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Warming and ocean acidification are currently critical global change drivers for

marine ecosystems due to their complex and irreversible effects on the ecology and

evolution of marine communities. Changes in the chemistry and the temperature of

the ocean impact the biological performance of marine resources by affecting their

energy budget and thus imposing energetic restrictions and trade-offs on their

survival, growth, and reproduction. In this study, we evaluated the interplaying effects

of increased pCO2 levels and temperature on the economically relevant clam

Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range

along the coast of Chile. Juvenile clams collected from southern Chile were

exposed to a 90-day experimental set-up emulating the current and a future

scenario projeced to the end of the current century for both high pCO2/low-pH

and temperature (10 and 15°C) projected for the Chilean coast. Clams showed

physiological plasticity to different projected environmental scenarios without

mortality. In addition, our results showed that the specimens under low-pH

conditions were not able to meet the energetic requirements when increased

temperature imposed high maintenance costs, consequently showing metabolic

depression. Indeed, although the calcification rate was negative in the high-pCO2

scenario, it was the temperature that determined the amount of shell loss. These

results indicate that the studied clamcan face environmental changes for short-term

periods modifying energetic allocation on maintenance and growth processes, but

with possible long-term population costs, endangering the sustainability of an

important benthic artisanal fisheries resource.

KEYWORDS

ecophysiology, ocean warming, metabolic depression, decalcification, artisanal
fisheries, infaunal bivalves
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Introduction

Small-scale fisheries and aquaculture systems currently play

a critical role in providing both livelihood and food security for

millions of people worldwide (Short et al., 2021). Concomitant

with the rapid growth of the human population, the demand for

“blue foods” (food originated in marine or freshwater systems,

both captured or cultivated) as an affordable and sustainable

source of protein, has experienced a significant rise in the last

years (Blanchard et al., 2017; Naylor et al., 2021). However,

simultaneously with the realization of the future potential of blue

foods, global-scale human activities are indirectly imposing new

environmental stressors on oceans, changing their physical and

chemical properties, and thus affecting the ecosystem services

they provide (Bindoff et al., 2019). Indeed, it is expected that

these changes in the ocean’s properties, will negatively affect the

biology of marine species. As some of them are important food

resources, the security of the current and future supply of blue

foods could be seriously threatened (Blanchard et al., 2017;

Bindoff et al., 2019).

Among the main global change drivers disturbing marine

ecosystems, ocean acidification (OA) and ocean warming (OW)

are currently of critical concern due to their ubiquity and their

irreversible and complex effects on the ecological systems

(Gattuso et al., 2015; Sage, 2020). Both OA and OW are mainly a

consequence of the rise in atmospheric CO2 derived from the use of

fossil fuels and land-use emissions (Le Quéré et al., 2018;

Doney et al., 2020). In the case of OA, oceans act to moderate

the rise in atmospheric CO2 concentration by up-taking between a

quarter and a third of all CO2 emissions (Parker et al., 2013;

Doney et al., 2020). This oceanic uptake is translated into chemical

changes in the carbonate system that, in turn, produce a decrement

in pH and the concentration of carbonate ion (CO3
2-), affecting the

shell synthesis in shell-producing organisms and the organism’s

physiology (Orr et al., 2005; Doney et al., 2020; Cornwall et al., 2021;

Vargas et al., 2022). On the other hand, oceans also act as regulators

of atmospheric temperature having captured more than 90% of the

Earth’s additional heat since the 1970s, consequently, increasing

global oceanic temperature (Gattuso et al., 2015; Doney et al., 2020).

Since many marine valuable species, such as blue foods, are

ectothermic-calcifying organisms, the changes in temperature and

the chemistry of the carbonate system will impact their biological

performance and their capacity to produce their shells

(Spalding et al., 2017; Leung et al., 2020). Moreover, the impact

of both drivers can be critical for their survival, growth,

reproduction, and phenology (Baag and Mandal, 2022).

Changes in pH and temperature are usual natural processes

that can be more or less acute and periodic, especially in coastal

and estuarine systems (see Vargas et al., 2017). At an individual

level, both OA and OW affect the organism’s energy budget in

the short term, thus having effects on all their biology and

imposing intra-individual energetic constraints and trade-offs
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(Calosi et al., 2017; Baltar et al., 2019; Leung et al., 2020). For

instance, it has been shown that calcifying species exhibit effects

in several attributes including morphology, biomechanics, or

behavior (Harvey et al., 2013; Kroeker et al., 2013; Barton et al.,

2015; Leung et al., 2017; Lemasson and Knights, 2021;

Jahnsen-Guzmán et al., 2022). However, the first and most

affected traits are the physiological ones (Bozinovic and

Pörtner, 2015; Doney et al., 2020). Indeed, much physiological

research has been done in the last years using these two drivers

individually or in combination (i.e. OA and OW) with

contrasting outcomes depending on the species analyzed,

suggesting these effects can be species-specific (Harvey et al.,

2013; Baag and Mandal, 2022). Furthermore, OA and OW pose

potential impacts on ecosystems through the combination of

responses, affecting several levels of biological organization

(Poore et al., 2013; Gattuso et al., 2015; Baltar et al., 2019;

Lemasson and Knights, 2021; Jahnsen-Guzmán et al., 2022;

Vargas et al., 2022).

Currently, there is a critical need to understand the possible

synergistic or antagonistic responses of the interplay between

OA and OW on socio-ecologically relevant species to predict

their sustainability and future supply (Sage, 2020). For instance,

in the southern hemisphere, Chile has more than 6000 km of

coastline and is among the top 5 global producers of shellfish, a

trend that has been supported by the rapid development of

bivalve aquaculture since the 1990s (Yáñez et al., 2017).

Paradoxically, the harvesting of most of the shellfish resources

is still artisanal and relies on the production of natural stocks

under current environmental conditions. This potential

vulnerability led to recent efforts to focus on studies aimed at

evaluating the effects of global change drivers on economically

relevant species (Navarro et al., 2013; Duarte et al., 2014b;

Osores et al., 2017; Yáñez et al., 2017; Benıt́ez et al., 2018).

Additionally, as the responses of marine species to OA, OW, and

other global drivers are species-specific, there is a necessity to

understand the possible biological responses of several

important “blue food” species using medium and long-term

experimental set-ups accounting for these possible challenges

(Boyd et al., 2018).

One of the most important free-living (not cultured) marine

resources in the Southern Cone of South America, and especially

in Chile, is the clam Ameghinomya antiqua (King, 1832), a

species inhabiting soft bottoms along the coasts of the South

Pacific Ocean. This infaunal species (Clements and Hunt, 2017)

exhibits extremely high calcification rates given the thickness

and resistance of its shell compared with other species of

bivalves, which has even allowed shell preservation through

thousands of years (Clasing et al., 1994; Gordillo et al., 2008;

Watson et al., 2017). These features, together with ecological

value, make A. antiqua an excellent biological model to study the

interplaying effect of OA and OW. Even though the economic

value of A. antiqua is not so elevated, this species is relevant for
frontiersin.org
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artisanal fisheries, and its study has been promoted by

governmental offices to improve the culture of this species

under field and hatchery conditions (SERNAPESCA, 2021).

Indeed, it is recognized as an ecologically and economically

relevant species on the coast of Chile (Miranda and Stotz, 2021).

Nevertheless, their marked energy expenditure in juvenile stages

(Stead and Clasing, 1997) and their high somatic growth

compared with morphologically similar bivalves (Clasing et al.,

1994) can be affected by the new environmental conditions that

projected OA and OW conditions will impose. Considering the

observed strong seasonal pattern of growth in A. antiqua and the

minimum size of the capture of this species (55 mm), any factor

affecting their energy balance will impact not only their ecology

but will also affect the annual fisheries activities associated with

the species, thus scaling up to economic and social levels.

In this study, we evaluated, from an ecophysiological

perspective, the interplaying effects of acidification and

temperature on the infaunal clam A. antiqua. We exposed

clam juvenile specimens (≤32 mm) to a 90-day experimental

mesocosm set-up emulating the current and a projected future

scenario of increased pCO2 and temperature levels. Due to the

high energy demand to produce shells under acidic or high-

pCO2 conditions, shell production could not occur if an

increment in temperature imposed extra costs on the organism

maintenance. Thus, the interaction between pH/pCO2 and

temperature would result in an energetic trade-off between

maintenance and growth, affecting its ecology and its

associated fisheries.
Materials and methods

Animal sampling and mesocosm set-up

Juvenile specimens of the clam A. antiqua (≤32 mm) were

collected at the beginning of the austral spring of 2019 from the

soft bottom at Coihuin tidal flat, southern Chile (41°29’ S; 72°54’

W), where the mean water temperature is ca. 9°C during winter

(Urrutia et al., 2001; Alarcón et al., 2015). The specimens were

transported to the Bioengineering laboratory at Adolfo Ibáñez

University (Santiago, Chile), in wet conditions and acclimatized

for 10 days in a “common garden” aquarium with controlled

environmental conditions (T° = 10°C, pH = 7.9, salinity ~30

PSU) to avoid any stressful response generated by the transport

process. After this time, each individual was marked with non-

toxic bee markers to identify and recognize possible deaths

during the experiment. Groups of five specimens were

randomly assigned to 9 L aquariums filled up to a third of its

volume with quartz sand (0.4 – 0.6 mm) and the rest with filtered

and UV-sterilized seawater (salinity ~30 PSU), to simulate their

natural environmental conditions. As clams are common

in f auna l sp e c i e s , t hu s show ing bu r i a l b ehav i o r

(Lardies et al., 2001), and because the sediment from their
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natural habitat can change the chemical properties of the

surrounding water (e.g., pH, alkalinity, see Brenner et al.

(2016), quartz sand, an inert material, was used to avoid any

possible effect of the substrate on the experimental set-up,

previous evaluation of DpH(in situ) inside and outside the

quartz (DpH range = 0 – 0.03 for the four treatments,

unpublished data). Thus, each aquarium was assigned to one

of four treatments (n = 4 aquariums per treatment, 80 specimens

in total) in an orthogonal design simulating a current and future

acidification scenario (pH = 7.9 and 7.5 respectively) and current

and ocean warming conditions projected for the coast of central-

southern Chile (T° = 10 and 15°C, respectively, see Duarte et al.,

2022). To recreate a realistic scenario (Asnicar and Marin, 2022)

the environmental change (T° and pH) was calculated to the end

of the current century (2100) based on the current conditions

near the study site. For the case of temperature, current values

measured in the austral winter months can achieve ~13°C

following Jahnsen-Guzmán et al., (2021), so ~1.5°C was added

following the projections of the RCP2.6 under low CO2

emissions (see Gatusso et al., 2015). For the case of pH, we

follow previous works on marine invertebrates, in part

summarized in Vargas et al. (2017), using the highest pCO2

condition, accounting for data obtained near the study site where

values ~1500 μatm have been registered already. During the

experimental period, clams were fed daily with Reef Blizzard-O

(Brightwell®Aquatics) suspension, calculating approximately

5% of the buoyant body weight to ensure ad libitum food.

Every aquarium was monitored daily to account for mortality

(no replacement in case of death). Seawater was renewed

carefully every two days. The total duration of the experiment

was 90 days.
Seawater pCO2 and
temperature manipulation

To obtain the two levels of the pH treatment (7.9 and 7.5, see

above), a mix of dry air with pure CO2 (partial pressure of CO2

[pCO2] = 500 and 1500 matm respectively) was added to each

aquarium containing seawater in a continuous regular flux using

mass flow controllers (Aalborg Instruments & Controls, Inc.,

Orangeburg, NY, USA) following Torres et al. (2013).

Measurements of pH, temperature, and salinity were obtained

every three days to ensure the stability of experimental conditions.

The pH (NBS scale) was measured using a pH-meter (Mobile 826,

Metrohm, Herisau, Switzerland), connected to a combined

electrode (double juncture), and calibrated using Metrohm

buffers (pH = 4.0, 7.0, and 9.0) at 25°C in a temperature-

controlled water bath. Salinity (PSU) and temperature (°C) were

monitored daily during the experimental period using a portable

Salinometer (Salt6+, Oakton; accuracy: ± 0.1 PSU and ± 0.5°C,

respectively). Additionally, total alkalinity (AT) of the water was

sampled every 3 days using 50 mL of seawater from each
frontiersin.org
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aquarium fixed with a saturated solution of HgCl2 and stored in

250 ml polypropylene bottles in the dark at room temperature

until the analysis in the laboratory at the end of the experiment

using potentiometric titration (Titrando 888, Metrohm, Herisau,

Switzerland), in accordance with Torres et al. (2013).

Temperature, salinity, pH, and AT data were used to calculate

the carbonate system parameters shown in Table 1 (partial

pressure of CO2 [pCO2] and saturation states of calcite [Wca]

and aragonite [War]). Analyses were performed using CO2SYS

software in MS Excel (Pietrot et al., 2006) set with Mehrbach

solubility constants and refitted by Dickson and Millero (1987).
Biological traits measurements

To obtain a measure of growth rate and morphological

changes during the experiment, buoyant weight, length, width,

and height of each experimental individual were measured using

an electronic caliper (Mitutoyo, Sakado, Japan). Buoyant weight,

a non-invasive estimator of calcification rate and thus mollusc

growth (Palmer, 1982; Duarte et al., 2014a; Lardies et al., 2017)

was measured at the beginning and at the end of the experiment

using an analytical balance (± 0.1 mg, AUX 220, Shimadzu,

Kioto, Japan) with the whole animal immersed in seawater and

under air conditions.

At the end of the experiment (after 90 days), metabolic rate

was measured in the same conditions of each acclimation

treatment to obtain a value of energy expenditure in each

environment. To estimate the clams’ metabolic rate for each

treatment, clams were previously left in fasting conditions for

24h. Measurement of oxygen consumption (mgO2 h− 1 ind− 1)

was obtained using glass respirometry chambers (804 mL) with a

PreSens Mini Oxy-4 respirometer (PreSens GmbH, Regensburg,

Germany). The quantification of the standard metabolic rate was

measured for at least 2 individuals randomly selected from each

aquarium (n ≥ 10). Respirometric chambers were filled with

seawater at ~30 PSU. The dissolved oxygen was quantified every

15 s for a period of ~ 1 h. The sensors were previously calibrated

in anoxic water, using a Na2SO3 solution for 0% oxygen and
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water saturated with air bubbles for 100% oxygen. The obtained

measurement was standardized per gram of weight to posterior

comparisons (no weight differences between treatments were

previously evaluated by diagnostic analyses). Additionally, in a

unique aquarium per treatment 2 to 3 empty valves were left

alone to obtain an approximate the net dissolution rate for each

experimental treatment without biological regulation.
Statistical analyses

First, basic visual diagnostics to evaluate normality and

homoscedasticity of each measured trait were performed,

followed by regular linear models that were run to explore

the data. Subsequently, and following the data structure

(individuals sharing aquariums), we employed hierarchical

generalized linear mixed models (GLMM) to evaluate

changes in physiological (growth and metabolic rate) and

morphological (length, width, and height) traits, including

pCO2 (pH) and temperature levels as fixed factors, and using

the ‘aquarium’ as the replicate unit (n = 4). As the individuals

sharing the same aquarium could be influenced by its

condition, the individuals were nested within each ‘aquarium’

as a random factor. To estimate the explanatory importance of

fixed effects, we estimated the relative support of hierarchical

models with versus without specific fixed factors, including

their interaction, employing Akaike Information Criterion for

small samples (AICc) and Akaike weights (wi), and assessed

their statistical significance with an F-ratio test when necessary.

In addition, we used the “lmerTest” package (Kuznetsova et al.,

2017) to obtain approximated d.f, F-values, and p-values for

the selected model using the Satterthwaite’s method due to “the

exact null distributions for the parameter estimates and test

statistics are unknown” (Kuznetsova et al., 2017). All data were

analyzed using the R statistical environment (R Core Team, 2020)

using the package “lme4” (Bates et al., 2015) and “performance”

(Lüdecke et al., 2021). The hierarchical models obtained for the two

kinds of variables (physiological and morphological) are listed in

Tables 2, 3.
TABLE 1 Average conditions (± SE) of carbonate system parameters for each experimental treatment: pCO2 (500 and 1500 matm) and
temperature (10 and 15°C).

Conditions Temperature (°C) Salinity (psu) pH insitu pH (25°C) AT pCO2 Wca

500 matm - 10°C
(n = 7)

9.98
(± 0.14)

31.19
(± 1.67)

7.87
(± 0.08)

7.70
(± 0.07)

1846
(± 139)

671
(± 137)

1.3
(± 0.2)

500 matm - 15°C
(n = 11)

14.47
(± 1.39)

30.13
(± 1.42)

7.89
(± 0.11)

7.77
(± 0.11)

1850
(± 109)

688
(± 239)

1.6
(± 0.3)

1500 matm - 10°C
(n = 14)

10.45
(± 0.43)

30.42
(± 0.59)

7.60
(± 0.12)

7.45
(± 0.11)

1884
(± 208)

1381
(± 375)

0.7
(± 0.3)

1500 matm -15°C
(n = 12)

15.15
(± 0.18)

30.08
(± 1.72)

7.67
(± 0.10)

7.57
(± 0.10)

1747
(± 179)

1107
(± 216)

1.0
(± 0.4)
frontiers
pH is reported in the NBS scale; AT: total alkalinity (mmol Kg-1); Wca and War: calcite saturation state in seawater.
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Results

During the experimental period, all of the four treatments

were quite stable in their set parameters with low variations in

pH and temperature (see Table 1). After the experimental

period, shell dissolution recorded for empty shells of A.

antiqua showed a higher rate in the high pCO2/low-pH

treatment compared with the control (low pCO2/high-pH)

treatment, regardless of the water temperature ( �x   = 264.92

μg d-1, SE = 97.28, N = 7, at pCO2 = 1500 matm; �x   = 170.92 μg

d-1, SE = 27.23, N = 6, at pCO2 = 500 matm, Figure 1A).

Concomitantly, the net calcification (changes in buoyant

weight) increased in living A. antiqua clams exposed to the

control pCO2/pH and high temperature treatment (pCO2 =

500 matm, T° = 15°C, Figure 1B). However, decalcification was

evident for individuals exposed to acidification conditions

(pCO2 = 1500 matm) regardless of the temperature

(Figure 1B). Nevertheless, the higher the temperature, the

greater the shell loss, as indicates in the GLMM model,

including the interaction between factors (DAICc = -18.74,

wi >0.999; d.f. = 69, F = 49.12, p< 0.001; Figure 1B, Table 2).
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Interestingly, accounting for the fact that the weight loss is for

two valves per individual, the total weight loss (decalcification)

in the case of the empty valve (Figure 1A), would be duplicated

in living individuals, something that can be appreciated

comparing the values from Figures 1A, B, as buoyant weight

is directly related with the calcification (or decalcification) rate

(see Duarte et al., 2014a). Finally, the interplaying effect of

temperature and acidification upon the metabolic rate

indicates that the oxygen uptake of clams was similar in a

non-acidified environment regardless of the temperature.

However, oxygen uptake increased significantly under

acidified conditions at the control temperatures, but

decreased again in the high temperature treatment

(Figure 1C, pCO2 = 1500 matm, T° = 15°C treatment). This is

supported by the GLMM, including the interaction between

pCO2 × T° (DAICc = -0.27, wi = 0.412; d.f. = 49, F = 4.95, p =

0.030; Table 2). Regarding the morphological adjustment of

studied clams, the best fitted GLMM explaining the change in

each of the three measured traits (length, width and height)

was case-dependent: pH in the case of length (d.f. = 15.67, F =

12.93, p = 0.002), T° for width (d.f. = 16.62, F = 10.58, p =
TABLE 2 Hierarchical general linear mixed models for physiological traits of Ameghinomya antiqua juvenile clams.

Trait Models k LL AICc DAICc wi

Growth rate growth_rate ~ 1+ (1|aquarium) 3 -495.93 998.23 34.26 <0.001

growth_rate ~ pH + (1|aquarium)
growth_rate ~ T° + (1|aquarium)
growth_rate ~ pH × T° + (1|aquarium)

4
4
6

-487.05
-495.93
-475.31

982.71
1000.48
963.97

18.74
36,51
0

<0.001<0.001
>0.999

O2 uptake mgO2 h
-1 g-1 ~ 1+ (1|aquarium) 3 112.04 -217.55 2 0.152

mgO2 h
-1 g-1 ~ pH + (1|aquarium) 4 112.55 -216.19 3.36 0.077

mgO2 h
-1 g-1 ~ T° + (1|aquarium)

mgO2 h
-1 g-1 ~ pH × T° + (1|aquarium)

4
6

114.09
116.78

-219.28
-219.55

0.27
0

0.360
0.412
fro
k = number of parameters, LL = log-likelihood, AICc = Akaike Information Criterion index for small samples, wi = Akaike weights.
Values in bold depict the model with the best fit among the candidate models.
TABLE 3 Hierarchical general linear mixed models for morphological changes of Ameghinomya antiqua juvenile clams.

Trait Models k LL AICc DAICc wi

length Dlength ~ 1+ (1|aquarium) 3 5.19 -4.01 2.79 0.015

Dlength ~ pH + (1|aquarium)
Dlength ~ T° + (1|aquarium)
Dlength ~ pH × T° + (1|aquarium)

4
4
6

9.92
6.07
12.06

-11.22
-3.52
-10.76

0
7.70
0.46

0.543
0.012
0.431

Dwidth ~ 1+ (1|aquarium) 3 -21.63 49.64 6.11 0.037

width Dwidth ~ pH + (1|aquarium) 4 -21.35 51.33 7.80 0.016

Dwidth ~ T° + (1|aquarium)
Dwidth ~ pH × T° + (1|aquarium)

4
6

-17.45
-16.70

43.53
46.75

0
3.22

0.790
0.157

height Dheight ~ 1+ (1|aquarium) 3 -92.33 191.04 0 0.565

Dheight ~ pH + (1|aquarium)
Dheight ~ T° + (1|aquarium)
Dheight ~ pH × T° + (1|aquarium)

4
4
6

-92.12
-92.33
-92.03

192.86
193.29
197.41

1.56
2.25
6.37

0.228
0.184
0.023
ntiers
k = number of parameters, LL = log-likelihood, AICc = Akaike Information Criterion index for small samples, wi = Akaike weights.
Values in bold depict the model with the best fit among the candidate models.
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0.004) and no attributable effect of the studied variables for

height (Figure 2, GLMM parameters in Table 3).
Discussion

The combined results obtained in the present work suggest an

energetic constraint to growth in the clam A. antiqua after

experiencing the combined effects of acidification and a

temperature of 5°C above the mean conditions experienced in its

natural environment (see Urrutia et al., 2001; Alarcón et al., 2015,

and materials and methods). As a consequence, limited available

energy (i.e. metabolic depression) was translated into negative

growth (i.e. shell loss by decalcification, �x  = -671.52 μg d-1; SE =

92.26, Figure 1A). Whereas a lower level of shell loss, but associated

with high metabolic rates, was exhibited by clams exposed to the

same acidification at current temperatures, suggesting their

attempts to achieve the energetic requirements of maintenance in

this bivalve (�x   = -251.17 μg d-1, SE = 60.8, Figure 1B). Nevertheless,
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despite the negative energetic balance, all the experimental

individuals were able to survive regardless of the environmental

conditions after 90 days of experimental conditions.

Energy acquisition and allocation is a critical process for

organisms, determining their survival, growth, reproduction,

and the performance of any biological function (Weiner, 1992;

Pörtner and Farrell, 2008; Bartheld et al., 2015). Hence, the

efficiency of organisms to manage their energy budget will allow

their persistence under current, novel, and changing

environments (Bozinovic and Pörtner, 2015). In this context,

the effect of ocean acidification producing decalcification on

bivalve shells without biological regulation is depicted in

Figure 1A. However, individuals exposed to the high pCO2/

low-pH and current temperature treatment (pCO2 = 500 μatm,

T° = 10°C) showed shell growth. Nevertheless, the capacity to

produce shell decreases with acidification, a trend that can be

exacerbated by increased temperature. This would suggest an

incapacity to gather enough energy per unit of time to achieve

maintenance demands, and thus reducing the rate of oxygen
B CA

FIGURE 1

Ameghinomya antiqua: Shell dissolution rate (A) and physiological adjustments including growth rate (calcification rate, (B), and metabolic rate
as oxygen uptake (C) for clams in each experimental condition.
B CA

FIGURE 2

Morphological changes in (A) length, (B) width and (C) height of Ameghinomya antiqua after 90 days of experimental conditions.
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uptake in individuals experiencing a high energetic demand

under these environmental conditions. Thus, in undersaturated

conditions for calcite (Wca< 1, see Table 1), it is expected that the

mineral phase of the clam shell would be eroded, and hence

more energy would be required to maintain shell integrity and

functionality (e.g Fitzer et al., 2015). Indeed, morphological

changes showed a relatively low total amount of change in size

compared with changes in buoyant weight. Indeed, the loss in

buoyant weight experienced by individuals in low pH conditions

can be translated into important changes in shell density that

cannot be correlated with morphological changes, an aspect

previously reported (Lagos et al., 2021). However, although

warming may diminish the negative impact of acidification on

calcification in some bivalve species (Byrne et al., 2011;

Lardies et al., 2017), we found that metabolic depression, and

probably the low capacity of this clam to compensate for

disturbances in extracellular pH, could explain the reduction

in growth and calcification (see Pörtner and Farell, 2008).

Indeed, the population of A. antiqua used here inhabits a

wide tidal flat located in southern Chile that experiences extreme

environmental variability on a daily basis (Lardies et al., 2001;

Urrutia et al., 2001). Nevertheless, its burial behavior

(Lardies et al., 2001) and the stable micro-environmental ge,

possibly explaining the lack of strong physiological conditions in

the mud where infauna lives (Clements and Hunt, 2017), can be

enough to avoid extreme environmental change, possibly explaining

the lack of strong physiological strategies to deal with sustained and

stable environmental changes.

In this context, aerobically challenging biological functions,

in addition with environmental conditions, can profoundly

affect an organism’s energy budget since the energy allocated

to one function cannot be transferred to other ones

(Weiner, 1992; Hendriks et al., 2015). The biological function

of calcification is a chemical reaction that does not only rely on

the availability and concentration of its components in the

surrounding environment (CO3
2- and Ca+). On the contrary,

calcifying organisms regulate their intra- and extra-cellular

environment to reduce their dependence on external chemical

conditions (Reipschläger and Pörtner, 1996; Hendriks et al., 2015;

Spalding et al., 2017). This capacity is energetically demanding and

involves a chemical alteration of the surrounding seawater by ion

pumping at a biochemical level (Palmer, 1992; Spalding et al., 2017).

In addition, synthesizing the organic matrix covering the inorganic

shell elevates the total energetic cost of the CaCO3 precipitation,

resulting in high energetic costs that account for 10 to 60% of the

energy allocated to somatic growth (see Palmer, 1992). Ocean

acidification is characterized by changes in the availability of

carbonate ions, thus, representing an additional cost for calcifying

organisms to achieve the required concentrations of it to

produce shells.

The biological responses of calcifying organisms experimentally

exposed to high pCO2 conditions (i.e. low pH) and/or high

temperatures are mostly negative (Pörtner et al., 2004;
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Jakubowska and Normant-Saremba, 2015). Indeed, the biological

effects are variable and usually complex, and seem to be mostly

specie-specific. For instance, decreases and increases in metabolic

rate, or alteration in other functions such as calcification,

development, and reproduction have been reported (Parker et al.,

2013). In bivalve species, in terms of energetics, Benıt́ez et al. (2018)

found an elevatedmetabolic rate in the bivalveChoromytilus chorus,

another species inhabiting Chile’s southern coast, without changes

in any other trait after being exposed to high pCO2 levels in a

medium-term laboratory experiment (30 days of duration). These

results were in accordance with the work published by Navarro et al.

(2022) in a long-term experiment (6 months) using the snail

Concholepas concho Lepas, where significant effects on

physiological variables including oxygen uptake were registered.

Moreover, Duarte et al. (2014a) and Navarro et al. (2016) showed a

reduced growth rate and reduced energy expenditure for Mytilus

chilensis after the exposition to high pCO2 values, and the same for

Mytilus galloprovincialis (Michaelidis et al., 2005). However, as a

rule of thumb, the capacity of organisms to face environmental

stress seems to go together with their capacity to manage their

energy budget including food acquisition, physiological constraints,

thermal breadth, and probably most important, metabolic scope

(Bozinovic and Pörtner, 2015; Verberk et al., 2016). As an example,

Thomsen et al. (2013) showed that M. edulis may be able to cope

with high pCO2 levels when food supply is ensured.

Marine calcifying organisms contemplate two alternatives

for energy expenditure depending on their metabolic response to

hypercapnia (Jakubowska and Normant-Saremba, 2015). On

one hand, the metabolic rate can increase with decreasing pH,

possibly as compensation due to the additional cost of

maintaining an extracellular acid-base regulation and the

overexpression of calcifying enzymes. This response is translated

into a high resilience to acidification but contemplates an

energetic trade-off for other functions (Parker et al., 2013).

However, on the other hand, for other species, a significant

decrease in oxygen uptake occurs with decreasing pH, explained

in principle by the same extracellular acid-base regulation, but this

time related with a poor capacity to compensate it

(Reipschläger and Pörtner, 1996; Michaelidis et al., 2005;

Parker et al., 2013). This response, namely metabolic depression,

has been explained as a short-term strategy to reduce the energy

expenditure to the minimum when organisms are facing adverse

environmental conditions (Guppy and Withers, 1999). In this

way, the individuals can extend their survival during a challenging

period by allocating most of their energy to maintenance, but with

a generalized trade-off of other functions. For the case of the

present study, only clams exposed to high pCO2 levels combined

with a high temperature (i.e. pCO2 = 1500 matm, T° = 15°C)

showed metabolic depression, without mortality, but with a severe

cost of the extensive dissolution of their shells at a high rate

(Figure 2). In other words, their capacity to allocate the available

energy was not enough to compensate for the challenge. In

agreement with that, at the same low pH but at current
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temperature (10°C), the energy budget is almost sufficient to

maintain the shell (tissue production), but with no growth.

Previously, metabolic increase and depression have been

related to the expression of the Na+/K+ATPase, an enzyme that

can consume up to 77% of the metabolic rate in the larvae of sea

urchins (Leong and Manahan, 1997; Stumpp et al., 2011;

Jakubowska and Normant-Saremba, 2015). Thus, these

physiological responses can be seen as an adaptative strategy

allowing short- and medium-term survival of calcifying species

in their natural conditions where environmental variation is

common (Vargas et al., 2017). This physiological output has

been seen in several studies in different species of marine

invertebrates and in response to both environmental factors

(Pörtner et al., 2004; Lannig et al., 2010; Parker et al., 2013). For

example, on the coast of southern Chile, Navarro et al. (2013)

reported metabolic depression in the mussel M. chilensis,

another economically relevant species inhabiting the region,

after its exposure to high pCO2 levels.

Quantification and modelling of the energetic demands of

organisms under predicted stressful environments can help us to

understand the effects of environmental change on species and

ecosystem functioning (Kooijman, 2010). For instance, using

both laboratory and field data on natural seasonal variability in

the field, Maynou et al. (2020) developed a theoretical dynamic

energy budget model for the clam Ruditapes philippinarum,

which can be used to predict life-history traits such as growth

or reproduction considering its environmental conditions (e.g.,

OA and OW). They show that although higher growth rates are

expected as the temperature increases, the acidification would

have a deleterious effect on growth (decrements of 2 to 5% in

weight or length) and a reduction in the reproductive potential

in acidified conditions (pH< 7.7). Nevertheless, this model

suggests that temperature increases could compensate tissue

and function losses due to acidification. However, this model

did not include the possibility of metabolic depression.

Contrastingly, our experimental data shows metabolic

depression in A. antiqua making the possible biological

compensation more complex. This is the first study reporting

this physiological response in this clam species after being

exposed to stressful conditions (but see Han et al., 2008;

Range et al., 2014; Xu et al., 2016 for other clam species).

On a broader scale, the specific metabolic depression response

of A. antiqua to acidification could affect the harvestable biomass

and the maximum sustainable yield of this species, impacting the

social and economic interests of the country. Accounting for the

massive extractive activities associated with this species (2,964 Mt

by 219 ships dedicated to its recollection, only in the first trimester

of 2021 in the locality of this study, SERNAPESCA, 2021), the

commercial size above 55 mm, and considering a loss between 2-

5% of the length, following the model developed by Manyou et al.

(2020), the harvest loss could be translated into important

economic losses per year. Indeed, since it is expected that this

trend (elevated OA and OW) will only increase in the future, there
Frontiers in Marine Science 08
is a call to refine the public policies and evaluate the species-

specific response to global change drivers as the blue foods will

become essential to meet the future demands of proteins and the

global nutritional security (Troell et al., 2014; Gattuso et al., 2015;

Brodie Rudolph et al., 2020; Lubchenco et al., 2020; Tittensor et al.,

2021; Ward et al., 2022).
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