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The heterogeneous seascapes in the northwestern Pacific (NWP) can be

important selective forces driving adaptive divergence of marine coastal

species distributed along the gradients. Here, we tested this hypothesis in

Japanese mantis shrimp (Oratosquilla oratoria) with a wide distribution in the

NWP and a significant north-south population structure. To this end, the full-

length (FL) transcriptomes of northern and southern O. oratoria were firstly

sequenced using PacBio single molecule real-time sequencing technology.

Based on the FL transcriptome data, we captured large-scale FL transcripts of

O. oratoria and predicted the FL transcriptome structure, including coding

region, transcription factor and long noncoding RNA. To reveal the divergence

between northern and southern O. oratoria, we identified 2,182 pairs of

orthologous genes and inferred their sequence divergences. The average

differences in coding, 5’ untranslated and 3’ untranslated region were 1.44%,

2.79% and 1.46%, respectively, providing additional support to previous

proposition that northern and southern O. oratoria are two species. We

provided further evolutionary context to our analysis by identifying positive

selected genes (PSGs) between northern and southern O. oratoria. In total, 98

orthologs were found evolving under positive selection and involved several

environmentally responsive genes associated with stress response, immunity

and cytoskeletal organization, etc. Furthermore, we found PSGs also diverged

in gene expression response of northern and southern O. oratoria to heat

stress. These findings not only highlight the importance of genetic variation in

these genes in adapting to environmental changes in O. oratoria, but also

suggest that natural selection may act on the plasticity of gene expression to

facilitate O. oratoria adaptation to environmental gradients. Overall, our work
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contributes to understanding how marine coastal species has evolved to adapt

to heterogeneous seascapes in the NWP.
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1 Introduction

In marine ecosystems, oceanographic heterogeneity (e.g.,

current interfaces, habitat transition zones, ecological

gradients) can impose spatially varying selective pressures on

populations or species distributed along the gradients. Such

heterogeneous seascapes in coastal waters have been

demonstrated to strongly influence adaptive divergence,

particularly for species with large population sizes where

selection is expected to be highly efficient (Sandoval-Castillo et

al., 2018; Coscia et al., 2020; Pratt et al., 2022). The Japanese

mantis shrimp Oratosquilla oratoria (De Haan, 1844) is benthic,

neritic and burrowing shrimp with a wide distribution in the

Northwestern Pacific (NWP) (Manning, 1971). Due to its high

productivity as well as excellent meat quality, O. oratoria is

commercially exploited in coastal waters throughout Japan,

Korea and China (Kodama et al., 2006; Ahyong, 2012). This

species occurs within a highly heterogeneous seascape that spans
02
coastal bioregions with strong gradients in sea surface

temperature (SST) and salinity (Figure 1). More specifically,

SST is strongly influenced by the complex current systems with

different temperature characteristics, including the cold Oyashio

Current (OC), China Costal Current (CCC), a low-temperature

Yellow Sea cold water mass and the warm Kuroshio Current as

well as its branches (Figure 1A, Liu, 2013). A biogeographic

boundary lies in line with the Yangtze River Estuary where the

annual SST is above 20°C on the southern side of the estuary,

and rapidly decreases to the value less than 15°C on the northern

side (Figure 1B, Johnson and Boyer, 2015). Taxa with narrow

thermal tolerance ranges are restricted to one side of the

boundary as a result of this steep temperature gradient across

the Yangtze River Estuary (Liu, 2013). In addition, a strong

salinity gradient is generated by the collision of the Changjiang

diluted water (CDW) with several coastal currents (e.g., CCC

and Subei Coastal Current) (Figure 1C, Su and Yuan, 2005).

Therefore, the wide distribution range across heterogeneous
B

C

A

FIGURE 1

Map of northwestern Pacific showing the major surface currents in the winter (A) and spatial heterogeneity in sea surface temperature (B) and
salinity (C). SCSWC, South China Sea Warm Current; TWC, Taiwan Warm Current; CCC, China Coastal Current; CRDW, Changjiang River Diluted
Water; YSWC, Yellow Sea Warm Current; TSWC, Tsushima Warm Current; LC, Liman Current. Annual temperature (°C) and annual salinity (PSU)
at the surface (ten-degree grid) were based on Johnson and Boyer, 2015. The dash/dotted line separates the distribution range of northern and
southern O. oratoria. Two sampling locations in this study are marked in orange dots.
frontiersin.org

https://doi.org/10.3389/fmars.2022.975686
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cheng et al. 10.3389/fmars.2022.975686
seascapes makes O. oratoria an ideal system to study how

ecologically based natural selection has driven adaptive

divergence of marine coastal species.

Several recent researches have revealed a remarkable pattern

of genetic differentiation in Japanese mantis shrimp despite high

dispersal potential during its planktonic larval stage (4–6 weeks,

Hamano and Matsuura, 1987). Our previous analyses have

revealed two highly divergent lineages in O. oratoria with clear

allopatric distribution by integrating mitochondrial and nuclear

evidence (Cheng and Sha, 2017; Cheng et al., 2020). The

distribution range of the two O. oratoria lineages exhibits a

remarkable latitudinal cline: the northern lineage is restricted to

cold waters with temperate affinities, while the southern lineage

inhabits the subtropical and tropical regions influenced by the

Kuroshio Current and its branches. The deep genetic divergence,

which is so far unlinked to any apparent morphological

variation, substantiates the existence of cryptic speciation in

Japanese mantis shrimp (Cheng and Sha, 2017). In the coast of

China, the sharp genetic break of O. oratoria is in line with the

Yangtze River Estuary (Du et al., 2016; Cheng and Sha, 2017;

Cheng et al., 2020). Nevertheless, these studies are constrained

by small numbers of markers that precludes an accurate

description of genome-wide DNA sequence divergence.

Meanwhile, we know little about how seascape heterogeneity

in the NWP influences adaptative evolution of O. oratoria as

well as the roles of genetic variation and plasticity in local

adaptation to environmental gradients. The polygenic basis of

traits governing physiological tolerance puts forward challenges

for linking genetic variation to ecological differences

among populations adapting to different environments (Storz

and Wheat, 2010; Rockman, 2012). Thus, the genetic

underpinnings of diversification and adaptation in Japanese

mantis shrimp remain unclear due to the lack of

genomic information.

Transcriptome represents a sample of the spatiotemporally

expressed genome that can be generated in a short time at a

reduced cost compared to whole genome sequencing, and can be

used as an alternative to genomic approaches for non-model

organisms (Morozova and Marra, 2008). Beyond uncovering the

molecular bases of physiological responses to a particular

environmental challenge (Gracey and Cossins, 2003),

transcriptomics has also been used in a comparative

framework to reveal numerous aspects of ecological speciation

and adaptation (e.g., Zhang et al., 2015a; Cheng et al., 2019). As a

low-cost next-generation sequencing technology, RNA

sequencing (RNA-seq) has become a versatile tool for studying

transcriptomics. However, RNA-seq is incapable of providing

full-length (FL) transcripts due to its inherent length limitations,

which presents major challenges for further structural and

functional genomic studies (Steijger et al., 2013; Tilgner et al.,

2013). Another limitation is that the presence of different

isoforms and differences in transcript abundance has greatly
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hampered transcriptome assembly from short reads. The third-

generation sequencing technology seems to offer an opportunity

to overcome the shortcomings of short-read sequences by

enabling the generation of kilobase-sized sequencing reads

without assembly (Sharon et al., 2013). To date, an increasing

number of FL transcriptome analyses have been conducted in a

variety of marine organisms (e.g., Yi et al., 2018; Pootakham

et al., 2020; Wang et al., 2022), which greatly facilitate the

transcriptome research in the ocean life.

In the present study, we deep-sequenced the FL

transcriptomes of northern and southern O. oratoria by

using PacBio single molecule real-time (SMRT) sequencing

technology. Based on the obtained FL transcriptomes, we first

performed transcription factor prediction, long noncoding

RNA prediction and transcript functional annotation. A

comparative transcriptomic analysis was then carried out to

identify orthologous genes and to evaluate the transcriptome-

wide genetic divergence between northern and southern O.

oratoria. With these datasets, we aimed to trace signatures of

positive selection in O. oratoria during adaptation to

heterogeneous environments and identify environmentally

responsive genes that ecologically based natural selection

may have acted on. Finally, we incorporated expression

profiles of O. oratoria under heat stress to investigate the role

of evolving plasticity in local adaptation to environmental

gradients . As such, this s tudy provides abundant

transcriptome resources and new insights into the divergence

and adaptation of Japanese mantis shrimp, and also provides

ample evidence for adaptive evolution of marine coastal species

in response to heterogeneous seascapes.
2 Materials and methods

2.1 Sample collection and RNA
preparation

The adult O. oratoria individuals were collected from the

coastal waters of Qingdao (QD) and Xiamen (XM), China,

which correspond to northern and southern O. oratoria,

respectively (Figure 1A). All individuals were acclimated over

24 h at 20°C. One individual at each sampling site was randomly

selected and the gill, hepatopancreas, digestive tract, nervous

chain, and abdominal muscle were immediately dissected out,

frozen and stored in liquid nitrogen. Subsequently, all ten

samples were subjected to RNA extraction using the TRIzol kit

(Invitrogen, USA) according to the manufacturer’s instructions,

and RNA degradation and contamination were detected with 1%

agarose gels. The integrity and purity of RNA were assessed

using NanoDrop 2000 (Thermo Scientific, USA) and Agilent

2100 Bioanalyzer (Agilent Technologies, USA). Only qualified

RNA samples were used for cDNA library constructions.
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2.2 Library construction and sequencing

RNA samples of five different tissues from each individual

were mixed in equal amount to construct the PacBio sequencing

library. Specifically, mRNA was purified from mixed total RNA

using poly (T) oligo-attached magnetic beads and reverse-

transcribed into FL cDNA using the SMARTer PCR cDNA

Synthesis Kit (Clontech, USA). After PCR amplification, quality

control and purification, the BluePippin Size Selection system

(Sage Science, USA) was used for size selection of the FL cDNA

and for producing libraries of differently sized cDNA. The

screened cDNA was re-amplified by PCR, end repaired,

connected to the SMRT dumbbell-type connector, and

exonuclease digested. The cDNA products were then subjected

to construction of SMRTbell Template libraries using SMRTBell

Template Prep Kit. The concentration and quality of the libraries

was assessed using Agilent 2100 Bioanalyzer and Qubit 2.0 (Life

Technologies, USA). Finally, qualified libraries were sequenced

on PacBio Sequel platform (Pacific Biosciences, USA).

The remaining RNA of each tissue was used for Illumina

sequencing library construction. Five separate Illumina libraries

were constructed for northern and southern O. oratoria using

the protocol of NEBNext UltraTM RNA Library Prep Kit (NEB,

USA), respectively. Briefly, poly (A) mRNA was purified from

total RNA using Oligo (dT) magnetic beads and then broken

into short fragments to synthesize first strand cDNA using

random hexamer primer. Second-strand cDNA was then

synthesized using DNA polymerase I and RNaseH. The cDNA

was subjected to end-repair, phosphorylation, 3’ adenylation,

and ligation to sequencing adaptors. Afterwards, cDNA libraries

were generated by PCR amplification, and the library

preparations were paired-end sequenced at 150 bp on an

Illumina HiSeq X Ten platform. Clean Illumina reads were

produced after removing adaptor sequences, reads containing

ploy-N (with the ratio of ‘N’ to be more than 10%) and low

quality reads (with quality score less than 5), and then all clean

reads from the same site were merged together for de novo

assembled by using Trinity v2.5.1 (Grabherr et al., 2011) with

default parameters.
2.3 Pacbio read error correction

The SMRT Link 5.1 pipeline was used for PacBio data

processing according to the official protocol. Circular

consensus sequences (CCSs) were extracted from raw reads

with the following parameters: max_drop_fraction, 0.8;

max_length, 18000; min_length, 200; min_predicted_accuracy,

0.8; min_passes, 1; min_zscore, -999. After discarding CCS reads

with length shorter than 50 bp, the remaining CCS reads were

classified into full length non-chimeric (FLNC) or non-full-

length (NFL) transcripts according to whether 5’/3’ cDNA
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primers and poly(A) tail were simultaneously observed. The

iterative clustering for error correction (ICE) algorithm was used

to obtain consensus isoforms by clustering FLNC sequences, and

Arrow software (https://github.com/PacificBiosciences/

GenomicConsensus) was used to refine consensus isoforms

using the NFL reads to produce polished consensus sequences.

All polished consensus sequences were corrected in aid of

Illumina RNA-seq data using LoRDEC (Salmela and Eric,

2014). Furthermore, redundant sequences were removed from

the transcriptome isoform sequences to obtain unigenes by using

CD-HIT (Fu et al., 2012) with an amino-acid sequence identity

threshold of 95%. Finally, the completeness of two FL

transcriptomes was assessed by examining the coverage of the

1066 conserved core genes of Arthropoda (https://busco.ezlab.

org/) using BUSCO 3 (Simão et al., 2015).
2.4 Coding sequences, transcription
factor and long noncoding
RNA prediction

All the isoforms were used to predict the coding sequences

(CDS) and protein sequences using ANGEL software (Shimizu

et al., 2006). We used the confidence protein sequences of O.

oratoria or closely related species for ANGLE training, and then

run the ANGLE predictions for given sequences. The 5’UTR and

3’UTR (untranslated regions) sequences were predicted based on

the CDS, start and stop codons. Transcripts containing the 5’

and 3’UTRs and complete CDSs were defined as FL transcripts.

Transcription factors (TFs) were predicted using AnimalTFDB

v2.0 (Animal Transcription Factor Database) (Zhang et al.,

2015b). Because O. oratoria was not included in the database,

hmmsearch was used to identify TFs based on the Pfam search

results of the TF family.

Long noncoding RNAs (lncRNAs) are defined as RNAs

which are at least 200 nucleotides in length and lack protein-

coding capacity (Rinn and Chang, 2012). On the basis of this,

lncRNA of O. oratoria transcriptome was first predicted by

screening the coding potential of transcripts using PLEK

(Li et al. , 2014), Coding-Non-Coding-Index (CNCI)

(Sun et al., 2013) and Coding Potential Calculator (CPC)

(Kong et al., 2007). The transcript sequences predicted using

PLEK, CNCI and CPC tools were further used to search against

the Pfam-A and Pfam-B databases using hmmscan. Transcripts

with predicted coding potential according to the results of all

four methods were filtered out, and those without coding

potential constituted the candidate set of lncRNAs.
2.5 Gene function annotation

The non-redundant transcript sequences were mapped to

public databases to obtain the annotation information.
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Transcripts were compared against NCBI NT (non-redundant

nucleotide sequences) using BLAST v2.2.31 (Altschul et al.,

1997) with cut-off E-value < 1E-5, NCBI NR (non-redundant

protein sequences), Swiss-Prot (http://www.ebi.ac.uk/uniprot/),

KOG (euKaryotic Ortholog Group), KEGG (Kyoto

Encyclopedia of Genes and Genomes) using diamond v0.8.36

(Li et al., 2002) with cut-off E-value < 1E-5. According to the

annotation results of the NR database, the Blast2GO v2.5

software (Conesa et al., 2005) was used to perform Gene

Ontology (GO) annotation and classification. KEGG

classification was performed using KASS (vr140224) (Moriya

et al., 2007) and the KEGG Automatic Annotation Server.

HMMER v3.1 (Nastou et al., 2016) was used to compare

amino acid sequences of transcripts against the Protein family

(Pfam) database for Pfam annotation.
2.6 Putative orthologs identification and
sequence divergence analyses

Orthologous groups were constructed from the BLASTP

results using OrthoMCL (Li et al., 2003) based on the Markov

Cluster algorithm (mcl) with default settings. The 5’UTR, coding

and 3’UTR regions were separately extracted from each pair of

orthologs. The CDS and UTR regions were aligned separately to

each other using MUSCLE (Edgar, 2004) with default settings.

For the CDS region, pair-wise alignments were performed for

the putative orthologous pairs based on protein sequences, and

back-translated to DNA sequences for subsequent analysis. The

phylogenetic tree was conducted on the basis of amino acid

sequence alignment using the maximum likelihood method as

implemented in PhyML v3.0 (Guindon et al., 2010). The node

reliability was calculated from 1000 bootstrap replications.

According to the method of Ye et al. (2014), sequence

divergences between the homologous regions of each gene pair

were calculated by dividing the number of substitutions by the

number of base pairs compared.
2.7 Test for positive selection

The ratio of non-synonymous to synonymous nucleotide

substitutions provides information about the evolutionary forces

operating on a gene (Biswas and Akey, 2006). We estimated

non-synonymous substitutions per nonsynonymous site (Ka)

and synonymous substitutions per synonymous site (Ks) among

putatively orthologous coding regions using a maximum-

likelihood method implemented in the codeml program in the

PAML package (Yang, 2007) with one-ratio model (model = 0).

In this study, Ka/Ks > 1 was considered to indicate that genes

were under positive selection and Ka/Ks < 0.1 was regarded as a

signature of purifying selections. Positively selected genes (PSGs)

with Ka/Ka > 1 were characterized with GO enrichment analysis
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based on the Wallenius noncentral hypergeometric distribution.

Go terms with a P value < 0.05 were considered significantly

enriched. The R bioconductor package topGO (Alexa and

Rahnenführer, 2010) was used to present the directed acycline

graph of the enriched GO category.
2.8 Expression of PSGs response to
thermal stress

To infer the potential role of positive selection in O. oratoria

adaptation, we explored the expression level of PSGs in two

representative geographic populations (Qingdao in the Yellow

Sea and Zhoushan in the East China Sea) in response to the same

heat stress (20°C–28°C, Lou et al., 2019a). Taking advantage of

range-wide sampling, our previous analyses of mitochondrial

and nuclear sequences indicated genetic homogeneity among O.

oratoria populations from the East and South China Seas (Cheng

and Sha, 2017; Cheng et al., 2020). These two heat-stressed

populations reported in Lou et al. (2019a) correspond to

northern and southern O. oratoria in this study, respectively.

The heating schemes of the two populations were similar, with

detailed description in Lou et al. (2019a). Briefly, the control

condition was kept at a water temperature of 20°C after

acclimation, whereas water temperature for the heat stress

condition was raised at 1°C per day to 28°C and then held

constant for 24h. All raw reads in the FASTQ format (BioProject

accession: PRJNA475657) were filtered by removing the reads

with sequencing adaptors, unknown nucleotides (N ratio > 10%)

and low quality (quality scores ≤ 5). Clean reads of each sample

were then mapped to the orthologous assembly of each

respective group by using RSEM (Li and Dewey, 2011). The

expression level was determined by averaging the expression

values of three biological replications for each experimental

condition. The differentially expressed orthologous genes were

identified using the DESeq R package v1.18.0 (Anders and

Huber, 2010) with the filtering thresholds of |log2FC| ≥ 1 and

P ≤ 0.05. Hierarchical clustering was performed using the

heatmap.2 function in the gplots R package (R Development

Core Team, 2022).
3 Results

3.1 Full-length transcriptome sequencing

Bases on the PacBio SMRT sequencing technology, a total of

116.92 Gb and 110.32 Gb subreads were obtained, with N50 of

3,465 bp and 2,350 bp for the northern and southern O. oratoria,

respectively. As shown in Table 1 and Figure S1, these subreads

yielded 1,192,616 CCSs with a mean length of 3,714 bp for the

northern O. oratoria and 1,312,861 CCSs with a mean length of
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2,390 bp for the southern O. oratoria. According to the presence

or absence of 5’/3’ cDNA primers and poly(A) tail, 1,022,216

(85.71%) FLNC reads and 162,789 NFL reads were further

identified from the CCS reads of the northern O. oratoria. For

the southern O. oratoria, 988,172 (75.27%) FLNC reads and

311,339 NFL reads were generated from the CCS reads. After

isoform-level clustering based on the ICE algorithm and

polishing based on the Arrow algorithm, a total of 46,871 and

55,408 polished FL consensus isoforms with an average length of

3,439 bp and 2,275 bp were generated from the FLNC reads of

northern and southern O. oratoria, respectively. After removing

redundancy, the consensus isoforms were finally clustered into a

total of 18,630 unigenes with N50 value of 3,852 bp for the

northern O. oratoria, and 21,843 unigenes with N50 value of

3,061 bp for the southern O. oratoria (Table 1). Of the 1066

conserved core genes of Arthropoda, 682 genes (64.0%) and 840

genes (78.8%) were mapped to the FL transcriptome of northern

and southern O. oratoria, respectively (Table S1), indicating the

sequencing data in this study were relatively complete and

suitable for downstream analyses.
3.2 Comparison between PacBio and
Illumina unigenes

The transcriptomes of five tissues of northern and southern

O. oratoria were separately sequenced using the Illumina

platform (Table S2). After trimming and filtering, clean reads

were assembled into 60,802 unigenes with an average length of

1,212 bp and N50 value of 2,140 bp for the northern O. oratoria,

and 117,403 unigenes with an average length of 997 bp and N50

value of 1,563 bp for the southern O. oratoria, which were

obviously shorter than unigenes in both FL transcriptomes. Most
Frontiers in Marine Science 06
of PacBio unigenes of northern and southern O. oratoria had

lengths > 2,000 bp, accounting for 87.1% and 61.0% of the total

number, while most Illumina unigenes of northern and southern

O. oratoria had lengths < 2,000 bp, accounting for 83.5% and

88.7%, respectively (Figure 2). The similarity between PacBio

and Illumina unigenes were further conducted using BLAST

v2.2.31 with the parameter set to 1E-5. The results showed that

only 9.78% (5944) and 7.91% (9288) of Illumina unigenes had

high similarity to 83.0% (15394) and 86.1% (18790) of PacBio

unigenes in northern and southern O. oratoria, respectively.
3.3 Full-length transcriptome structure

3.3.1 Coding sequences
Through the ANGEL predictions, a total of 18,716 CDSs

were generated for the northern O. oratoria, of which 10,351

containing the start and stop codons were defined as complete

open reading frames (ORFs). For southern O. oratoria, a total of

21,275 CDSs were predicted, including 10,286 complete ORFs.

The length distributions of CDSs are shown in Figure S2. The

CDS length of northern O. oratoria ranged from 49 bp to 3,590

bp with an average length of 477 bp, and the CDS length of

southern O. oratoria ranged from 49 bp to 3,943 bp with an

average length of 614 bp.

3.3.2 Transcription factor
In total, 1,549 putative TFs from 29 TF gene families were

identified in the northernO. oratoria, and 944 putative TFs from 29

TF gene families were identified in the southern O. oratoria (Figure

S3A). In both FL transcriptomes, Zinc finger C2H2 (zf-C2H2) was

the most abundant TF gene family, followed by the family of BTB

domain and Zinc Finger-containing (ZBTB) transcription factors. A
TABLE 1 Summary for the full-length transcriptome of northern and southern O. oratoria using PacBio sequencing.

Parameters northern O. oratoria southern O. oratoria

Sequencing data

Number of subreads (Gb) 116.92 110.32

Number of CCS 1,192,616 1,312,861

Mean read length of CCS (bp) 3,714 2,390

Number of FLNC reads 1,022,216 988,172

Number of NFL reads 162,789 311,339

Full-length non-chimeric percentage (%) 85.71% 75.27%

Isoform clustering

Number of polished consensus isoforms 46,871 55,408

Mean read length of polished consensus isoforms (bp) 3,439 2,275

Unigene

Number of unigenes 18,630 21,843

Mean read length (bp) 3,493 2,502

Maximum read length (bp) 13,109 11,054

N50 length (bp) 3,852 3,061
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GO enrichment analysis was further conducted to determine the

potential functions of genes in which TFs have been determined.

For both FL transcriptomes, binding (GO:0005488), metal ion

binding (GO:0046872) and cation binding (GO:0043169) were

the most enriched GO terms (Figure S3B).

3.3.3 Long noncoding RNA
Four prediction approaches were applied to identify

lncRNAs, and a total of 6,579 and 9,048 were predicted in the

FL transcripts of northern and southernO. oratoria, respectively.

A Venn diagram was generated to visualize the respective

contribution of different approaches to lncRNA prediction,

and 565 and 1,624 were shared among the four approaches for

northern and southern O. oratoria, respectively (Figure S4). The

linkages between the identified lncRNAs and CDSs were further

checked. The lncRNAs were only related to 6,415 (34.3%) CDSs

in the northern O. oratoria and 8614 (40.5%) in the southern O.

oratoria, suggesting that lncRNAs were not fully determined.
3.4 Functional annotation of O. oratoria
full-length transcriptome

To obtain more comprehensive genetic information of O.

oratoria, we combined the FLNC reads of the two FL

transcriptomes to produce 123,824 polished FL consensus

isoforms with N50 of 3,250 bp, and 42,735 unigenes with N50

of 3,472 bp after removing redundant sequences (Table S3). A

total of 33,741 (80.0%) unigenes had at least one significant hit in

the Nr, Nt, SwissProt, KOG, GO, KEGG or Pfam database, and a

total of 8,517 (19.9%) unigenes were annotated in all databases

(Figure S5A). By querying the Nr database, we found that the
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largest number of unigenes (11,309, 33.5%) were aligned to

Hyalella azteca, followed by Zootermopsis nevadensis (1,616,

4.8%) and Limulus polyphemus (1,077, 3.2%) (Figure S5B). In

KOG analysis, the main function classifications were found to be

‘General function prediction only’, ‘Signal transduction

mechanisms ’ , ‘Cytoskeleton ’ and ‘Posttranslat ional

modification, protein turnover, chaperones’ (Figure S5C). In

addition, 31,883 unigenes were mapped to 357 KEGG pathways

and clustered significantly in ‘signal transduction’ and ‘transport

and catabolism’ (Figure S5D). We further used the GO

classification system to functionally categorize the unigenes

based on Nr annotations. In total, 24,028 (56.2%) unigenes

were successful annotated to three GO categories, and the

largest category was biological process (49,789, 43.6%)

followed by cellular component (34,354, 30.1%) and molecular

function (29,974, 26.3%) (Figure S5E). Notably, in the biological

process category, we found that 2,866 genes were involved in

response to stimulus, 212 genes were related to immune system

process, and 464 genes were associated with reproduction. In the

molecular function category, O. oratoria had 48 genes related to

antioxidant activity. These annotation and classification will aid

understanding of the gene function in O. oratoria.
3.5 Sequence divergence between
northern and southern O. oratoria
orthologous genes

A total of 2,182 orthologous gene pairs were identified

between northern and southern O. oratoria, and the

phylogenic tree was constructed with the other two arthropods

Daphnia pulex and Penaeus vannamei (Figure 3A). The UTR
FIGURE 2

The comparison of unigene length distributions between PacBio sequencing and Illumina sequencing.
frontiersin.org

https://doi.org/10.3389/fmars.2022.975686
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cheng et al. 10.3389/fmars.2022.975686
regions of each unigene pair was identified based on the

predicted coding region. Among the 2182 pairs of orthologs,

884 pairs contain 5’UTR, coding and 3’UTR regions. Differences

between coding regions of northern and southern orthologous

genes occur at 1.44% of the positions, while the overall difference

of 5’UTR and 3’UTR between northern and southern O. oratoria

is 2.79% and 1.46%, respectively (Table S4).
3.6 Identification of genes under
positive selection

The ratio of Ka/Ks is an indicator of selection acting on a

protein-coding gene. Among the 2,182 pairs of orthologs identified,

both Ka and Ks could be calculated for 1,509 (69.2%) orthologs. For

the remaining orthologs, we could only calculate either Ka (84

orthologs, 3.8%) or Ks (477 orthologs, 21.9%), or the orthologs were

identical (112, 5.1%). For the orthologous pairs for which Ka/Ks

ratio could be calculated, themean values of Ka, Ks, and Ka/Ks were

0.452, 0.013, and 0.951, respectively. Among them, 98 orthologs

(6.5%) had a Ka/Ks > 1, indicating these genes have evolved under

positive selection (Figure 3B, Table S5). Except the orthologous

pairs with high Ka/Ks, 361 pairs (24.0%) had a Ka/Ks < 0.1,

suggesting that these genes have evolved under high selective

constraint (Figure 3B, Table S5).

GO enrichment analysis of 98 genes under positive selection

showed that 50 GO terms covering 23 genes were significantly

over-presented (P < 0.05) (Table S6). The top enriched gene

groups were mainly related to cellular ion homeostasis

(GO:0048878, GO:0050801, GO:0055082) and regulation of

cell communication (GO:0010646) (Figure 3C). Notably, GO
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terms (GO:0010628, GO:0045893) associated with transcription

regulation were also significantly enriched. Although not

enriched in the GO analysis, the following genes under

positive selection may also play important roles in local

adaptation in O. oratoria (Table 2): two gene involved in

cytoskeletal organization (Rho guanine nucleotide exchange

factor 7, ARHGEF7; cell adhesion molecule 2, CADM2), six

genes involved in stress response (glutathione peroxidase 3,

GPx3; ankyrin repeat and zinc finger domain-containing

protein 1, ANKZF1; two copies of ferritin and poly [ADP-

ribose] polymerase 12, PARP12), five genes involved in innate

immune response (L-type lectin, LTL; fibrinogen-related protein

2, FREP2; prophenoloxidase activating factor, PPAF; two copies

of antilipopolysaccharide factor, ALFs), five genes involved in

genetic information processing (reverse transcriptase ;

ribonuclease Z; zinc finger protein 271, ZNF271; two copies of

zinc finger protein 791, ZNF791).
3.7 Expression analysis of PSGs

The publicly available RNA-seq data of two ecologically

divergent O. oratoria populations (corresponding to northern

and southern O. oratoria in this study) under thermal stress (Lou

et al., 2019a) was used for expression analysis of PSGs. We firstly

compared gene expression between genes under positive

selection and those under neutral and purifying selection.

Interestingly, relatively high levels of gene expression were

consistently found in PSGs in comparison with genes under

neutral and purifying selection regardless of experimental

condition (Figure 4). Then, we focused on the expression
B

CA

FIGURE 3

Orthologous genes analysis results. (A) Phylogenetic tree of three arthropods based on the orthologous genes. (B) Distribution of Ka/Ks for the
orthologous genes. We define genes with Ka/Ks > 1 as divergent genes, and genes with Ka/Ks < 0.01 as conserved genes. (C) The directed
acycline graph of the GO category in the biological process significantly enriched in 98 genes with Ka/Ks > 1 by topGO analysis. The degree of
enrichment is represented by color intensities.
frontiersin.org

https://doi.org/10.3389/fmars.2022.975686
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cheng et al. 10.3389/fmars.2022.975686
FIGURE 4

Boxplot of the expression level of genes under positive selection (gray), neutral and purifying selection (white). P-value was calculated by Mann–
Whitney test. **P < 0.01; ***P < 0.001; ****P < 0.0001.
TABLE 2 PSGs related to stress response, immunity, cytoskeletal organization and genetic information processing between northern and
southern O. oratoria.

Ortholog_Id Ka/Ks Gene annotation

Stress response

OG12120 2.47735 GPx3|glutathione peroxidase 3 [Penaeus monodon]

OG04912 61.4759 ANKZF1|ankyrin repeat and zinc finger domain-containing protein 1-like isoform X1 [Cimex lectularius]

OG05790 1.39244 ferritin 2 [Eriocheir sinensis]

OG12193 1.39907 soma ferritin-like [Lingula anatina]

OG05536 1.00038 PARP12|poly [ADP-ribose] polymerase 12-like [Salmo salar]

OG08392 1.33889 PARP12|poly [ADP-ribose] polymerase 12-like isoform X2 [Hyalella azteca]

Immunity

OG05549 5.54875 LTL|L-type lectin [Marsupenaeus japonicus]

OG12285 1.07651 FREP2|fibrinogen-related protein 2 [Penaeus vannamei]

OG07043 1.41293 PPAF|prophenoloxidase activating factor [Penaeus monodon]

OG12049 1.03738 ALFPm2|anti-lipopolysaccharide factor isoform 2 [Macrobrachium nipponense]

OG04149 1.2141 ALFD1|1anti-lipopolysaccharide factor ALFD1 [Marsupenaeus japonicus]

Cytoskeletal organization

OG05683 1.0869 ARHGEF7|Rho guanine nucleotide exchange factor 7 [Zootermopsis nevadensis]

OG08394 1.72633 CADM2|cell adhesion molecule 2 [Vollenhovia emeryi]

Genetic information processing

OG11840 1.73221 reverse transcriptase [Marsupenaeus japonicus]

OG05528 3.59533 RNaseZ|ribonuclease Z, mitochondrial isoform X1 [Tribolium castaneum]

OG11712 1.14672 ZNF271|zinc finger protein 271-like [Bemisia tabaci]

OG11770 1.07849 ZNF791|zinc finger protein 791-like [Priapulus caudatus]

OG12162 1.03299 ZNF791|zinc finger protein 791-like [Priapulus caudatus]
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profiles of PSGs in the northern and southern O. oratoria in

response to the same heat stress (20°C–28°C). The expression

heatmap showed remarkably different expression patterns of 98

PSGs (Figure 5A). We found specific clusters of highly expressed

PSGs in the northern and southern O. oratoria exposed to heat

stress. When considered separately for population-specific

cluster, there was a significantly higher number of up-

regulated PSGs under heat stress in the northern O. oratoria

(28/98) than its southern counterpart (4/98). The highly

expressed PSGs involved in “response to stimulus”

(GO:0051716), “signaling” (GO:0035556) and “biological

regulation” (GO:0008199) were only detected in heat-stressed

northern O. oratoria (Figure 5B). However, only two proteins

with known function were abundant in heat-stressed southern

O. oratoria, a ribosome-binding protein and a CD63 antigen.
4 Discussion

4.1 Long read reference reconstruction
of the full-length transcripts

This is the first FL transcriptome study on the mantis

shrimp. Deep PacBio sequencing is currently one of the best

methods for retrieving nucleic acid sequences from species with

ultra-large and complex genomes. In this study, the FL

transcriptome of O. oratoria has been deep-sequenced using

the PacBio Sequel platform with a pooled RNA sample from
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different tissues to capture as many FL transcript isoforms as

possible. Compared with the de novo assembled unigenes

obtained from RNA-seq, the length is greatly longer in the

non-assembled unigenes generated by PacBio SMRT

sequencing. The annotation rate (80.0%) of PacBio unigenes is

much higher than that reported in previous next-generation

transcriptome studies (20.4%-33.7%, Yan et al., 2018; Lou et al.,

2019b; Lou et al., 2019c). Although fewer unigenes were

obtained by PacBio sequencing than by RNA-seq, a higher

proportion of PacBio unigenes have been annotated than

Illumina unigenes, indicating high-efficiency of PacBio SMRT

sequencing in recovering FL transcripts. Thus, the FL transcripts

produced in this study would serve as important basis for gene

discovery, genome assembly and annotation of O. oratoria, and

contribute towards better understanding of adaptive evolution in

this species.

TFs play key roles in the transcriptional regulation of

functional genes by sequence-specific binding to regulatory

regions throughout the genome (Fulton et al., 2009). In this

study, we have predicted 1,549 TFs in the northern O. oratoria

and 944 TFs in the southern O. oratoria, laying a foundation for

the next step in studying the potential regulatory roles of TFs in

O. oratoria. Among them, zf-C2H2 and ZBTB are the most

abundant TF families. C2H2 zinc-finger proteins are one of the

most widespread transcription factor families in eukaryotes

(Kubo et al., 1998), and participate in a wide range of

biological processes, such as growth, development, and stress

response (Liu et al., 2015). ZBTB TFs are generally considered
BA

FIGURE 5

(A) Expression levels of all 98 PSGs and (B) GO classification of PSGs that highly expressed under different experimental condition in population-
specific clusters. The expression level is represented by color intensities (red color indicates the higher expression, and blue color indicates the
lower expression of the gene).
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transcriptional repressors, involving in a variety of

developmental and cellular processes (Ren et al., 2019). This

TF family has been shown to involve in developmental

regulation of regenerative potential in Drosophila (Narbonne-

Reveau and Maurange, 2019).

LncRNAs are a group of RNA molecules with the structure

similar to mRNA and the length longer than 200 nucleotides

(Rinn and Chang, 2012). Despite the lack of protein-coding

capacity, LncRNAs can exert powerful biological functions by

regulating gene expression at epigenetic, transcriptional and

post-transcriptional levels (Kapranov et al., 2007; Cao, 2014).

To date, the LncRNAs of O. oratoria has not been reported yet.

We have identified 565 and 1,624 LncRNAs for northern and

southern O. oratoria, respectively. Considering the important

roles of lncRNAs in various biological processes regulation, our

data provide a reference resource for further investigation on the

underlying mechanism of lncRNA-related regulation in

O. oratoria.
4.2 Environmental heterogeneity driving
adaptive divergence in O. oratoria

For the O. oratoria complex, two cryptic species have been

delineated based on a number of phylogenetic analysis (Cheng

and Sha, 2017; Cheng et al., 2020). However, the genetic factors

driving the evolution of O. oratoria are almost unknown due to

the fact that few molecular data are available for inferring the

evolutionary history and genetic divergence of this species. In

this study, we have identified 2,182 orthologous gene pairs

between northern and southern O. oratoria and determined

the average sequence divergence to be 1.44% for the coding

regions. This is comparable to the average divergence of two

invasive whitefly species Asia II 3 and MEAM1 transcriptomes

(1.73% in Wang et al., 2012), and much higher than the level of

sequence divergence that was found between human and

chimpanzee (0.45% in Hellmann et al., 2003) as well as

between the two other whitefly cryptic species MEAM1 and

MED (0.83% in Wang et al., 2011). When it comes to non-

coding regions, the genetic divergence is more obvious for

5’UTR (2.79%) and 3’UTR (1.46%) regions, for which both

ratios are higher than the reported mean 1.12% divergence of

5’UTR and 0.86% divergence of 3’UTR regions between human

and chimpanzee (Hellmann et al., 2003). The relatively higher

level of similarity at the coding regions compared to non-coding

regions could be attributed to the presence of functional

elements that are subject to purifying selection (Wang et al.,

2011). Collectively, the substantial sequence divergence at the

transcriptomic level in combination with previous phylogenetic

results concur in suggesting that northern and southern O.

oratoria constitute different species.

The heterogeneous seascapes in the NWP, such as

temperature gradient governed by the oceanic currents system
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and salinity gradient surrounding the Yangtze River mouth, can

impose spatially varying selective pressures on local populations

distributed along the gradients. As expected, our analyses have

identified a total of 98 orthologs under positive selection (Ka/Ks

> 1), suggesting that those genes might play important roles in

the speciation and adaptive evolution of O. oratoria. The

candidate genes have been found to be involved in many

biological processes, including stress response, immunity, and

cytoskeletal organization. It should be noted that compared to a

battery of thermally responsive genes, the relatively low number

of salinity-tolerance associated genes identified here may be due

to limited genomic information provided by transcriptome

sequencing or relatively weak selective force generated by

salinity gradient, or a combination of these. As discussed

below, the functional inferences based on candidate genes

suggest that seascape heterogeneity in the NWP, in particular

differences in temperature, has facilitated adaptive evolution of

O. oratoria.

It has been clearly established that any intense stress is

usually accompanied by enhanced reactive oxygen species

(ROS) generation, causing oxidative damage (Lushchak, 2011).

The role of changes in temperature and salinity in induction of

oxidative stress is highlighted in aquatic organisms (Liu et al.,

2007; Madeira et al., 2013). In response to the production of

ROS, these organisms have developed the cellular scavenging

system to remove these radicals involving various enzymes.

GPx3 is a secreted plasma protein that scavenges ROS in the

extracellular compartment, and thereby protects cells against

oxidative damage (Jin et al., 2011). ANKZF1 involves in the

cellular response to hydrogen peroxide and plays a role in the

maintenance of mitochondrial integrity under conditions of

cellular stress (van Haaften-Visser et al., 2017). Ferritin is a

highly conserved iron storage protein that can concentrate

cellular iron to prevent the harmful ROS generation and

reduce oxidative damage (Harrison and Arosio, 1996; McCord,

1996). Previous findings have suggested the roles of ferritin in

salinity stress adaptation in the swimming crab Portunus

trituberculatus (Huang and Xu, 2016). A ROS signature in

cells can also trigger the activation of DNA repair (Mittler

et al., 2011). RAPA proteins are involved in the detection of

DNA damage and initiation of DNA repair by binding to

damaged parts of DNA (Druzhyna et al., 2000). Therefore,

selection on GPx3, ANKZF1, ferritin and RAPA12 may be

associated with adaptation of O. oratoria in response to

ox ida t i v e damage produced by t empera ture and

salinity variation.

Water temperature is probably the most important

environmental variable because it directly affects growth,

metabolism and survival of marine organisms (Chen et al.,

1995; Hennig and Andreatta, 1998). In the crab Carcinus

maenas, Chisholm and Smith (1994) found the impact of the

seasonal changes in water temperature on the antibacterial

activity of haemocytes. Notably, representative genes involved
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in innate immune were found to be positively selected in warm-

and cold-tolerant O. oratoria. Enzymes encoded by these genes

include LTL that functions as pattern recognition receptors in

shrimp immunity (Xu et al., 2014), FREP2 which is also known

as fibrinogen-like domain immunolectins and plays a role in

defense and protection against infection (Hanington and Zhang,

2011), PPAF involving in the prophenoloxidase activation

pathway of innate immune system in invertebrates (Wang

et al., 2015), and ALF which is a type of antimicrobial peptides

with a vital role in crustacean antimicrobial defense (Li and Li,

2020). Previous common-garden experiments also suggested

that differentially expressed genes after heat treatment in O.

oratoria were enriched in pathways associated with immune

(Lou et al., 2019a). Consequently, we hypothesize that these

functional genes associated with immunity seem to evolve

rapidly in O. oratoria to increase its capacity to manage

thermal stresses. Cytoskeletal reorganization has been reported

to undergo pronounced transformation under thermal stress

(Richter et al., 2010). Herein, evolutionary forces acting on

cytoskeletal organization-related genes (ARHGEF7 and

CADM2) provided additional evidence reflective of thermal

selection in O. oratoria. ARHGEF7 can regulate Rho GTPase

activity and plays a role in regulating cytoskeletal and cell

adhesion dynamics (Cheng et al., 2021), while CADM2 is a

cell adhesion molecule that functions in cell recognition,

adhesion, migration and differentiation (Edelman, 1983).

Selection on genes involved in cytoskeletal organization has

also been implicated in the warm-adapted marine mussel

Mytilus galloprovincialis compared with its cold-adapted

congeners (Popovic and Riginos, 2020). Collectively, these

findings suggest that adaptation was driving the evolution of

key genes associate with immune and cytoskeletal organization,

potentially indicating their importance forO. oratoria to tolerant

habitat temperature changes. Further validation of these

candidates is necessary to determine their functional

association with local thermal adaptation of O. oratoria.
4.3 Selection towards plasticity
facilitating thermal adaptation of
O. oratoria

Genetic variation and phenotypic plasticity both play

important roles in adaptive evolution (Davis et al., 2005; Kelly,

2019). In particular, plasticity in gene expression is favored by

organisms under dynamic environments (Li et al., 2018). Closely

related species and genetically differentiated populations may

exhibit differences in the patterns and extents of plastic

responses, indicating there is genetic variation for plastic

responses (Gao et al., 2008). This means that phenotypic

plasticity can evolve in response to natural selection, which in
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2005). As observed in the polar diatom Fragilariopsis cylindrus

(Mock et al., 2017), we found PSGs in O. oratoria had

significantly higher expression levels than those genes under

neutral or purifying selection, indicative of a role of natural

selection in driving gene expression.

Comparing gene expression responses to environmental

conditions among locally adapted populations offers an

opportunity to test for among-population variation in

plasticity (DeBiasse and Kelly, 2016). The northern and

southern O. oratoria are naturally distributed in different

climate regions in the NWP and may vary in their sensitivity

to thermal stress. As expected, they exhibit differences in the

patterns of expression plastic response to the same heat stress

(Figure 5). The northern O. oratoria that adapts to cold climate

had greater differential gene expression in PSGs between control

and heat-stressed samples than its southern counterpart,

suggesting more sensitive of northern O. oratoria to heat

stress. The higher expression plasticity in the heat-sensitive

populations has also been observed in copepod Tigriopus

californicus (Schoville et al., 2012), coral Porites astreoides

(Kenkel et al., 2013) and snail Chlorostoma funebralis (Gleason

and Burton, 2015). The observation of population-specific

clusters of differentially expressed PSGs implies that natural

selection may act on transcriptional plasticity to facilitate the

evolution of lineage specific tolerance to heat stress in O.

oratoria. Similarly, selection towards expression plasticity has

been demonstrated in other aquatic animals, such as oyster

populations from different environmental gradients (Li et al.,

2018; Li et al., 2021). Along with previous studies, our results

point to the potential importance of evolving plasticity in

adaptation of marine organisms to heterogeneous seascapes.
5 Conclusion

In this study, we have demonstrated the advantage of PacBio

sequencing to rapidly reconstruct FL transcripts compared to

RNA-seq. By comparing transcriptome sequence divergence,

our results support previous proposition that northern and

southern O. oratoria constitute different species. The

abundant PSGs related to environmental responsiveness are

indicative of a strong selective force that O. oratoria might

undergo during the adaptation process to heterogeneous

seascapes in the NWP. In addition, we found genes underwent

positive selection also exhibit divergence in expression plastic

response to heat stress, suggesting that natural selection may act

on the expression plasticity to facilitate O. oratoria adaptation.

As such, our study strengthens the view that genetic variation

and plasticity should be taken into account when attempting to

understand the evolution of marine species distributed along the
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environmentally heterogeneous coast. In light of the important

role of evolving plasticity in species’ responses to climate

change, mechanistic studies are warranted to investigate the

underlying processes that may mediate different adaptive

potential, which is critical for O. oratoria in the context of a

changing climate.
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SUPPLEMENTARY FIGURE 1

Length distributions of full-length transcriptomes of the northern and
southern O. oratoria. (A) Distribution of the number and length of CCS

reads. (B) Distribution of the number and length of FLNC sequences. (C)
Distribution of the number and length of consensus isoforms.

SUPPLEMENTARY FIGURE 2

Length distribution of CDSs of the northern (A) and southern (B) O.

oratoria. Length of predicted CDS was plotted along the x-axis, while
number of CDS transcripts was plotted along the left y-axis. The yellow

line that represents the percentage of CDS length was plotted along the

right y-axis.

SUPPLEMENTARY FIGURE 3

Transcription factors identified in the northern and southern O. oratoria.

(A) Classification of the detected TF families. Different types of transcript
family were plotted along the x-axis, while the number of transcription

factors were plotted along the y-axis. (B) GO enrichment reveals the

functions of genes that have been determined to be TFs.

SUPPLEMENTARY FIGURE 4

Venn diagram of the number of lncRNAs predicted in the northern (A) and
southern (B) O. oratoria.

SUPPLEMENTARY FIGURE 5

Functional annotation of O. oratoria full-length transcriptome. (A)
Classification of unigene annotation in all databases, including Nr,

SwissProt, KEGG, KOG, GO, Nt and Pfam. (B) Species distribution of
highest scoring blastp match in Nr database. (C) KOG function

classification of all O. oratoria unigenes. (D) KEGG pathway assignment
of O. oratoria unigenes. (E) Distribution of GO terms for all annotated

unigenes in biological process, cellular component and molecular

function categories.
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