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Recognition of behavior state of
Penaeus vannamei based on
passive acoustic technology

Maochun Wei1, Keyu Chen2*, Yating Lin2 and En Cheng2

1Marine Electromechanical Department, Marine electromechanical Department, Xiamen Ocean
Vocational College, Xiamen, China, 2Key Laboratory of Underwater Acoustic Communication and
Marine Information Technology, Xiamen University, Xiamen, China
Underwater signal processing based on passive acoustic technology has

carried out a lot of research on the behavioral sound of underwater

creatures and the protection of marine resources, which proves the

feasibility of passive acoustic technology for long-term and non-destructive

monitoring of underwater biological sound production. However, at present,

most relevant research focuses on fish but little research on shrimp. At the

same time, as the main economic breeding industry, Penaeus vannamei has a

backward industrial structure, in which the level of intelligence needs to be

improved. In this paper, the acoustic signals generated by different

physiological behaviors of P. vannamei are collected based on passive

acoustic technology. Their different behaviors are finally classified and

identified through feature extraction and analysis. Meanwhile, the

characteristic non-parametric ANOVA is carried out to explore the

relationship between the acoustic signals and the behavior state of P.

vannamei to achieve the purpose of real-time monitoring of the behavior

state of P. vannamei. The experimental results show that linear prediction

cepstrum coefficient (LPCC) and Mel-frequency cepstrum coefficient (MFCC)

characteristic coefficients are effective in the classification and recognition of

different behavioral acoustic signals with interspecific acoustic signals of P.

vannamei. Meanwhile, the SVM classifier based on OvR classification strategy

can model the acoustic signal characteristics of different underwater biological

behaviors more efficiently and has classification accuracy as high as 93%.

KEYWORDS

passive acoustic technology, acoustic signal of Penaeus vannamei, feature extraction,
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Introduction

For underwater organisms, specific psychological and

physiological behaviors are difficult to observe visually.

However, they can transmit information within and between

species by making sound, which means that they could produce

different signals according to specific behavior (Thomsen et al.,

2020). Since the 1970s, acoustic methods have been used by

fishery developed countries to investigate and evaluate fish

resources. Among them, passive acoustic technology is the key

technology of target detection, positioning, tracking, and

recognition according to the radiated noise of the underwater

target, which is gradually applied in the research of underwater

organisms because of its low harmfulness and destructiveness to

the research object. Meanwhile, the collected signal contains the

characteristics of the sounding target itself to characterize the

target behavior (Mann et al., 2016). Most of the organisms that

can emit and rely on sound waves recorded in the study are fish.

Now, it is known that there are 109 families, and more than 800

kinds of fish can make sound (Rountree et al., 2006), most of

which are large mammals, such as whales and dolphins, and

important economic fish, such as cod, grouper, and yellow

croaker. Some invertebrates in important fisheries can also

send out sound signals by behavioral movement, such as white

shrimp (Berk, 1998), American lobster (Henninger and Watson,

2005), and squid (Iversen et al., 1963). Because of this, the

difference between passive acoustic technology and other types

of biological acoustics is using the underwater signal acquisition

tools such as hydrophones, which are used to collect the acoustic

signals of underwater marine organisms instead of the artificially

generated sound. It can be used to find and monitor the

organisms that emit the acoustic signals. As a non-invasive

and non-destructive observation tool, it provides the ability of

continuous long-term and remote monitoring. This long-term

monitoring can provide important information about the daily

and seasonal activity patterns of fish and other marine

organisms. It can not only provide an effective acoustic signal

database of aquatic organisms but also be of great significance

for the development of marine resources and the protection of

marine ecology (Noda et al., 2016).

Back in the 1950s, many scholars first studied the different

vocal behaviors of aquatic species based on passive acoustic

technology. In the field of fish biology and fishery, fishing (Fish

et al., 1952) began to apply passive acoustic technology in the

study of underwater sound signals generated by fish along the

North Atlantic coast in 1952. Nordeide and Kjellsby (1999)

recorded and collected the sound generated by the northeast

Arctic cod (Gadus morhua L.) near Norway and suggested that

passive acoustics can be used to study the spawning behavior.

Scharer et al. (Schärer et al., 2014) conducted passive acoustic

and synchronous video recording at two spawning gathering

points in a spawning season on Mona Island, Puerto Rico, to
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study the sound related to the reproductive behavior of black

grouper and quantify the correlation between the sound signal

and the temporal and spatial distribution of reproductive

behavior. Parks et al. (2011) recorded the vocal behavior of

North Atlantic right whales (Eubalaena glacialis) in the Bay of

Fundy, Canada, explored the differences in vocal call types and

calling rates of North Atlantic right whales under different

behavioral states, and proved that the behavioral state is the

main factor affecting the calling rates. Soldevilla et al. (2010)

used the passive acoustic records of Risso’s dolphin at six

locations in the Southern California Bight from 2005 to 2007

to explore the spatial and temporal trends of its echolocation

behavior and motion patterns. The final results showed that

Risso dolphins foraged at night, and the southern end of Santa

Catalina Island was an important habitat for Risso dolphins

throughout the year. In addition to other underwater organisms

offish, Au et al. (Au and Banks, 1998) studied the environmental

noise in Kaneoh Bay, which generated when the claws of

snapping shrimp are closed, so as to reduce its impact on

other offshore organisms and underwater acoustic using for

human. Silva et al. (2019) studied the vocal mechanism and

main related acoustic variables of feeding signals produced by

Litopenaeus vannamei with different body sizes under artificial

feeding conditions and explored the relationship between

feeding consumption rate and feeding sound signals. Daniel

et al. (Smith and Tabrett, 2013) analyzed the feeding sound

characteristics of tiger shrimp according to the feeding signal of

tiger shrimp in a commercial pond with complex acoustics,

which provided a reliable means to detect feeding activities.
Related works

At present, there are few studies on the acoustic signals

produced by shrimp culture, especially the life behavior of

Penaeus vannamei. Therefore, based on the passive acoustic

technology, this paper collects the acoustic signals generated by

different physiological behaviors of P. vannamei and analyzes

the effective characteristics of the collected signals. Meantime, it

cooperates with the efficient classifier and recognizes different

behavior states to study the relationship between different

behaviors and acoustic signal characteristics of P. vannamei.

After receiving a large number of underwater acoustic signals by

signal acquisition equipment such as hydrophone, underwater

acoustic signal classification and recognition technology

analyzes and transforms the acoustic signals accordingly to the

automatic classification and recognition through various

classification methods. In the practical application of

underwater acoustic signal processing, due to the complexity

of underwater environment and targets, underwater acoustic

signal classification and recognition have always been a hot and

difficult point. However, extracting effective signal features are
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important premises to improve the classification and recognition

accuracy and the design of classification method. The difference

between the combination method and features will also affect the

final classification results.

So far, in the research on the classification and recognition of

underwater biological vocal signals, the mainstream research tends

to extract the characteristics of time, frequency, and time-frequency

domains and classify them by using classical statistical methods,

machine learning, and deep learning. The previous research work of

this paper mainly focuses on the characteristics of acoustic variables

in time and frequency domains (Wei et al., 2020). Mellinger et al.

(Mellinger and Clark, 2000), based on the spectral correlation

method, constructed a two-dimensional synthetic kernel

according to the segmented sound signal of bowhead whale to

include the shape of the spectrum diagram called by the target,

cross-correlated with the spectrum diagram of the signal to be

classified, so as to generate a recognition function and apply the

threshold to this function to distinguish the sound signal of

bowhead whale. Compared with the classification results of other

classifiers such as matched filter, neural network, and hidden

Markov model, it is the best method of classification and

recognition. Gillespie et al. (2013) described the fully automatic

detection and classification method of odontocete whistles. This

method finds out that the connected data areas are higher than

different pre-determined thresholds based on the spectrum of noise-

eliminated sound data and then classifies different species. Finally,

the correct classification rate of the four odontocete species has

reached more than 94%. However, the classification rate depends

largely on the number of species categories entered. When 12

species are included, the average correct classification rate decreases

to 58.5%. Relatively, with the deepening of interdisciplinary research

in recent years, more and more researchers use signal recognition

methods in the field of speech signal processing based on human

auditory perception mechanism to recognize underwater target

acoustic signals, which opens up a new direction. Ibrahim et al.

(2016) proposed a feature extraction method composed of discrete

wavelet transform (DWT) and Mel-frequency cepstrum coefficient

(MFCC), which is classified by support vector machine (SVM).

Experimental studies show that the proposed detection scheme

outperforms the spectrogram-based techniques in both detection

accuracy and speed. Vieira et al. (2015)extracted cepstrum, MFCC,

perceptual linear predictive (PLP), and other characteristic

coefficients from different acoustic signals emitted by male

toadfish, and classified them by hidden Markov model (HMM)

classifier. The final cepstrum coefficient has the best classification

effect. Pace et al. (2010) extracted MFCC feature coefficients from

humpback whale vocal signals collected in Madagascar in August

2008 and 2009 and used K-means clustering algorithm for

automatic classification, which has higher accuracy than manual

classification. Taking the underwater acoustic signals of different

behaviors of P. vannamei collected based on passive acoustic

technology as the research object, and improving the passive
Frontiers in Marine Science 03
recognition ability of P. vannamei underwater behavior as the

research goal, this paper studies the feature extraction algorithm

and classification recognition model of underwater acoustic signals

of different behaviors of P. vannamei. The research results are

expected to be applied to the field of underwater biological

classification and recognition, including the analysis of

underwater acoustic signals of P. vannamei, feature extraction,

classification and recognition, and other related application fields.

The main work accomplished in this paper is as follows:
1. Extracting the MFCC and linear prediction cepstrum

coefficient (LPCC) features of different behavioral

acoustic signals of P. vannamei.

2. Performing non-parametric ANOVA on the extracted

features to reduce feature dimension.

3. Using SVM classifier to classify and identify different

behavioral signals of P. vannamei according to the

characteristics.
The rest of the paper is organized as follows: in s III, the

feature extraction algorithm of acoustic signals from different

behaviors of P. vannamei is presented. In Section IV, the

characteristic non-parametric ANOVA is done. In Section V,

the experimental results are carried out. Finally, conclusion is

provided in Section VI.
Acoustic signal feature extraction of
P. VANNAMEI

Linear prediction cepstrum coefficient

As shown in Figure 1 , the LPC coeffic ient i s

homomorphically processed to obtain the LPCC. Since the

LPCC mainly reflects the channel frequency response, that is,

the spectral envelope information of the signal, T can be

approximately used as the short-time cepstrum of the original

acoustic signal, which can improve the stability of the

characteristic parameters (Gupta and Gupta, 2016).

The channel transfer function H(z) is obtained by linear

prediction analysis, and its impulse response is h(n). The

cepstrum of ĥ (n) is obtained.

H(z) =
1

1 −o
p

i=1
aiz

−i
(1)

p is the order, and ai is the coefficient. Since H(z) is resolved

in the unit circle, take logarithms on both sides of the above

formula at the same time to obtain:

Ĥ (z) = logH(z) = o
+∞

n=1
ĥ (n)z−n (2)
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If ĥ (n) = 0, the derivation of both sides of the above formula

is obtained at the same time z-1:

∂

∂ z−1
log

1

1 −o
p

i=1
aiz

−i
=

∂

∂ z−1 o
+∞

n=1
ĥ (n)z−n (3)

After sorting, we get:

o
p

i=1
iaiz

−i+1

1 −o
p

i=1
aiz

−i
= o

+∞

n=1
nĥ (n)z−n+1 (4)

Namely:

(1 −o
p

i=1
aiz

−i)o
+∞

n=1
nĥ (n)z−n+1 =o

p

i=1
iaiz

−i+1 (5)

Make the coefficients of z on both sides of Equation (5)

equal to each power and obtain the recurrence relationship

between ĥ (n) and ai:

ĥ (1) = a1

ĥ (n) = an +o
n−1

i=1
(1 − i

n )aiĥ (n − i) 1 < n ≤ p

ĥ (n) =o
p

i=1
(1 − i

n )aiĥ (n − i) n > p

8>>>>>>><
>>>>>>>:

(6)

From the above formula, the cepstrum ĥ (n) can be

recursively obtained from the LPC prediction coefficient ai.

Finally, the LPCC characteristic coefficient ai of behavioral

acoustic signal can be obtained for subsequent behavior state

classification. Two different behavioral acoustic signals with a

time length of 5 s are intercepted, respectively, for 12-

dimensional LPCC feature coefficient extraction. Setting the

signal frame length to 20 ms, the frame shifts to 10% of the

frame length, and the LPCC feature coefficient size to 2,487

frames in 12 dimensions, as shown in Figure 2.
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Mel-frequency cepstrum coefficient

A large number of studies have shown that due to the non-

linear auditory sensing mechanism of human ears, they have

different auditory perception abilities for sounds with different

frequencies. The specific performance is as follows: the

perception ability for sounds below 1 kHz follows a linear

relationship, while the perception ability for sounds above 1

kHz follows a logarithmic relationship. Therefore, the

researchers introduced Mel frequency to describe the non-

linear characteristics of human auditory system (Tong et al.,

2020): high-frequency resolution at low frequency and low-

frequency resolution at high frequency. Mel frequency is

defined as follows:

fMel = 2595 lg (1 + f =700) (7)

where fMel is Mel frequency, and the unit is Mel. f is the

actual frequency, and the unit is Hz. The corresponding

relationship curve between them is shown in Figure 3.

Therefore, according to the division method of critical

bandwidth, the critical band-pass filter bank, namely, Mel filter

bank, is set within the actual spectrum range of the signal, which

can simulate the frequency perception characteristics of human

ears, as shown in Figure 4.

As can be seen from the Figure 4, Mel filters are formed by

superposition of several triangular band-pass filters, and the

transfer function of each band-pass filter is:

Hm(k) =

0 k < f (m − 1)

k−f (m−1)
f (m)−f (m−1) f (m − 1) ≤ k ≤ f (m)

f (m+1)−k
f (m+1)−f (m) f (m) < k ≤ f (m + 1)

0 k > f (m + 1)

8>>>>>><
>>>>>>:

(8)

In the Equation (8), 0 ≤m <M, andM is the number offilters.f

(m) is the center frequency. The spacing between the center

frequencies increases with the increase m. f (m) can be defined as:
FIGURE 1

Flow chart of linear prediction cepstrum coefficient (LPCC) characteristic coefficient calculation.
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f (m) = (
N
fs
)f −1Mel(fMel(fl) +m

fMel(fh) − fMel(fl)
M + 1

) (9)

In Equation (9), the lowest frequency of the filter range is fl.

The highest frequency is fh. N is the DFT length, and fs is the

sampling frequency. The inverse function of fMel is:

f −1Mel(b) = 700(eb=1125 − 1) (10)

The key point of MFCC feature extraction is to transform

the signal linear power spectrum into Mel scale power

spectrum. The actual spectrum of the signal can be

transformed into Mel scale spectrum through Mel filter bank,

and then, the cepstrum coefficient can be calculated, which has
Frontiers in Marine Science 05
good robustness. The main process of MFCC feature parameter

extraction of behavioral acoustic signal of P. vannamei is

shown in Figure 5.

The specific process is as follows:

1) Pre-processing

Pre-processing includes pre-denoising, framing, and

windowing with Hamming window. The behavior signal after

pre-processing is si (n), and the subscript i represents the ith

frame after framing.

2) Fast Fourier Transform

The behavior signal of each frame after framing is

transformed by FFT, and the signal is converted from time

domain to frequency domain.
FIGURE 2

LPCC characteristic coefficients of acoustic signals from different behaviors of P. vannamei.
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X(i, k) = FFT½si(n)� (11)

The above formula k is the kth spectral line in the frequency

domain, and the spectral energy is calculated for the spectrum X

(i,k) to obtain the energy spectrum:

E(i, k) = X(i, k)j j2 (12)

3) Calculate the Mel spectral energy of the signal
Frontiers in Marine Science 06
The calculated signal energy spectrum E(i,k) of each

frame is passed through M Mel filter banks to calculate Mel

spectrum energy:

Mel(i,m) = o
N−1

k=0

E(i, k)Hm(k) 0 ≤ m < M (13)

4) Mel cepstrum coefficient is calculated by DCT

inverse transformation
FIGURE 4

Frequency response curve of Mel filter bank.
FIGURE 3

Corresponding curve between Mel frequency and actual frequency.
frontiersin.org

https://doi.org/10.3389/fmars.2022.973284
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wei et al. 10.3389/fmars.2022.973284
Calculate the logarithmic energy of Mel spectrum energy:

M̂ el(i,m) = ln½Mel(i,m)� (14)

Calculate the inverse discrete cosine transform (DCT) of M̂

el(i,m) to obtain the n-order MFCC of each frame signal:

mfcc(i, n) =
ffiffiffiffi
2
M

q
o
M−1

m=0
M̂ el(i,m)cos½pn(2m − 1)

2M
� n = 1, 2,…, p

(15)

The above formula M is the number of Mel filters, and m

refers to the mth Mel filter. n is the order of MFCC.

In contrast, the standard MFCC only represents the static

characteristics of the signal, while the dynamic characteristics can

be characterized by the differential MFCC, which can further

improve the classification and recognition rate. The calculation

process of first- and second-order difference MFCCs is as follows:

D(i) =
1ffiffiffiffiffiffiffiffiffiffiffiffi
o
k

n=−k

n2
s o

k

n=−k

n · mfcc i + nð Þ (16)

D0(i) =
1ffiffiffiffiffiffiffiffiffiffiffiffi
o
k

n=−k

n2
s o

k

n=−k

n · D(i + n) (17)

mfcc (i) is theMFCCstandard coefficient of the ith frame signal.

D (i) is thefirst-orderdifferentialMFCCof the ith framesignal.D′ ( i

) is the second-order differential MFCC of the ith frame signal, and

k is the number of differential signal frames, usually taken as 2. Two

different behavioral acoustic signals with a time length of 5 s are

intercepted, respectively, and the 12-dimensional standard MFCC

characteristic coefficients are shown inFigure6.Moreover, thefirst-

and second-order differential MFCCs are extracted, as shown in

Figures 7, 8. The signal frame length is set to 20ms. The frame shift

is 10% of the frame length, and the size of the three types of

characteristic coefficients is 2,487 frames in 12 dimensions.

Since the channel impulse response in the low cepstrum

period can more effectively characterize the signal itself, the

main information of the acoustic signal is concentrated in the

low dimension. By observing the MFCC characteristic amplitude

and changing trend of each dimension of the acoustic signal in
Frontiers in Marine Science 07
Figures 6–8, it can be found that the MFCC just emphasized the

low order part.

There are differences in the low-order characteristic

dimension. At the same time, for different behavioral acoustic

signals, the first- and second-order differential MFCCs can

reflect more differences between coefficients in different orders

than the standard MFCCs, as shown in Figure 9.
Characteristic non-
parametric ANOVA

All kinds of features of different behavioral acoustic signals

obey the non-homogeneous distribution of normal variance. If

the variance analysis is used, the analysis results will be wrong.

Therefore, rank-based non-parametric ANOVA can be used for

the data of such distribution. Non-parametric ANOVA does not

require the data to obey the normal variance homogeneous

distribution, which has wider applicability than variance analysis

(Pardo-Fernandez et al., 2015).

In this paper, 1,000 acoustic signal samples of different

behaviors were selected, and the sample duration was 100 ms.

LPCC and MFCC features were extracted from feeding behavior

and stress behavior signals. When the environment changes

suddenly, the shrimps will be in a state of stress, such as hypoxia,

salinity with different gradients, andwater temperature. According

to Kruskal–Wallis significance difference analysis, for a given

significance level = 0.05, the original assumption is that there is

no significant difference between the same type of characteristics of

different behavioral acoustic signals. Under this hypothesis, if p <

0.05, the original hypothesis is rejected, and there are significant

differences between the same characteristics of different behavioral

acoustic signals. If p > 0.05, the original hypothesis is accepted, and

there is no significant difference between the same characteristics of

different behavioral acoustic signals.

According to the LPCC features, the 12th order LPCC

feature coefficients are extracted and analyzed. Through the

analysis, it can be found that there were significant differences

in the LPCC characteristic coefficient values of each order of

sound signals of feeding behavior and stress behavior. However,

the L2 coefficient value is p>0.05, and there is no significant
FIGURE 5

Mel-frequency cepstrum coefficient (MFCC) feature coefficient extraction principle block diagram.
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difference. Similarly, it can be discarded in the subsequent

classification and recognition, as shown in Table 1.

For MFCC features, the total 35 orders of MFCC feature

coefficientsM2 toM36 are extracted for significant difference analysis.

Among them,M2toM12 are the standardMFCCs,M13 toM24 are the

first-order differential MFCCs, andM25 toM36 are the second-order

differential MFCCs. Through analysis, it can be found that there are

significant differences in the MFCC characteristic coefficient values of

feeding and stress behavior signals, but the coefficient values of M13,

M14,M17,M18,M20 toM23, andM28 toM30 are p>0.05, so therewasno

significant difference in these coefficients, and it was difficult to

distinguish different behavioral acoustic signals of P. vannamei.

Therefore, in the subsequent classification and recognition, it can be

discarded to achieve the effect of feature dimensional reduction, as

shown in Table 2.
Frontiers in Marine Science 08
Therefore, based on non-parametric ANOVA of their

significant differences, some features with redundant information

are eliminated, and the dimensionof the features is further reduced.

It verifies the effectiveness of acoustic signal features of different

behaviors and provides a certain implementation basis for

subsequent classification and recognition research.

Experimental analysis

Based on the two kinds of characteristic coefficients of different

behavioral acoustic signals of P. vannamei, SVM with different

classification strategies is selected to classify and identify different

behavioral states within the species. While exploring the

classification effect of intraspecific behavior state of P. vannamei,

this paper adds the vocal signals of other species of marine
FIGURE 6

Standard MFCC characteristic coefficients of acoustic signals from different behaviors of Penaeus vannamei.
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organisms to study the differences in behavioral acoustic signals

betweenP. vannamei and other biological species, further verify the

effectiveness of feature extraction and classification model, and

improve the generalization ability of classification system. This

section will compare and analyze the acoustic signals of different

behaviors within P. vannamei species and the classification and

recognition results of interspecific signals.
Data set processing

The data set of the classification and recognition experiment in

this paper consists of five categories of underwater biological

signals. The shrimp sound signal experiment uses a WBT22-1107
Frontiers in Marine Science 09
hydrophone. The frequency range is 1–22 kHz. The receiving

sensitivity response of the hydrophone is −193 ± 3dB @ 22 kHz

(re 1V /mPa@1m,20mcable), and the experimental sampling rate

is 100 kHz. After feeding, the shrimps mainly eat at the bottom of

tank.Therefore, during the experiment, thehydrophonewasplaced

at the center of the water tank down close to the shrimps, as shown

in Figure 10 (Wei et al., 2020). In addition to the sound signals of

feeding and stress behavior of P. vannamei collected according to

the experimental methods introduced in Section II, the other three

types of biological sound signals are humpback song signal (Mark),

sperm whales “clicks” call signal, and bottlenose dolphin “clicks”

call signal (Heimlich et al.).

First, the five types of acoustic signals are pre-processed in

frames. A total of 1,500 signals are selected for each type of signal,
FIGURE 7

First-Order differential MFCC characteristic coefficients of acoustic signals from different behaviors of Penaeus vannamei.
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including 1,000 acoustic signals as the training set, 250 signals as the

test set, and 250 signals as the verification set. The length of all signals

is 0.1 s. The frame length is 0.02 s. The frame shift is 10%. According

to the input formof theclassifier and theprevious feature significance

analysis, the signal feature coefficient extractionof different classifiers

is introduced:

1) MFCC characteristics

Calculating the 36-dimensional MFCC of each frame signal for

each sample after framing includes the 12-dimensional standard and

first- and second-order difference MFCCs. At the same time, after

summingandaveraging thecoefficients corresponding toeachorderof

each frame, the 12-dimensional coefficients of dimensions 1, 13, 14, 17,

18, 20–23, and 29–30 with small significant difference are discarded.

The dimension of each sample signal characteristic matrix is 1 × 24.
Frontiers in Marine Science 10
2) LPCC characteristics

Calculating the 12-dimensional LPCC of each frame signal

for each sample after framing, then summing and averaging the

corresponding order coefficients of each frame, and discarding

the first and second dimensional coefficients with small

significant difference, then the dimension of each sample

signal characteristic matrix is 1 × 10.
SVM classifier design

In the design and selection of SVM classifiers, based on the

two classification strategies of OvR and OvO, this paper designs

six SVM classifiers by using ECOC coding principle by selecting
FIGURE 8

Second-Order differential MFCC characteristic coefficients of acoustic signals from different behaviors of Penaeus vannamei.
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three kernel functions: linear, Gaussian, and polynomial kernel

functions, as shown in Table 3.

Among them, the penalty factor of all SVM classifiers is C = 1.

For the classification and recognition offive kinds of acoustic signals
Frontiers in Marine Science 11
within and between P. vannamei species in this paper, different

features based on SMO algorithm are used to quickly optimize the

training SVM classifier. Finally, the test set is used to test the

training classifier and analyze the results, as shown in Table 4.
FIGURE 9

All dimensional MFCC and difference coefficient diagram of cumulative sum of all frames.
TABLE 1 Kruskal–Wallis non-parametric ANOVA for LPCC characteristics of acoustic signals with different behaviors.

LPCC Mean of
feeding state

Standard deviation of
feeding state

Mean of stress
state

Standard deviation of
stress state

Kruskal–Wallis
analysis

Significant dif-
ference

L2 1.664 0.062 1.670 0.087 p=0.190 No
TABLE 2 Kruskal–Wallis Non-parametric ANOVA of MFCC order characteristics of acoustic signals with different behaviors.

MFCC Mean of feeding
state

Standard deviation of
feeding state

Mean of stress
state

Standard deviation of
stress state

Kruskal–Wallis
analysis

Significant
difference

M13 0.017 0.101 0.022 0.243 p=0.782 No

M14 0.001 0.188 7e−05 0.436 p=0.091 No

M17 −0.019 0.192 −0.035 0.345 p=0.272 No

M18 −0.028 0.154 −0.013 0.349 p=0.095 No

M20 −0.013 0.135 0.007 0.299 p=0.063 No

M21 0.001 0.086 −0.001 0.158 p=0.411 No

M22 0.004 0.081 −0.004 0.210 p=0.938 No

M23 −0.004 0.055 −0.003 0.113 p=0.563 No

M28 0.022 0.178 0.012 0.329 p=0.331 No

M29 0.036 0.129 0.025 0.182 p=0.065 No

M30 0.014 0.082 0.018 0.162 p=0.407 No
f
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In conclusion, LPCC and MFCC are effective in the

classification of different behavioral acoustic signals and

interspecific acoustic signals of P. vannamei. Meantime,

classifiers based on different types and structures have different

classification effects. Through experimental comparison and

analysis, SVM classifier based on OvR classification strategy

according to MFCC features has more stable and excellent

classification results. It can model the acoustic signal

characteristics of different underwater biological behaviors more

efficiently and has the classification accuracy as high as 93%.
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Conclusion

Based on passive acoustic technology, this paper collects

different behavioral acoustic signals produced by feeding and

stress state of P. vannamei and establishes a behavioral acoustic

signal database of P. vannamei. At the same time, the

characteristics of acoustic signals are studied. After obtaining

effective features, SVM classifiers with different structures are

designed. According to different features, the classification of

intra- and interspecific behavior states of P. vannamei is finally

completed. Finally, the SVM classifier based on the OvR

classification strategy based on MFCC features can roughly

solve the five types of underwater biological acoustic signal

classification problems proposed in this paper with the best

performance and have a classification accuracy of 93%.

Generally, underwater target behavior classification based on

underwater acoustic signal is an important research direction of

underwater acoustic signal processing, which involves many

disciplines such as marine science, sonar technology, signal

processing, feature engineering, pattern recognition, and

computer technology. Therefore, as a comprehensive subject,

the classification and recognition of different behavior states of
TABLE 3 SVM classifier based on different class partition strategies
and kernel function selection.

Classification
strategy

Kernel
function

Number of
subclassifiers

Number

OvR Linear 5 SVM_1

Gaussian 5 SVM_2

Polynomial 5 SVM_3

OvO Linear 10 SVM_4

Gaussian 10 SVM_5

Polynomial 10 SVM_6
TABLE 4 Classification and recognition results of SVM classifiers of MFCC features.

Features SVM_1 SVM_2 SVM_3 SVM_4 SVM_5 SVM_6

LPCC 90.4% 83.7% 20.6% 92.7% 89.8% 75.2%

MFCC 93.0% 80.9% 14.2% 80.0% 73.5% 40.3%
front
Bold values represents the highest value of each method.
FIGURE 10

The experimental water tank.
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P. vannamei based on passive acoustic technology not only

overcomes the limitations of underwater visual observation

research and application but also helps the intelligent

development of related industries. It has important theoretical

research and engineering practical application value.
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