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The East/Japan Sea (ES) is regarded as a natural laboratory for predicting future

changes in the global Meridional Overturning Circulation (MOC) under

warming climates, as the ES MOC (EMOC) changes rapidly in comparison

with the global MOC. Specifically, intermediate and deep-water masses of the

ES are formed in its northern reaches via wind-driven subduction of surface

water, and convection from the surface to deep layers during the winter.

Accordingly, it is important to investigate the variation of winter sea surface

temperatures (SSTs) for characterizing and predicting the EMOC; however,

global SST products must be corrected and optimized for the ES, as they fail to

incorporate the local marginal sea conditions. Here, a warm bias in cold SST

was identified for three SST products, such as optimally interpolated sea

surface temperatures (OISSTs), microwave SSTs, and operational SST and sea

ice analysis products, suggesting the potential usefulness of a correction

method incorporating Argo float data. When comparing OISSTs with 5 m

temperature estimates from Argo float data during 2000–2020, under the

assumption that the mixed layer depth is deeper than 8 m, a nearly normalized

histogram of biases was produced, and the robust warm bias (mean = 0.9°C)

was detected in the range of relatively cold SSTs (-2°C to 10°C), yet no

significant bias in warm SSTs (> 10°C) was found. To minimize the warm bias

in cold SSTs, OISSTs were corrected with an inverse 4th-order polynomial

fitting method. Subsequently, the mean bias between the corrected SSTs and

top depth temperatures of Argo float data was significantly reduced to less than

0.1°C. Moreover, the warm bias of cold SSTs resulted in severe

underestimations of the outcropping area colder than 1°C over the northern

region, as well as the occurrence period of 1°C to 5°C SSTs in the north-

western ES. These results highlight the importance of local bias correction for

SST products, and it is expected that the newly suggested correction method

will improve model predictions of EMOC change by enhancing SST data quality

in the northern ES.
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Introduction

The East Sea (Japan Sea) (hereafter, ES) is a small marginal

sea located in the northwestern Pacific (Figure 1). It is semi-

enclosed by Korea, Russia, and Japan, and is composed of three

deep basins: Ulleung Basin (UB), Japan Basin (JB), and Yamato

Basin (YB; Figure 1A). The maximum depth of the deepest

basin, JB, is over 3,500 m; whereas the average water depth of the

ES is approximately 1,700 m. The ES is connected with the

Pacific through four straits shallower than 200 m: the Korea

Strait, Tsugaru Strait, Soya Strait, and the Tatarsky Strait

(Figure 1A). The Tsushima Warm Water finding from surface

to 200 m of the ES (Kim et al., 2004) flows into the ES via the

Korea Strait, while the surface waters (Han et al., 2016) (partly

including Tsushima Warm Water) primarily flow out to the

Pacific through the Tsugaru (~60%) and Soya straits (~40%; Han

et al., 2015). Accordingly, the water masses observed at depths

deeper than 200 m are only internally interacted in the ES (Kim

et al., 2001; Kang et al., 2003; Kim et al., 2004; Gamo, 2011;

Gamo et al., 2014; Yoon et al., 2018).

As a deep marginal sea, the ES has its own meridional

overturning circulation (MOC) composed of northward

penetrations of the Tsushima Warm Water from the Korea

Strait (above 200 m), and relatively colder and denser southward

streams of water masses formed in the northern ES (below

200 m) Talley et al., 2003; Kim et al., 2004; Postlethwaite et al.,

2005; Park and Lim, 2018). The timescale of the ES meridional

overturning circulation (EMOC) has been considered as shorter

than 100 yr (Kumamoto et al., 1998; Kim et al., 2001), and

according to the long-term hydrographic data, the EMOC has
Frontiers in Marine Science 02
changed dramatically over recent decades in comparison to that

of the global oceans (Kim et al., 2001; Kang et al., 2003; Yoon

et al., 2018). Thus, it is important to monitor changes in the

EMOC for characterizing and predicting future changes in

global MOCs in a warming world.

The southward streams of the EMOC mainly consist of the

East Sea Intermediate Water (ESIW), East Sea Central Water

(ESCW), and East Sea Bottom Water (ESBW; Kim et al., 2004;

Postlethwaite et al., 2005; Park and Lim, 2018). The ESIW, a

main component of the upper EMOC, is formed in the western

JB, where negative wind stress curl (clockwise) is strongly

developed over the winter period (Park and Lim, 2018). The

negative wind stress curl induces Ekman downwelling, mainly

driving the subduction of the ESIW from the surface to the

intermediate layer (Kim and Kim, 1999; Park and Lim, 2018).

The ESCW and ESBW are the main components of the lower

EMOC and are mainly produced in the northern part of

the central ES through open-ocean and shelf convections

during the winter, respectively (Talley et al., 2003; Yoon et al.,

2018). The winter ocean surface conditions, especially sea

surface temperatures (SSTs) in the northern ES, are important

parameters for identifying the responses of the EMOC to

climate change.

As there are many global SST products, their local biases

must be identified and corrected through comparisons with in-

situ observational ocean data (i.e., ships, Argo floats, and ocean

buoys). To reduce their biases, numerous efforts have been made

using in-situ observational data for developing computation

algorithms (Reynolds et al., 2002; Zhang et al., 2004; Reynolds

et al., 2007; Huang et al., 2013; Huang et al., 2015; Huang et al.,
BA

FIGURE 1

(A) Study region (red box) in the Northwestern Pacific. The black arrows indicate straits and their directions reflect schematic directions of
surface current. The inset indicates the study region where the black contour denotes 2000 m isobath: JB, Japan Basin; YB, Yamato Basin; and
UB, Ulleung Basin. (B) Station map shows locations of Argo float data from 2000 to 2020. The PGB and PC are abbreviations for the Peter the
Great Bay and Primorye Coast, respectively.
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2021). Such bias corrections have contributed to predicting

large-scale air-sea interaction processes in the Pacific and

Atlantic Oceans, such as El Niño-Southern Oscillation, and the

Intertropical Convergence Zone (Siongco et al., 2020; Lee et al.,

2022) however, biases of the reproduced SST products in the ES

are poorly understood and few bias correction methods for SST

in the ES have been suggested (Park et al., 2008; Park et al.,

2015). Although it has been shown that the long-term trends of

SST products in the ES are similar to those of ship-based data

(R2 = 0.67), this result was obtained in the UB (Lee and Park,

2019), where warm SSTs largely persist throughout the year.

Thus, in the present research, the focus is placed on evaluating

the bias of SST products in the ES via comparison with Argo float

data, especially for the long-term SST dataset, and deriving a bias

correction method for this regional product. The remainder of the

paper is organized as follows: In Section 2, the Argo float data and

SST products are introduced; In Section 3, biases of optimally

interpolated sea surface temperature (OISST) products in the ES

are identified, a bias correction method using Argo float data is

proposed, and the impact of the SST correction on winter

conditions in the northern ES is also investigated; Section 4

summarizes the results and suggests future works.
Data

Argo float data

Argo float data were used as the reference for correcting

biases of SST products in the ES (Figure 1B). Data quality of

Argo temperature and pressure has been improved by following

the delay-mode quality control, as suggested by the Argo data

management teams (Wong et al., 2014), but the parameters

employed for spike and inversion detection in Park and Kim

(2007). Note that all floats with truncation issues for any

negative surface pressure drift so called as Truncated Negative

Pressure Drift issue were excluded from this analysis. The

delayed mode quality control of temperature and pressure

(provided surface pressure information was available) was

conducted according to the Argo Data Management Team

technical report (Park and Lim, 2018).

Argo temperature data from August 1999 to December 2020

were utilized. To directly compare Argo data with SSTs,

temperatures at 5 m were estimated from Argo data (hereafter,

ARSST) under the assumption that the mixed layer depth was

deeper than 8 m. As the shallowest measurement from most

Argo floats in the ES was approximately 4 m, the ARSST was

estimated via linear interpolation if the top depth of the Argo

profile data was shallower than 5 m. Argo profile data whose top

depth was deeper than 8 m were excluded for this analysis.
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Notably, the primary findings of this research are insensitive to

this mixed layer assumption, as the focus is on the bias of cold

SST which appears mainly in winter (see Section 3). In the

winter, strong northwesterly winds > 5 m/s (winter monsoon)

normally blow from Russia to the ES, deepening the mixed layer

depth in the ES. The wind-driven mixing greatly reduces the

difference between bulk temperature and skin temperature.
Satellite SST products

To evaluate the biases of SST products in the ES, three SST

products were used in the present study. First was the daily

OISST (v.2), as provided by the National Oceanic and

Atmospheric Administration (Reynolds et al., 2007; Huang

et al., 2021). OISST data spans from September 1981 to

December 2020 and has a 0.25° spatial resolution. The second

was the daily optimally interpolated products of microwave-

infrared SST (MWSST) provided by Remote Sensing Systems

(Reynolds and Smith, 1994). MWSST has a data period from

June 2002 to August 2017, and a 9 km spatial resolution. Third,

the daily Operational SST and Sea Ice Analysis (OSTIA)

provided by the United Kingdom Met Office (Stark et al.,

2007) spans from April 2006 to December 2020 and has a

0.053° spatial resolution.

Among the three SST products, OISST covers the longest

period, and is thus more suitable for identifying long-term

variation of surface conditions in the ES; therefore, this

product was mostly used to investigate SST biases in the ES

and develop a bias correction method. Notably, to compare

OISST with Argo data, the former was subsampled at the Argo

float data locations, which were neither evenly distributed in

space nor time, and whose number of data points was less than

those of the SST products (see the winter averaged SST Figure

below). All further quality control measures consisted of the

removal of all extreme outliers beyond five standard deviations.
Surface drifter data

To identify whether the warm biases of cold SST come from

the difference between skin and bulk temperature, surface

temperature obtained from satellite-tracked drifters were used in

this study. The surface temperatures are measured at the bottom

of the surface buoy (approximately 0.2 m below the sea surface),

which are used for correction of satellite SST products. The

Surface drifter data in the global ocean are provided by Atlantic

Oceanographic and Meteorological Laboratory, National Oceanic

and Atmospheric Administration, USA as Global Drifter Program

(https://www.aoml.noaa.gov/phod/gdp/). The drifter data in the
frontiersin.org

https://www.aoml.noaa.gov/phod/gdp/
https://doi.org/10.3389/fmars.2022.965346
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yoon and Park 10.3389/fmars.2022.965346
ES were extracted from the global dataset, spanning from Jan.

1996 to Dec. 2006.
Results

Bias identification in OISST

OISSTs at Argo data points within the ES showed a

significant correlation with ARSST across the entire

temperature range from 2000–2020 (R2 = 0.95), and

scatterplots displayed this strong linear relationship (slope ≈ 1,

intercept ≈ 0), with no discernable biases (Figure 2A); however,

exploring cold temperature ranges< 10°C more closely, the

OISSTs skewed warmer than the reference ARSSTs

(Figure 2B). Furthermore, to investigate whether there is a

period-dependent relation between the OISSTs and ARSSTs,

when splitting the analysis period into two groups (2000–2010;

2011–2020), these patterns were replicated in both periods

(Figures 2B, 3A, B). Frequency histograms of the differences

between OISST and ARSST for the two periods also showed that

OISST cold waters< 5°C maintained apparent warm biases

(Figures 3C, D). Although the histogram shape narrows over

the recent period, the mean deviations of OISST from ARSST

over the two time periods were 0.95°C and 0.82°C, respectively,

with no statistically significant difference between them at the

99% confidence level (Figures 3C, D).

When OISST was compared with ARSST obtained during

day- and night-times, the warm bias of cold waters< 5°C was

consistently identified in both cases (0.91°C and 0.95°C mean

biases for day- and night-times, respectively; Figure 4). The
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features of histograms for the differences between OISST and

ARSST during day- and night-times (Figures 4B, D) were very

similar with those for the SST differences throughout the day

(Figures 3C, D). In addition, the warm bias of the cold waters

was also clearly shown at the differences between OISST and

ARSST regardless of the periods in which strong or weak winds

blow (1.03°C and 1.11°C mean biases for strong and weak wind

cases, respectively; Figure 5). These results showed that the warm

bias of the cold waters was not related to diurnal SST variations

or wind strengths.

The same analysis was also applied for OISSTs warmer than

15°C, although no similar significant biases were found

(Figure 6), as all points were approximately linear over the two

periods (Figures 6A, B). Further, the frequency of differences

between OISSTs and ARSSTs from 15 to 20°C over the two time

periods revealed no significant biases (Figures 6C, D). The mean

deviation of OISSTs from ARSSTs for the two periods were near

zero (-0.04°C and -0.14°C, respectively), and the slight cold

biases observed during 2011–2020 were not statistically

significant at the 99% confidence level (Figure 6D). Following

these results, it was identified that OISST cold waters< 5°C had

significant warm biases across the ES.

The comparison results between OISST and surface drifter

data supported that the OISST cold waters had clear warm biases

in the ES as well. The observational depth of surface drifter data

is about 0.2, which is closer to the surface than that of ARSST

(5 m), so surface drifter temperature could be considered as skin

temperature at which the mixed layer depth issue can be ignored.

Same as the results investigated above, OISST also had

significant warm biases with surface drifter data, skin

temperature, in the range of cold water< 5°C not in the whole
BA

FIGURE 2

(A) Scatter plot of surface temperatures from Argo float data at 5 m (ARSST) and optimally interpolated sea surface temperature (OISST) at Argo
data points. (B) Subplot of (A) for a temperature range of -2~10°C. Colored lines are nth polynomial fits.
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temperature range (Figures 7A–D). The mean deviation of

OISST from surface drifter data was 0.97°C similar with its

mean deviation from ARSST.

Furthermore, such warm biases over colder temperature

ranges were also observed for MWSSTs and OSTIA values

(Figure 8). These products similarly displayed near-linear

relationships with ARSSTs across the entire temperature range

(Figures 8A, 8D); however, at ranges< 10°C or< 5°C, MWSST

and OSTIA were slightly warmer than the reference (Figures 8B,

C, E, F). Mean deviations of MWSST and OSTIA from ARSST

were identical (0.36°C), notably less than that of OISST,

although these biases of MWSST and OSTIA were significant

at the 99% confidence level (Figures 8C, F).

Examining the median deviations of OISST, MWSST, and

OSTIA from ARSST (0.84, 0.36, and 0.24°C, respectively),
Frontiers in Marine Science 05
OSTIA maintained the lowest warm biases among the three

products; however, the estimated Gaussian function for the

frequency histogram of OSTIA was highly skewed (skewness ~m
3 = 0.58) in comparison to other two products (OISST ~m3 = 0.36,

MWSST ~m3 = 0.02); Figures 3C, D, 8C, F). When OSTIA was

subsampled by 0.25° × 0.25°, median deviations (Supplementary

Figure 1) was a little increased to 0.27°C, but the skewness of the

Gaussian function was highly risen to 0.84, indicating that the

OSTIA biases from ARSST would not be related to higher spatial

resolution of the OSTIA product than that of MWSST and

OISST products. Accordingly, OSTIA biases would be more

difficult to correct compared to those of OISST and MWSST. As

MWSST has a shorter data period than OISST, the latter product

appeared best for investigating the long-term variation of SSTs

in the ES. Moreover, compared to other SST products, OISST
B

C D

A

FIGURE 3

Surface temperatures from ARSST, and OISST at Argo data points ranging -2~10°C from (A) 2000–2010, (B) 2011–2020. (C, D) Frequency of
differences between ARSST and OISST data for the temperature of less than 5°C in corresponding time ranges of (A, B), respectively. Red lines in
(C) and (D) denote Gaussian functions fitted into each histogram.
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has been widely used to investigate ocean events (ex) marine

heat wave (e.g. Miyama et al., 2021)) of the ES without any

awareness of its bias, thus, OISST is necessary to be

validated here.
Correcting SSTs using argo float data

The inverse nth-order polynomial fit method was applied to

correct the warm biases of OISST. In general, OISST and ARSST

are used as a predictor and target variables, respectively, as

ARSST is regarded as the true value. The target ARSST values

can be reproduced using OISST with an nth order polynomial

fitting function (Fn ; Eq. (1)). The best-fitting function (Fbest ; Eq.

(2)) was thus determined by minimizing the differences from the

target variable:
Frontiers in Marine Science 06
Y = Fn(X) + ϵ (1)

ϵ = Y − Ŷ
�� ��  where   Ŷ = Fbest(X) (2)

where X is the OISST value, Y is the ARSST value, and Ŷ  is

the corrected OISST. In this case, however, the best-fitting

function was obtained as a higher-order polynomial, meaning

that the fitting accuracy could be poor, and greater

computational demand would be required for obtaining the

best-fitting function. Thus, to improve both the fitting accuracy

and computing time, the corrected OISST (CSST) was

estimated using ARSST as a predictor variable via an inverse

function (inverse function = nth order polynomial function (Gn

); Eq. (3)):

X = Gn(Y) + ϵn,    where  Gn = F−1
n (3)
B

C D

A

FIGURE 4

(A) Scatter plot of surface temperatures from ARSST, and OISST at Argo data points during day-time (10AM–5PM, local time). (B) Frequency of
differences between ARSST and OISST data for a temperature range ofless than 5°C during day-time. (C) Same as (A), but for during night
(7PM–6AM, local time). (D) Same as (B), but for during night-time.
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ϵn = X − cXn

���
���  where  cXn = Gbest

n (Y) (4)

To derive the CSSTs, the nth-order polynomial fits [Gbest
n ; Eq.

(4)] were estimated using ARSST to minimize the differences

from OISST (least-squared fitting; Figure 2; Table 1). The fit

lines were only derived across the range of -2–25°C, under the

assumption that ARSSTs > 25°C were near identical to OISSTs.

The root mean square difference (RMSD) between the nth order

fitting lines and OISSTs showed strong similarities among

functions, provided that a 3rd order or higher was used over

temperature ranges of 0–25°C and 0–5°C (Table 1, first and

second columns).

~ϵ = Y − ~X
�� ��  where   ~X = Gbest(Y)   (5)
Frontiers in Marine Science 07
After calculating the nth-order polynomial fits via Eq. (4), the

best-fitting function (Gbest ; Eq. (5)) which minimized the

differences with ARSST was chosen among multiple solutions.

The RMSD and median difference values between CSST and

ARSST were the lowest when CSST was obtained by the 4th-

order polynomial function (Table 1). Moreover, frequency

histograms of deviations between CSST and ARSST across the

entire temperature range (-2–25°C) depicted that warm biases of

OISST were best corrected by the 4th-order polynomial function

than other higher order polynomial functions (Figure 9). CSST

also showed a significant decrease in mean and median

deviations (0.24 and 0.09°C) from surface drifter data in the

range of cold water< 5°C in comparison with the results between

OISST and surface drifter data (Figures 7E, F). Accordingly, the

warm biases of OISSTs were corrected using a 4th-order
B

C D

A

FIGURE 5

(A) Scatter plot of surface temperatures from ARSST, and OISST at Argo data points under strong wind (> 6m/s). (B) Frequency of differences
between ARSST and OISST data for a temperature range of less than 5°C under strong wind. (C) Same as (A), but for under weak wind (< 6 m/s).
(D) Same as (B), but for under weak wind.
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polynomial function, thereby demonstrating that this method

improved the fitting accuracy, and reduced CSST computational

times when compared with the general polynomial

fitting method.
Influence of SST correction on the ES

Averaged SST maps for the winter (Jan–Mar) of ARSSTs,

OISSTs, and CSSTs were compared to identify the effects of

correction on SST distributions in the ES (Figure 10; refer

acronyms in Table 2). Although it was difficult to confirm the

influence of correction across the entire domain of the ES
Frontiers in Marine Science 08
due to large SST differences between the southern and

northern ES, CSSTs showed colder temperatures in the

northern ES than OISST, particularly towards the center of

the JB and near the Primorye coast (Figures 10B, C), thereby

aligning more closely with ARSSTs (Figure 10). As winter

SST variations in the ES typically reach 15°C (Park and Lim,

2018), substantially larger than the warm bias in cold waters

(Figures 3, 5), the impacts of SST corrections may only be

observable in colder waters of the northern ES. Thus,

this relatively minor difference between OISSTs and

CSSTs over a basin-wide average (Figure 10) may explain

why warm biases of cold SSTs were largely ignored by

previous researchers.
B

C D

A

FIGURE 6

Surface temperatures from ARSST float data at 5 m, and OISST at Argo data points ranging 15~25°C from (A) 2000–2010, (B) 2011–2020. (C, D)
Frequency of differences between ARSST and OISST data for the temperature of 15–20°C in corresponding time ranges of (A, B), respectively.
Red lines in (C, D) denote Gaussian functions fitted to each histogram.
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B

C D

E F

A

FIGURE 7

(A) Scatter plot of surface temperatures from surface drifters and OISST. (B) Frequency of differences between surface drifters and OISST data
for the entire temperature range. (C) Subplot of (A) for a temperature range of -2~10°C. (D) Same as (B), but for a temperature range of less
than 5°C. (E) Same as (C), but for corrected OISST. (F) Same as (D), but for corrected OISST.
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To further investigate the influence of SST corrections on the

cold surface water, the frequency of winter outcropping areas

was computed from the SST datasets for the ES (Figures 11–13).

The outcropping areas represent regions for which temperatures

of intermediate or deep layer water masses during the winter

appear at the surface, and are often used as an indicator of

formation rate of specific water mass (Petit et al., 2020). As

discussed in Section 2, water masses that constitute the

southward streams of the EMOC are formed at the surface of

the northern ES. Specifically, the ESIW, the main component of

the upper EMOC, is characterized by temperature ranges from 1

to 5°C (Kim et al., 2004; Park and Lim, 2018); whereas ESCW
Frontiers in Marine Science 10
and ESBW, the primary components of the lower EMOC,

maintain temperatures< 1°C (Kim et al., 2004; Yoon et al.,

2018). Therefore, the occurrence frequency of outcropping

areas was estimated based on these temperature criteria.

Firstly, CSSTs consistently exhibited higher chances of

outcropping for the ESIW during the winter at the western JB,

widely considered the formation site of the ESIW (40.5°–42° N,

130°–132° E; Park and Lim, 2018), than the warm biased

OISSTs, as shown in the maps of day-counts where each grid

had 1–5°C during the winters of 1990, 1995, 2000, and 2005

(Figure 11). Furthermore, before the correction, OISSTs showed

higher winter outcropping probabilities of the ESIW off the Peter
B C

D E F

A

FIGURE 8

(A) Scatter plots of microwave-infrared SST (MWSST) vs ARSST, (B) Subplot of (A) for -2–10°C, and (C) Difference between MWSST and ARSST
for less than 5°C. (D–F) same comparisons, but for daily operational SST and ice analysis (OSTIA) vs ARSST. Red lines in (C, F) depict
Gaussian fits.
TABLE 1 Root mean square difference (RMSD) of nth polynomial fits between 0–20°C and 0–5°C in the first and second columns respectively.

RMSD (0~25°C) RMSD (0~5°C) RMSDCSST vs ARSST Median (CSST-ARSST)

Raw – – 1.73 0.84

3rd 0.99 1.10 1.52 0.34

4th 0.97 1.03 1.47 0.10

5th 0.97 1.02 1.49 -0.13

6th 0.97 1.02 1.48 -0.11

7th 0.97 1.02 1.47 -0.10
The third column presents the RMSD between ARSST and the corrected SST (CSST) by the nth polynomial functions between 0–5°C. The last column shows the median differences between
ARSST and CSST between 0–5°C.
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B

C D

A

FIGURE 9

Differences between SST and ARSST for all temperature ranges (-2–25°C): (A) Original raw OISST data, (B) Corrected OISST (CSST) with the 4th,
(C) 6th, and (D) 7th polynomial functions. Red lines denote Gaussian fits.
B CA

FIGURE 10

Surface temperatures from: (A) ARSST climatologically averaged for the winter (Jan.–Mar.) from 2000 to 2020, (B) OISST at Argo data points,
and (C) CSST. Contour intervals are 1°C.
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the Great Bay, and along the Primorye coast (Figures 11A–D).

These areas are widely regarded as the formation sites of the

ESCW and ESBW (< 1°C) through deep convections, rather than

the ESIW (Talley et al., 2003; Yoon et al., 2018). Conversely,

CSSTs displayed remarkably lower outcropping likelihoods of

the ESIW in these locations, indicating that the overestimate of

outcropping probabilities of the ESIW in the northernmost ES

was successfully adjusted through warm bias correction

(Figures 11E–H).

The other SST products (MWSST and OSTIA) also showed

similar distributions of total outcropping days for the ESIW with

OISST, indicating that they underestimated the outcropping

probabilities of the ESIW at the western JB, and overestimated

its likelihood in the northernmost ES due to the warm biases of

cold waters (Figures 5, 12). Notably, the MWSSTs did not

produce signals near the Russian coast due to data availability

(Figures 12B, F). Additionally, CSSTs detected relatively lower

outcropping chances of the ESIW at the eastern JB (40.5°–42° N,

134°-136° E) than other SST products in the winter of 2015. As

this region is considered the formation site of other intermediate

water (e.g., High Salinity Intermediate Water) that is relatively

colder (~ 0.6°C) and saltier (> 34.07) than the ESIW (1–5°C and

< 34.06; Kim and Kim, 1999; Watanabe et al., 2001; Kim et al.,

2004), this feature was also considered to be due to the warm

bias correction.

The annual characteristics of CSSTs and each SST product

were also represented by the average day-counts of 1–5°C

and<1°C outcroppings in the winters from 2007 to 2016

(Figure 13). CSSTs showed higher outcropping probabilities of

the ESIW at the western JB, lower chances of the ESIW at the

eastern JB, and significantly lower (higher) outcropping

probabilities of the ESIW (ESCW and ESBW) off the Peter the

Great Bay and along the Primorye coast than OISST, MWSST,

and OSTIA (Figure 13). In conclusion, in-situ yearly and period-

mean results of cold surface water occurrence revealed that

CSSTs successfully captured the outcropping probabilities of

ESIW, ESCW, and ESBW during the winter better than any of

the three SST products at the correlated formation sites of those

water masses (Kim et al., 2004; Park and Lim, 2018; Yoon et al.,

2018), implying that the warm bias corrections can improve the
Frontiers in Marine Science 12
capacity of SST products to identify the variations of the EMOC

in a warming world.
Discussion & Conclusion

This study identified warm biases from three global SST

products (OISST, MWSST, and OSTIA) only for the cold surface

waters of the ES. Among them, the long-term OISSTs were

corrected using Argo float temperature data via a novel,

simplistic, and effective inverse polynomial fitting method. The

resulting corrected SST datasets were accurately depicted the

regional variation in the northern ES compared to non-corrected

products; thus, these results emphasized the importance of

regional corrections for global SST products via in-situ

observational data.

The reason why warm bias of only cold SST occurred is

unclear. In general, skin temperatures obtained from satellite

measurements are higher than bulk temperatures like what Argo

floats measure, especially when positive heat flux (heat

transferring from atmosphere to ocean) is dominant under

calm weather. However, in the ES, the cold SST (below 5°C)

only appears in wintertime when negative flux prevails. Indeed,

there are neither significant differences of warm bias in cold SST

between day-time and night-time (Figure 4) nor between weak

wind and strong wind conditions (Figure 5). Furthermore, even

comparing with temperatures measured by surface drifter, there

is a clear warm bias of cold SST in the OISST comparable to the

comparison result with Argo float (Figures 3, 7). In near future, it

is needed to investigate the reason for occurrence of warm biases

in the ES from SST products during winter.

Biases from SST products not only create difficulty when

analyzing observational data, but have important implications

for the production of climate reanalysis products on heat and

fresh-water fluxes utilizing the satellite SST data as well.

Furthermore, numerous ocean circulation models employ flux

data from these reanalysis products for boundary forcing. As

identified in Section 3.3, any numerical model forced with non-

corrected SST products may represent higher formation rates of

water masses in the upper EMOC (i.e., ESIW), and lower

formation rates in the lower EMOC (i.e., ESCW and ESBW).

Similarly, when uncorrected SST data are assimilated into the

ocean prediction model, such SST biases could produce

unrealistic EMOC patterns; thus, it is necessary to reproduce

the ES reanalysis products using CSSTs in the future to improve

regional ocean model predictive performance regarding the

variation of the EMOC under a warming world.

Additionally, as shown by the median value comparisons of

frequency (Figures 3, 6), OSTIA SSTs were more comparable to

ARSSTs than OISSTs or MWSSTs. Similarly, the spatial

distribution of outcropping days in Figure 13 obtained from

OSTIA was relatively similar to that of CSST; thus, among non-
TABLE 2 Acronyms in the East Sea.

Acronyms Meaning

ES East Sea

EMOC East Sea Meridional Overturning Circulation

UB Ulleung Basin

JB Japan Basin

YB Yamato Basin

ESIW East Sea Intermediate Water

ESCW East Sea Central Water

ESBW East Sea Bottom Water
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FIGURE 11

Day-counts when OISSTs were 1–5°C during the winter (Jan.–Mar.) in (A) 1990, (B) 1995, (C) 2000, and (D) 2005. (E–H) are same, but for CSST.
Units are days.
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corrected SST products, OSTIA most accurately depicted the

surface conditions of the northern ES in the winter.

Unfortunately, the biases of OSTIA cannot be corrected solely

with the suggested polynomial fitting method due to the high

observed skewness of bias distributions (as shown in the

frequency of differences from ARSST; Figures 8D–F). OSTIA

SSTs have been produced by merging various satellite SSTs, as

well as available in-situ measurements; thus, employing CSSTs

in the production of OSTIA SSTs could significantly improve its

accuracy in the ES.

Many other SST products have been newly produced and

updated apart from three SST products discussed here, especially

the long-term (from 1981 to the present) SST product from
Frontiers in Marine Science 14
European Space Agency Climate Change Initiative (ESA CCI) is

one of them (Merchant et al., 2019; Yang et al., 2021). ESA CCI

SST product has not been used in the research of the ES yet,

however, it was found that this product had no warm bias with

ARSST in the range of cold water< 5°C and the Gaussian

function of histogram for the difference between ESA CCI SST

and ARSST had relatively lower skewness (Supplementary

Figure 2). ESA CCI SST is considered to have a great potential

to investigate the ES, henceforward, it would greatly help to

investigate the long-term variation of the EMOC.

It is unclear why SST products tend towards warm biases in

the colder temperature ranges, and whether this bias is apparent

in other high latitudes or marginal seas as well. Due to the
B C D

E F G H

A

FIGURE 13

Average day-counts of 1–5°C outcropping in winter (Jan.–Mar.) from 2007–2016 for (A) OISST, (B) MWSST, (C) OSTIA, and (D) CSST. Average
day-counts of less than 1°C outcropping for (E) OISST, (F) MWSST, (G) OSTIA, and (H) CSST. Units are days.
B C D

E F G H

A

FIGURE 12

Day-counts when OISSTs were 1–5°C during the winter (Jan.–Mar.) in 2010 (upper row) and 2015 (lower row) for (A, E) OISST, (B, F) MWSST, (C,
G) OSTIA, and (D, H) CSST. Units are days.
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limited availability of in-situ datasets, the spatio-temporal

characteristics of these SST biases were not investigated any

further here, although the OISST did display a consistent bias

over time (both before and after 2010). In the future, sub-

regional correction algorithms should be developed for

adjusting any spatio-temporally dependent biases of SST

products in the ES and other seas via the inclusion of

additional in-situ observational data and improved

statistical methods.
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