Islam et al., 2020), WaterNet (Li et al.,

2019), UWCNN (Li et al., 2020), Shallow-UWnet (Naik et al.,

2021), and Spiral-GAN (Han et al., 2020), deep learning-based

underwater image enhancement methods.

4.4.1 Experiments with ground truth
The UIEB dataset is a manually collected dataset, in which

the reference image is the best image selected by the volunteers

from all underwater enhancement experiments. Figure 6 shows a

qualitative comparison of the results between the different

methods on the UIEB dataset. As shown in Figures 6B–D,

image contrast is increased when using CLAHE, but the color

cast is not corrected. For OMGD, a limited amount of scatter is

removed, the contrast is only slightly improved, and an

additional blue cast is introduced. When using FUnIE-GAN,

the color distortion is corrected well and the contrast of the

image is slightly improved. However, when enhancing an image

that contains green water, additional colors are introduced, such

as earthen yellow (1st and 4th and 6th rows); in addition, minimal

elimination of the blurring caused by the light scattering of tiny

particles is achieved (4th and 6th rows). As shown in Figure 6E, a

new grayish-blue hue (1st row) is introduced by WaterNet, and
A B C D E F G H I J

FIGURE 6

Visual comparisons on the UIEB dataset. From left to right, (A) shows the raw underwater images, (B–I) are the results of CLAHE (Pizer et al.,
1990), OMGD (Ren et al., 2021), FUnIE-GAN (Islam et al., 2020), WaterNet (Li et al., 2019), UWCNN (Li et al., 2020), Shallow-UWnet (Naik et al.,
2021), Spiral-GAN (Han et al., 2020) and the proposed model, respectively, and (J) shows the reference images.
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minimal changes are observed for the removal of scattering and

improvement of contrast. As shown in Figure 6F, images

enhanced using UWCNN show minimal improvements in

contrast, are not deblurred and greenish tones are not ideally

enhanced. For Shallow-UWnet, the color cast is simply

corrected, the contrast is not improved, and the scattering is

not resolved, as shown in Figure 6G. As shown in Figures 6H, I,

the proposed model and Spiral-GAN are effective in enhancing

contrast, removing blur, and correcting color cast, but when

using Spiral-GAN, a slight red deviation tends to be generated in

the image (3rd and 4th rows). We also used PSNR and SSIM for

quantitative analysis, and the results are shown in Table 1. PSNR

represents the degree of global pixel difference, so the color of the

enhanced image has a greater effect on PSNR. We achieved the

highest PSNR and PCQI value using our model. This result

verifies that the enhanced image from our model is closer to the

reference image in color and contrast.

4.4.2 Experiments without ground truth
The UCCS subset of the RUIE dataset is a dataset that

evaluates the ability to correct the distorted color of

enhancement models. This subset contains 100 images for

blue, green, and blue-green water types. The images in the

EUVP dataset have complex water types and underwater

scenes and have various camera angles. We use these images

to measure the performance in restoring the color and

generalization performance of the models.

The comparisons on the UCCS subset are shown in Figure 7.

For each type of water in Figure 7, we present two representative

images. The pictures from top to bottom are blue-green, bluish, and
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greenish tones. As shown in Figures 7B–G, the use of CLAHE and

OMGD have little effect on color restoration, and both methods

have difficulty removing scattering effects. UGAN-P, FUnIE-GAN,

and WaterNet can be used to restore color but only slightly

improve contrast and resolve the blurring caused by scattering.

The results from WaterNet have a gray tone. The visual results

from UWCNN are similar to those of WaterNet on the UIEB

dataset: the color cast is only slightly corrected, and the visibility is

only slightly improved. Shallow-UWnet has a certain effect on

restoring color, as shown in Figure 7H. As shown in Figures 7I, J,

the proposed model and Spiral-GAN can be used to remove blue

and green tones and improve contrast. Due to the lack of reference

images, we have to use the UIQM, UCIQE, and CCF, which have

no reference matrix, to measure the quality of the generated images.

In Table 2, we can see that our model outperforms other methods

on most quality metrics. We achieve the best UIQM results on the

UCCS subset using our model. A high UIQM value means that the

underwater images have high color saturation and contrast.

Figure 8 shows the comparison examples on the EUVP

dataset. As shown in Figures 8B–H, the use of CLAHE and

OMGD have little influence on the removal of the blurs caused

by scattering, and they have difficulty restoring color. UGAN-P,

FUnIE-GAN and UWCNN improve the image contrast, but

these methods are not good at correcting color casts while

handling images with green water types. WaterNet performs

the worst when handling images with blue water types (1st and

2nd rows). Shallow-UWnet does little to improve contrast and

remove scatter and only fades the color of the water in the

generated image. As shown in Figures 8I, J, both Spiral-GAN

and the proposed model can correct the color cast as well as the
A B C D E F G H I J

FIGURE 7

Visual comparisons on the UCCS subset of the RUIE dataset. From left to right, (A) shows the raw underwater images, (B–J) are the results of
CLAHE (Pizer et al., 1990), OMGD (Ren et al., 2021), UGAN-P (Fabbri et al., 2018), FUnIE-GAN (Islam et al., 2020), WaterNet (Li et al., 2019),
UWCNN (Li et al., 2020), Shallow-UWnet (Naik et al., 2021), Spiral-GAN (Han et al., 2020) and the proposed model, respectively.
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contrast of the images. We find that many GAN-based models,

such as the UGAN-P, FUnIE-GAN, and Spiral-GAN models, as

shown in Figures 8D, E and Figure 8I, generate images with

spatially inconsistent styles (1st row). In contrast, the color

transitions of images generated by the proposed model are

more continuous, without obvious boundaries, which proves

the effectiveness of the RCAB. In Table 3, we can see that the

images generated by the proposed model have the highest UIQM

and UCIQE, indicating that our method is most consistent with

human visual perception.
4.4.3 Experiments on underwater video

In this section, we validate our model on a real underwater

video to verify the running speed on the large-size and small-size

images. We download a diving video from YouTube. The size of

each frame in the video is 1280×960. We resize the video to

256×256 size and test the inference speed of different models on

the two video sizes. A comparison of the FPS results of different

methods on underwater video is shown in Table 4. Table 5 shows

the number of parameters and FLOPs when different models

process the 1280×960 videos. Because CLAHE is a traditional

method, the GPU version of CLAHE is not available. Three

inputs are generated for WaterNet by applying white balance

(WB), histogram equalization (HE), and gamma correction

(GC) to the input image. Since these three methods only have

code in MATLAB, we only consider the time to enter the neural

network when calculating the FPS.
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In Table 4, we can see that all fast underwater image

enhancement models are capable of processing 256×256 videos

in real time, but only the proposed model can process 1280×960

videos in real time because our model takes into account the effect

of MAC on the network inference speed. The subjective results of

the model processing 1280×960 video are shown in Figure 9. The

performance of all methods in different frames (1st to the 4th rows)

in the same scene are consistent, and there are no flicker artifacts.

As shown in Figure 9B, although the contrast can be significantly

improved when using CLAHE, color bias cannot be corrected. As

shown in Figure 9C, the degree of color cast intensified when

using OMGD. When using FUnIE-GAN and WaterNet, there is

little effect on removing scattering effects, but these methods can

restore color well, as shown in Figures 9D, E. The degree of color

cast is weaken using UWCNN and Shallow-UWnet, as shown in

Figures 9F, G. As shown in Figures 9H, I, both Spiral-GAN and

the proposed model increase contrast and improve visibility, but

Spiral-GANmakes the enhancement results spatially inconsistent,

which represents a discontinuous color transition. The proposed

model introduces RCAB to solve spatial inconsistency problems.

In Table 5, we can see that among the deep learning models, our

model has the fewest FLOPs for handling large-size images.

Compared with the baseline model Spiral-GAN, the proposed

model is compressed to 37.3× parameters, 6.9× FLOPs and

increased the FPS 1.8× when dealing with large-size images.

These results show that the enhancement effect of our model is

superior to that of Spiral-GAN while running nearly as fast as

Spiral-GAN.
A B C D E F G H I J

FIGURE 8

Visual comparisons on the EUVP dataset. From left to right, (A) shows the raw underwater images, (B–J) are the results of CLAHE (Pizer et al.,
1990), OMGD (Ren et al., 2021), UGAN-P (Fabbri et al., 2018), FUnIE-GAN (Islam et al., 2020), WaterNet (Li et al., 2019), UWCNN (Li et al., 2020),
Shallow-UWnet (Naik et al., 2021), Spiral-GAN (Han et al., 2020) and the proposed model, respectively.
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4.4.4 Experiments on D3 dataset
The Figure 10 shows the results of the comparison

experiment on the D3 dataset, the size of each image in the

dataset is 7968×5312. It can be seen from Figures 10B–D that all

three methods can effectively remove the color cast and improve

the contrast and color saturation of the images. As can be seen

from Table 6, The proposed model approximates the sea-thru

method on most of the evaluation metrics and has obvious speed

advantages in processing high-resolution images.
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4.5 Color accuracy test

Most underwater image enhancement methods can enhance

underwater image contrast while neglecting color correction. We

design an experiment to determine how close the enhanced color

is to the original color. Figure 11A shows the raw underwater

image, and Figure 11J represents the reference image. The results

are shown in Figures 11B–I. Due to the absorption and scattering

of light, the original color card has a color cast and low contrast
A B C D E F G H I

FIGURE 9

Visual comparisons of the 1280×960 frames in the underwater video. From left to right, (A) shows the raw underwater images, (B–I) are the
results of CLAHE (Pizer et al., 1990), OMGD (Ren et al., 2021), FUnIE-GAN (Islam et al., 2020), WaterNet (Li et al., 2019), UWCNN (Li et al., 2020),
Shallow-UWnet (Naik et al., 2021), Spiral-GAN (Han et al., 2020) and the proposed model, respectively.
A B C D

FIGURE 10

Visual comparisons on the 7968×5312 images in the D3 dataset. From left to right, (A) shows the raw underwater images, (B–D) are the results
of Fusion (Ancuti et al., 2012), Sea-thru (Akkaynak and Treibitz, 2019) and the proposed model, respectively.
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problems compared with the ground truth image. The images

enhanced by CLAHE, OMGD, and FUnIE-GAN still have serious

color casts. The WaterNet, Shallow-UWnet and UWCNN

methods can be used to remove blue color cast better, but these

methods have little effect on improving contrast. Both our model

and Spiral-GAN can be used to recover colors and improve

contrast and brightness. Compared to the Spiral-GAN model,

our model can be used to recover the blue sky better. This test

verifies that our model can be used to correct the distorted color

and enhance the image with a better perception effect.

To further demonstrate that the image generated by our

method is close to the reference image, we design an experiment

to calculate the MI (Kraskov et al., 2004) between the generated

image and the reference image. Mutual information is a

fundamental magnitude to measure the relationship between

random variables (Belghazi et al., 2018). MI can also be used to

measure the true correlations between variables (Kinney and Atwal,

2014). Please note that there is no pixelwise matching between the

raw image and the reference image. To minimize the effects of the

backgrounds, we crop only the color card part of the color bar in

the generated image and the reference image to calculate the MI,

and the red box part is the color card part of the color bar. The

experimental results are shown in Table 7. Our model has the

highest score, indicating that the generated image of our model has

the strongest correlation with the reference image.
5 Ablation study

In this section, we discuss the impact of different

configurations on performance, including the network width,

RCAB and BN and EUB and EDB ablation experiments.
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5.1 Network width

Generally, a network will perform better with more channels.

Here, we evaluate the influence of different feature numbers C in

EUB and EDB on network performance by choosing C=8, 16 and

32. The ablation results on the UIEB dataset are shown in Table 11

and Figure 12. As shown in Figure 12B, when the number of

channels is 8, the network cannot learn features well, and some

artifacts will appear, such as artifacts above the hat and water

ripples (shown in the red box). At the same time, some details are

missing in the enhanced image, and the SSIM values decrease.

When the channel number changes from 16 to 32, we observe a

small gain in the PCQI, PSNR, and SSIM indices with dramatic

decreases in running speed, as shown in Table 11. Considering the

balance of image quality and model speed, we use 16 as a default

value for the number of channels.
5.2 RCAB numbers

In this section, we verify that the model can achieve optimal

performance by introducing 4 RCABs. We test N ∈ {3,4,5} RCABs

in the generator. The experimental results are shown in Table 8 and

Figure 13. From Figure 13B, we can see that when the decoder has

only 3 RCABs, some generated images are reddish, such as the face

of the stone statue in the first row and the diver’s body in the second

row. When the decoder has 5 RCABs, the generated images have

obvious artifacts, such as under the sea in the second row and above

the box in the third row in Figure 13D. When the model has 4

RCABs, there are no artifacts or reddish color in the generated

images. As seen from Table 8, when the number of RCABs is 4, the

quality of the generated images of the model is significantly
A B C D E F G H I J

FIGURE 11

The visual results of the color accuracy test. From left to right, (A) shows the raw underwater images, (B–I) are the results of CLAHE (Pizer et al.,
1990), OMGD (Ren et al., 2021), FUnIE-GAN (Islam et al., 2020), WaterNet (Li et al., 2019), UWCNN (Li et al., 2020), Shallow-UWnet (Naik et al.,
2021), Spiral-GAN (Han et al., 2020) and the proposed model, respectively, and (J) shows the reference images.
TABLE 11 PCQI, SSIM, PSNR, and FPS comparison on the UIEB dataset using different network widths.

Method PCQI SSIM PSNR FPS

C=8 0.7909 0.839 19.28 55

C=16 0.8226 0.845 19.164 40

C=32 0.8402 0.854 19.462 25
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improved. Therefore, when the decoder includes 4 RCABs, the

model can obtain the best enhancement performance.
5.3 RCAB and BN layers

In this section, we verify the effect of RCABs and BN layers

in the proposed model. As a lightweight network, our model can

handle a large batch size of up to 32. Thus, a BN is a more

suitable solution for providing normalization for training data.

Practically, the BN layers work well when restoring underwater

image details and improving contrast (Liu et al., 2019). Our
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ablation experiments of RCAB, CA and BN on FSpiral-GAN are

shown in Figure 14 and Table 9. As shown in Figures 14B, E, an

RCAB can alleviate spatial inconsistency by allowing the color

transitions of enhanced images to be more consistent (1st and 2nd
rows), and the generated images tend to be more continuous

without obvious boundaries. After the image passes through the

BN layer, its color distribution is normalized, so our model with

an RCAB and BN tends to correct the reddish color deviation

and improve contrast. The enhancement results of the model

introducing BN and CA comprehensively improved PCQI,

SSIM, and PSNR scores. As shown in Table 9, an RCAB with

a BN or CA only slightly decreases the FPS.
A B C D

FIGURE 13

Visual comparisons with different RCAB numbers N in the generator on the UIEB dataset. From left to right, (A) shows the raw underwater
images, and (B–D) are the results of N = 3, N = 4(Ours) and N = 5, respectively.
A B C D

FIGURE 12

Visual comparisons with different network widths C in EDB and EUB on the UIEB dataset. From left to right, (A) shows the raw underwater
images, and (B–D) are the results of C = 8, C = 16 and C = 32, respectively.
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5.4 EUB and EDB

We design an experiment to explore how much the EUB

and EDB can change parameters, FLOPs and FPS on small-

size and large-size images, respectively. The experimental

results are shown in Table 10. When upsampling and

downsampling operations and equal channels are used

simultaneously in Table 10, we use EUB and EDB. In

Table 10, when the equal channel operation is used in

EUB and EDB, the model has 0.134M parameters. The

equal channel operations reduce approximately 3M

parameters compared to the model that does not introduce

equal channel operation, and it also significantly reduces

FLOPs, and increases FPS from 32 to 40 for large-size

images. Meanwhile , we find that the network with

upsampling and downsampling operations can also

speedup the network inference. Although upsampling and

downsampling operations increased approximately 0.24M

parameters, they can significantly decrease FLOPs and

increase the processing speed for both small-size and

large-s ize images . These resu l ts demonstra te that

upsampling and downsampling operations have more

advantages in dealing with large-size images and that the

operations of equal channels can make the generator

efficient and enable networks to deal with images larger

than 960 p (1280×960). Therefore, a network with EUB and

EDB is suitable for processing large-size images.
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5.5 Spiral loops

Figure15 shows the testperformanceof theproposedmodelwith

different spiral loops. The spiral strategy proposed in Spiral-GAN

(Han et al., 2020) is to learn more features of underwater images by

repeatedly learning the output of the previous loop, which improves

the visual quality of the generated images and the generalization

performance of the underwater image enhancement model. From

Figures 15B–F, we can see that with only two loops, the model can

remove the blue color cast well, but the resulting image has lower

contrast and color saturation. As the number of loops increases,

although the resulting image has higher contrast, color saturation,

and sharper details, the resulting image has a red color cast, as shown

in Figure 15E. As shown in Figure 15F, when the number of model

loops is set to 10, the red color cast is the resulting image has been

corrected and has visually pleasing contrast details.
6 Applications

To further explore the potential of our model for

underwater image feature extraction and matching, we first

perform a key point matching experiment with SIFT (Lowe,

2004) to verify the ability of our model to recover local features.

Figure 16 and Table 12 show that our model can greatly

increase performance when key point matching between two

underwater pictures compared with CLAHE.
A B C D E F

FIGURE 14

Visual comparisons of ablation experiments on RCAB and BN layers on UIEB datasets. Note: w/o RCAB indicates that the proposed model does
not use RCAB, w/o CA indicates that the proposed model uses RCAB and does not use CA, w/o BN indicates that the proposed model uses
RCAB and does not use BN. From left to right, (A) shows the raw underwater images, (B–E) are the results of w/o RCAB, w/o CA, w/o BN and
the proposed model, respectively, and (J) shows the reference images.
A B C D E F

FIGURE 15

Visual results with different spiral loops. From left to right, (A) shows the raw underwater images, and (B–F) are the results of second loops,
fourth loops, sixth loops, eighth loops and tenth loops (Ours), respectively.
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To further verify the application of our model in object

detection (Bhogale, 2020; Zhu et al., 2021), we use a pretrained

YOLOv3 (Redmon and Farhadi, 2018) model on the COCO

dataset as our detection model. Although many objects in the

underwater scene are not included in the COCO dataset,

YOLOv3 can be used to correctly detect humans with the

help of our model (Figure 17). We also conduct a Canny

(Canny, 1986)-based underwater object edge detection test.

Figure 18 shows that more edge features can be generated using

the image enhanced by our model than with the Canny

operator, indicating that our model is effective in restoring

edge features.
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7 Conclusion

In this paper, we propose an efficient lightweight underwater

image enhancement model for large-size underwater images.

Our generator is a lightweight encoder and decoder network

with RCABs, EUBs and EDBs. We analyze the advantages of

upsampling and downsampling operations when dealing with

large-size images and propose EUB and EDB to handle a real-

time large-size underwater image enhancement task. The EUB

and EDB follow the practical guidelines of ShuffleNetv2 for

efficient network design, and the input channels are equal to the

output channels of all convolutional layers in the EUB and EDB.
A B C

FIGURE 16

The visual results of keypoint matching. From left to right, (A) shows raw underwater images, and (B, C) are the results of CLAHE and the
proposed model, respectively.
A B C

FIGURE 17

Visual results of object detection. From left to right, (A) shows the raw underwater images, and (B, C) are the results of CLAHE and the proposed
model, respectively.
TABLE 12 The results of keypoint matching.

Method Original CLAHE Ours

picture1 29 269 1193

picture2 25 308 85
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In addition, we introduce a lightweight RCAB to solve the

problem of spatial inconsistency. The color transitions of the

images generated by the proposed model are more continuous,

without obvious boundaries. Qualitative and quantitative tests

show that our model is highly efficient and can handle a real-

time large-size underwater image processing task while

maintaining good quality in the enhanced images.

The proposed method can take into account the speed and

the quality of the generated image at the same time and can be

used as preprocessing for some vision-based tasks that have a

demand for high speed, such as SLAM (Yang et al., 2021a) or

object detection. We will leave these tasks for future work.
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