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Rapid urbanization and heavy industrialization generally result in serious

aerosol pollution. Contrary to this conventional wisdom, Zhanjiang, one

industrial city in the southernmost point of the Chinese mainland, is not

accompanied by aerosol pollution and its air quality index always ranks high

compared to other cities in China. To investigate this contradiction, 72-hour

total suspended particles (TSPs) and water-soluble inorganic ions (WSIIs;

including Mg2+, Ca2+, K+, Na+, NH4
+, Cl-, NO3

-, and SO4
2-) were collected in

Zhanjiang, China, from November 2018 to November 2019. The relative

humidity (RH) was higher than 80% throughout the whole year in Zhanjiang.

However, the TSPs and WSIIs were not correlated with RH, indicating that RH

can increase the particle size, but this had a minor impact on the dry deposition

rate. The larger particles induced by RH were easily captured by wet

precipitation, leading to a seasonal pattern with higher TSP and WSII mass

concentrations during the dry and cool season and lower values during the hot

and rainy season. This seasonal pattern and high aerosol acidity indicate that

TSPs, WSIIs, and acidic gaseous precursors from the local sources were

preferentially scavenged by the abundant rainfall and high precipitation

frequency. Principal component analysis (PCA) results suggest that relatively

clean marine emissions and secondary aerosols were the most important

sources of TSPs and WSIIs. Our results indicate that the inconsistency

between the heavy industrial activities and excellent air quality in Zhanjiang

may be related to the high precipitation frequency (63%) and the marine

dilution effect (27%).
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Introduction

One consequence of the rapid urbanization and

industrialization in developing countries is the increase in the

total suspended particles (TSPs) in the atmosphere, i.e., air

quality deterioration (Seinfeld, 2004; Huang et al., 2014). TSPs

have long been regarded as a global air pollution concern due to

their significant impacts on climate change, atmospheric

chemistry, air quality, acidification, and human health (Fuzzi

et al., 2015; Xiao et al., 2017). The TSPs (also called atmospheric

aerosols) are primarily composed of various chemical species

and water-soluble inorganic ions (WSIIs) (Ali-Mohamed, 1991).

Therefore, observations of WSIIs may provide valuable

information for controlling aerosol pollution.

Secondary inorganic aerosols, such as SO2−
4 and NO−

3

particles, are important contributors to the WSIIs in the TSPs

(Guo et al., 2014). The SO2−
4 andNO−

3 particles in the atmosphere

are mainly generated from oxidation of their representative

gaseous precursors (SO2 and NOx) emitted from ambient

fossil fuel combustion (Shon et al., 2012; Xu L. L. et al., 2017;

Liu et al., 2019). These ions and gaseous precursors are largely

linked to aerosol pollution and acidification (Cao et al., 2013;

Weber et al., 2016; Liu et al., 2019; Tian et al., 2021). Previous

studies have reported significant increases in the aerosol mass,

which pose a potential threat to human health due to high fossil

fuel combustion (Zhang et al., 2011). Additionally, Xiao and Liu

(2004) found that air quality deterioration in Guiyang was

caused by industrial activities, and some industries should be

relocated to mitigate local haze pollution.

Zhanjiang city (20.00–21.58°N, 109.52–110.92°E), the site of

our study, is located in Guangdong Province, southern China,

and is a tropical coastal city close to the South China Sea (SCS,<

30 km). During the past decades, a variety of industries

(especially heavy industries, i.e., petrochemical factory as well

as iron and steel plant) have moved to and sprung up in

Zhanjiang. Nowadays, Zhanjiang is a famous manufacturing

and heavy industry base. According to the Guangdong Statistical

Yearbook, the total output value of heavy industries above

designated size in Zhanjiang accounts for ~50% of Zhanjiang’s

gross regional domestic product. Additionally, the Basf

Zhanjiang Integrated Base, the Lianjiang Nuclear Power Plant,

and the Jingxin Zhanjiang Donghai Thermal Power Plant are

under construction. Marine pollution caused by the

industrialization and urbanization via terrestrial input in this

region has been recently reported (Sun et al., 2018; Peng et al.,

2020; Li J. C. et al., 2020). However, the influence of

industrialization and urbanization on ambient air quality in

Zhanjiang are not reported and still needs to be clarified, as TSPs

and WSIIs in the atmosphere can be captured by rainfall and

then enter into the marine systems. This may pose a potential

risk to marine systems, for example, eutrophication (Cui et al.,

2020; Wang J. J. et al., 2020).
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Although the sources and impact factors of the WSIIs in the

TSPs have been studied extensively in order to lessen aerosol

pollution (Xiao and Liu, 2004; Kundu et al., 2010; Zhang et al.,

2011; Xiao et al., 2017; Wang Q. Q. et al., 2020), limited research

has been conducted on the impact of precipitation on WSIIs,

which is considered to be an important process for removing

TSPs and soluble gases in the ambient atmosphere (Hou et al.,

2018). Thus, we hypothesize that the shorter aerosol lifetime and

shortage of gaseous precursors in the atmosphere caused by

precipitation may contribute to reducing aerosol pollution,

especially in tropical regions with frequent precipitation and

plentiful rainfall.

To investigate this contradiction and to verify this

speculation, we monitored the TSPs in the atmosphere for one

year and analyzed the WSIIs in the TSPs in the tropical city of

Zhanjiang, China. The objectives of this study are as follows: (1)

to determine the TSP and WSII concentrations and seasonal

variations; (2) to verify the aerosol removal effect of

precipitation; and (3) to use principal component analysis

(PCA) to identify the possible sources of the WSIIs.
Methods and materials

Sampling site and sample collection

Zhanjiang in the southernmost point of the Chinese mainland

(Figure 1) has a typical tropical monsoon climate, with a cool dry

season from October to March (dry season) and a hot wet season

from April to September (rainy season; Chen et al., 2019). The

average annual temperature and rainfall in the city is 23°C and

1689 mm, respectively (Chen et al., 2019). The sampling campaign

was conducted from 1 November 2018 to 1 November 2019 at

1.5 m above the roof of a building in Guangdong Ocean

University in rural Zhanjiang City (21.15°N, 110.30°E). The

TSPs in the atmosphere were collected on a 450°C pre-baked

quartz fiber filter (Type MK360, 203 x 254 mm, Munktell Filter,

Sweden) using a high-volume air sampler (1.37 ± 0.25 m3/min;

KB-1000-180815, Xiamen, China), and the cumulative sampling

time for each aerosol sample was about 72 hours. After sampling,

the filter was stored at -20°C to prevent volatilization. A total of

116 aerosol samples were collected in this study.
pH measurements and analysis of the
major WSIIs in the TSPs

The pH values of the samples were measured using a desktop

pH meter (Orion STAR A211, Thermo Fisher Scientific, USA)

immediately after obtaining the extracted aqueous solution. The

remaining aqueous extracts were stored at -20°C until the water-

soluble inorganic ions were analyzed.
frontiersin.org

https://doi.org/10.3389/fmars.2022.977120
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2022.977120
Five cations (Mg2+, Ca2+, K+, Na+, and NH+
4 ) and three

anions (Cl-, NO−
3 , and SO2−

4 ) in the aqueous extracts of the

aerosol samples were analyzed in this study. NH+
4 and NO−

3 were

determined using standard colorimetric methods (Grasshoff

et al., 1999), and their detection limits were< 0.1 mg/L. The

other ions were analyzed using ion chromatography (Dionex

Aquion, Thermo Fisher Scientific), and their uncertainties

were< 5%.
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Meteorological data

Daily meteorological parameters, i.e., air temperature (°C), wind

speed (km/h), and relative humidity (RH, %), were obtained from

the local weather station (< 15 km southwest of the sampling site)

during the sampling period. The precipitation was documented after

each rainfall event. Detailed information on the rainfall sampling

protocols can be found in our previously published papers (Chen
FIGURE 1

The sampling location of Zhanjiang (red dot). WM, winter monsoon; SM, summer monsoon. The blue triangles are the location of heavy
industry. A, B, C, and D denote Chenming Paper Mill, Sinopec Zhanjiang Dongxing Petrochemcial Factory, Zhongke (Guangdong) Refinery &
Petrochemical Factory, and Baosteel Zhanjiang Iron & Steel Plant, respectively.
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et al., 2019; Chen et al., 2020). The daily air pollutants, such as SO2,

NO2, PM2.5, and PM10, presented during the sampling period in

Zhanjiang were downloaded from https://www.zq12369.com/. A

72-hour average of the data described above (except for

precipitation) was calculated and is presented in Figure 4.
Results

As shown in Figure 2, the mass concentration of the TSPs in

the atmosphere ranged from 18.1 to 133.6 mg/m3, with an

average and standard deviation of 56.5 ± 24.3 mg/m3. The

average value of the TSPs falls within the recommended range

of the international guidelines (150 to 230 mg/m3). There were

significantly seasonal variations in the mass concentrations of

the TSPs (Figure 2 and Table 1). The mass concentration of the

TSPs in the dry season (with an average value of 68.5 ± 23.0 mg/
m3; Table 1) were significantly higher than those in the rainy

season (with an average value of 44.8 ± 19.2 mg/m3; Table 1;

ANOVA, p< 0.01).

The contents of the WSIIs in the TSPs increased in the order

of Mg2+ < Ca2+ < K+ < Na+ < NH+
4 < Cl− < NO−

3 < SO2−
4 . SO2−

4
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was the most abundant anion in the TSPs, followed by NO−
3 and

Cl-, which accounted for 56.2%, 27.2%, and 16.6%, respectively,

of the total anions. The predominant cations were Na+, NH+
4 ,

and K+, accounting for 28.8%, 26.8%, and 20.4%, respectively, of

the total cations. Similar seasonal variation pattern could be

observed in the WSIIs. Significantly higher Mg2+, Ca2+, NH+
4 ,

NO−
3 , and SO2−

4 values occurred in the dry season, whereas lower

values were observed in the rainy season (Figure 2D; Table 1;

ANOVA, p< 0.01 for these ions). The mass concentrations of K+

were stable throughout the sampling campaign (Figure 2B and

Table 1; ANOVA, p > 0.05).
Discussion

Influences of meteorological factors

The average mass concentration of the TSPs in the rainy season

(with an average value of 44.8 ± 19.2 mg/m3) was 34.6% lower than

that in the dry season (with an average of 44.8 ± 23.0 mg/m3)

(ANOVA, p< 0.01). The backward air mass trajectories during the

same sampling periods in our published study (Luo et al., 2022)
B

C

D

A

FIGURE 2

Seasonal variations in the pH, and mass concentrations of TSPs and WSIIs (i.e., K+, Mg2+, Ca2+, Na+, NH4
+, NO3

-, SO4
2- and Cl-) in the

atmospheric aerosols in Zhanjiang.
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showed that the air masses during the dry season could bring land-

based aerosol to the Zhanjiang and the air parcels during the rainy

season were mainly originated from the South China Sea. This

suggested that the seasonal variation of TSPs concentrations in

Zhanjiang were related to the air masses transition. However, it is

hypothesized that this influence might be minor than local

influences as discussed in the following sections. In addition,

during the rainy season, the TSPs concentrations in the present

study were lower than the value in the South China Sea (remote

area, 60.4 ± 27.0 mg/m3; Xiao et al., 2017), Guangzhou (urban area,

62.1 mg/m3; Tan et al., 2009), and Guiyang (polluted area, 85.4 ±

29.1 mg/m3; Li Q. et al., 2020). During the dry season, the TSPs

concentrations in the present study were significantly lower than

the concentration observed in the South China Sea (remote area,

114.7 ± 82.1 mg/m3; Xiao et al., 2017), Shanghai (urban area, 94.64

mg/m3; Gao et al., 2011), Xi’an (urban area, 130 mg/m3; Gao et al.,

2011), and Guiyang (polluted area, 140.2 ± 46.2 mg/m3; Li Q. et al.,

2020), and were similar to Guangzhou (urban area, 66.7 mg/m3; Tan

et al., 2009). These results implied that the seasonal variation of

TSPs concentrations were greatly influenced by local conditions, for

example, meteorological conditions (i.e., precipitation, temperature,

wind speed, and RH) and local emissions (Gao et al., 2011; Meng

et al., 2016; Xiao et al., 2017). Recent studies also found that local

emission andmeteorological factor have an important impact on air

pollution (Wang et al., 2021; Zhou et al., 2022).

The meteorological conditions can affect chemical

conversion and the deposition of TSPs (Meng et al., 2016) and

thus affecting the mass fraction of WSIIs in TSPs. During the

sampling periods, the mass fraction of WSIIs accounted for

35.7% of TSPs, displaying a higher fraction in the dry season

(with an average value of 41.4%) and lower fraction in the rainy

season (with an average value of 30.0%). This suggested that the

seasonal variation of WSIIs was related to TSPs concentrations.

The mass fraction of WSIIs in TSPs in the present study was

higher than the value in the South China Sea (24.8%; Xiao et al.,

2017), and were comparable to the value in urban Guangzhou
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(35%; Tao et al., 2017) and in suburban Zhuhai (34%; Tao et al.,

2017). The significantly positive relationships between WSIIs

and TSPs (p< 0.01 forNH+
4 , Ca

2+, Cl-,NO−
3 , and SO

2−
4 ; p< 0.05 for

Mg2+; p > 0.01 for K+ and Na+; Table 2) also supported the

concept that WSIIs were important constituents of TSPs.

Therefore, WSIIs might play a significant role in TSPs in the

present study.

During the sampling periods, the WSIIs concentrations were

also higher during the dry season and were lower during the

rainy season, with an average reduction rate of 42.3% (Table 1).

This result is consistent with the seasonal pattern in Guiyang,

that is, decreases in the TSPs (decrease of 18%) and WSIIs

concentrations during the rainy season (Xiao and Liu, 2004).

However, in contrast to the findings for Guiyang, the

percentages of SO2−
4 , Cl-, NO−

3 , and NH4+ in the total WSIIs

were lower in the rainy season than those in the dry season,

indicating that in the particles, these ions tend to be coarser, so

they have a shorter residence time than the finer components.

Thus, they were readily captured by precipitation and were

preferentially scavenged below the clouds (Xiao and Liu,

2004). Notably, in the precipitation characteristics shown in

Figure 3, the precipitation frequency (precipitation frequency

was calculated from the fraction of rain events in each month

during sampling periods; rainfall > 0.5 mm/day as the criterion;

Hou et al., 2018; data sourced from https://en.tutiempo.net/

world.html) and the amount of rainfall were significantly higher

in the rainy season (especially in summer) and lower in the dry

season, which further suggests a removal process driven by

frequent and large amounts of precipitation (Hou et al., 2018).

Temperature, wind speed, and RH also have impacts on the

seasonal variations in the TSPs and WSIIs in atmospheric

aerosols (Xiao and Liu, 2004; Xiao et al., 2017). In this study,

the TSPs and WSIIs were strongly negatively correlated with the

air temperature (p< 0.01 for TSPs, NH+
4 , Mg2+, Ca2+, Cl-, NO−

3 ,

and SO2−
4 ; p > 0.05 for K+ and Na+; Table 2), suggesting that the

hot and rainy season helps reduce the amount of these particles

in the atmosphere, leading to a decrease in the TSPs and WSIIs

concentrations (Figure 2 and Table 1). Only the mass

concentration of Ca2+ in the TSPs was affected by wind speed

(Table 2), and the resultant positive correlation (Table 2, p<

0.05) suggests that strong winds can bring dust containing Ca2+.

The high RH throughout the year (>80%) in Zhanjiang

(Figure 4C) suggested that the particles in the atmospheric

aerosols were wet and easily interacted with each other (Xiao

and Liu, 2004), leading to an increase in particle size and the dry

deposition rate (Tang et al., 2006). If the dry deposition rate

increased during the sampling periods, a systematic decrease in

the TSPs and WSIIs with increasing RH should be observed, and

good correlations should be found among them. By contrast, the

TSPs and WSIIs (with the exception of Na+) were not correlated

with RH in Zhanjiang (Table 2), indicating that the increase in

particle size caused by the RH had little impact on the dry

deposition rate.
TABLE 1 Seasonal variations in the WSIIs in the atmospheric aerosols
in Zhanjiang.

Rainy season Dry season

n 58 58

Rainfall (mm) 1236.5 326.4

TSPs (mg/m3) 44.8 ± 19.2 68.5 ± 23.0

Na+ (mg/m3) 1.3 ± 0.8 1.9 ± 1.2

NH+
4  (mg=m

3) 0.7 ± 0.9 2.9 ± 1.8

K+ (mg/m3) 1.0 ± 0.5 1.1 ± 0.3

Mg2+ (mg/m3) 0.2 ± 0.1 0.3 ± 0.1

Ca2+ (mg/m3) 0.8 ± 0.4 1.2 ± 0.5

Cl- (mg/m3) 1.5 ± 1.3 2.9 ± 1.9

SO2−
4  (mg=m3) 5.6 ± 3.7 10.3 ± 2.6

NO−
3  (mg=m

3) 2.0 ± 1.4 6.7 ± 3.5
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Indicators of aerosol acidity

In addition to the TSP and WSII concentrations, aerosol

acidity is also a concerning environmental problem. Thus, the

ion balance and neutralization factors were calculated to

investigate the aerosol acidity (Xu J. S. et al., 2017; Agarwal et

al., 2020). In order to evaluate the acid–base balance of the ions

in the atmospheric aerosols, ion balance calculations, i.e., the

ratio of the total anion equivalents to the total cations

equivalents (SAE/SCE), have generally been conducted in

previous studies (Zhang et al., 2011; Xu J. S. et al., 2017;

Agarwal et al., 2020). The charge balance between the anions

and cations was calculated as follows:
Frontiers in Marine Science 06
SAE = ½SO2−
4 �=48 + ½NO−

3 �=62 + ½Cl−�=35:5; (1)

SCE = ½Na+�=23 + ½NH+
4 �=18 + ½K+�=39 + ½Mg2+�=12

+ ½Ca2+�=20: (2)

Here, ½SO2−
4 �, ½NO−

3 �, [Cl-], [Na+], ½NH+
4 �, [K+], [Mg2+], and [Ca2+]

refer to the mass concentrations of the ions (mg/m3).

The plot of SAE vs SCE is presented in Figure 5A. The slope

of the linear regression for all of the TSP samples (R2 = 0.87)

was slightly higher than 1, indicating a cation deficient

scenario, which may be the result of the omission of

hydrogen ions from the calculations (Zhang et al., 2011).

Furthermore, the average ratio of SAE/SCE in the four
TABLE 2 Correlation coefficients between pH, the WSIIs in the atmospheric aerosols, and the meteorological parameters in Zhanjiang.

TSPs Na+ NH+
4 K+ Mg2+ Ca2+ Cl- NO−

3 SO2−
4 pH WS RH T

TSPs 1 0.183 0.850** 0.120 0.330* 0.703** 0.293** 0.819** 0.799** -0.512** 0.101 -0.006 -0.532**

Na+ 1 0.152 0.039 0.948** -0.216* 0.813** 0.358** 0.136 0.163 0.048 0.212* -0.146

NH+
4 1 0.135 0.294** 0.576** 0.335** 0.849** 0.798** -0.608** 0.083 -0.034 -0.589**

K+ 1 0.069 0.094 0.339** 0.102 0.002 0.004 0.000 -0.058 -0.061

Mg2+ 1 -0.029 0.807** 0.473** 0.292** 0.045 0.102 0.175 -0.292**

Ca2+ 1 -0.086 0.657** 0.478** -0.418** 0.234* -0.164 -0.535**

Cl- 1 0.426** 0.158 0.088 0.084 0.124 -0.298**

NO−
3 1 0.657** -0.539** 0.144 0.000 -0.638**

SO2−
4 1 -0.680** 0.049 -0.129 -0.447**

pH 1 -0.064 0.294** 0.340**
frontie
WS, wind speed (km/h), RH, relative humidity (%); T, air temperature (°C); **: correlation at the 0.01 level (two-tailed); *: correlation at the 0.05 level (two-tailed).
FIGURE 3

Monthly precipitation frequency and total rainfall amount in Zhanjiang. Precipitation frequency data was calculated from the fraction of rain
events in each month during sampling periods (rainfall > 0.5 mm/day as the criterion; Hou et al., 2018; data sourced from https://en.tutiempo.
net/world.html).
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seasons followed the order autumn (1.34) > winter (1.12) >

summer (1.03) > spring (1.02), which is in good agreement

with the seasonal pattern of the pH values (Figure 2A).

Therefore, these results demonstrate that the aerosols are

more acidic in autumn and winter and are less acidic in

spring and summer in Zhanjiang. This seasonal variation is

consistent with the aerosol research conducted in Guangzhou

(GZ) and Hong Kong (HK), where the samples were found to

have lower pH values (pH = 4.33 and 5.21 in GZ and HK,

respectively) in winter and higher pH values (pH = 5.21 and

5.72 in GZ and HK, respectively) in summer (Cao et al., 2013).
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The ratio of the NH+
4 equivalent concentration to the sum of

the equivalent SO2−
4 and NO−

3 concentrations (i.e., ½NH+
4 �=½SO2−

4

+NO−
3 �) in the TSPs can be used to assess the neutralization

reaction (secondary aerosol process) among NH+
4 , SO

2−
4 , and N

O−
3 (Xu J. S. et al., 2017). In this study, the equivalent ratios of

½NH+
4 �=½SO2−

4 + NO−
3 � of the samples were less than 1:1

(Figure 5B), which indicates an NH+
4 deficiency in the ambient

particles (Zhou et al., 2018). However, the measurements in this

region are comparable to those on Jeju Island (average 1.7 ± 1.1

mg/m3; Kundu et al., 2010) and in Guiyang (average 3.81 ± 1.64

mg/m3; Xiao and Liu, 2004), are higher than those in Yurihonjo
BA

FIGURE 5

(A) Ion balance of the TSPs in Zhanjiang. (B) Relationship between the equivalent NH4
+ concentration and the sum of the equivalent

SO4
2- + NO3

- concentrations in the TSPs in Zhanjiang.
B

C

A

FIGURE 4

72-hour average values of air temperature, wind speed, SO2, NO2, O3, PM2.5, PM10, and relative humidity in Zhanjiang.
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(rural site in Japan, average 0.38 ± 0.33 mg/m3; Kawashima and

Kurahashi, 2011) and NH+
4 inadequate ambient (Jickells et al.,

2003; Lin et al., 2016). This demonstrates that the NH+
4 in the

atmosphere in Zhanjiang is adequate. One possible reason for

this discrepancy is that the equivalent concentrations of the

acidifying anions were considerably more abundant. That is, S

O2−
4 and NO−

3 were too abundant for the NH
+
4 in the atmospheric

aerosols to be neutralized, and thus the acid status of the

atmospheric aerosols can be ascribed to an excess of acidifying

anions (Cao et al., 2020). Thus, the higher acidity in autumn and

winter could be related to the higher concentrations of SO2−
4 and

NO−
3 (Figure 2D).

Cations (NH+
4 , nss-K+, nss-Mg2+, and nss-Ca2+) have

individual neutralization capacities, and NH+
4 plays a major

role in decreasing aerosol acidity (Xu J. S. et al., 2017; Agarwal

et al., 2020). Based on the similar mass concentrations of the

cations in this study (Figure 2A–C), we hypothesize that there

were other major neutralization ions in addition to NH+
4 . Thus,

the neutralization factors (NFs) were investigated to determine

the dominant neutralization cations. The contributions of Na+

and Cl- to lessening the aerosol acidity are considered to be

negligible since they are mainly sourced from sea salts (Safai

et al., 2010; Satsangi et al., 2013). Although a good correlation

was observed between Na+ and Cl- (p< 0.01; Table 2), the

corresponding ratios of [Na+]/[Cl-] were found to be lower

than that of seawater (1.1) (Xu et al., 2014), suggesting that

coal combustion was also a source of Cl- in addition to sea salt

(Xue et al., 2016; Jain et al., 2017; Xu J. S.et al., 2017). Therefore,

the contribution of Cl- to the neutralization should be taken into

account, and the non-sea salt Cl- ([nss-Cl-]) can be calculated by

subtracting the sea salt Cl- ([ss-Cl-] = [Na+]/1.1). NFs in

Zhanjiang were calculated using the following equations:

NF(NH+
4 ) = ½NH+

4 �=(½NO−
3 � + ½nss − Cl−� + ½nss − SO2−

4 �), (3)

NF(nss − K+) = ½nss

= K+�=(½NO−
3 � + ½nss − Cl−� + ½nss − SO2−

4 �), (4)

NF(nss −Mg2+)

= ½nss −Mg2+�=(2½NO−
3 � + 2½nss − Cl−� + ½nss − SO2−

4 �), (5)
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NF(nss − Ca2+)

= ½nss − Ca2+�=(2½NO−
3 � + 2½nss − Cl−� + ½nss − SO2−

4 � Þ: (6)

Here, ½NH+
4 �, ½NO−

3 �, [nss-Cl-], ½nss − SO2−
4 �, [nss-K+], [nss-Mg2

+], and [nss-Ca2+] refer to the mass concentration of the ions

(mg/m3). For cases with [Na+]/[Cl-] ratios higher than 1.1, [Cl-]

should be substituted for [nss-Cl-]. The non-sea salt ions were

calculated as follows (Balasubramanian et al., 2003; Nair et al.,

2005):

½nss − K+� = ½K+� − ½Na+� ∗ 0:037, (7)

½nss −Mg2+� = ½Mg2+� − ½Na+� ∗ 0:12, (8)

½nss − Ca2+� = ½Ca2+� − ½Na+� ∗ 0:0385: (9)

The NF values of the four cations (NH+
4 , nss-K

+, nss-Mg2+,

and nss-Ca2+) are listed in Table 3. As speculated, there were three

major neutralization ions in Zhanjiang. Nss-K+ was the major

neutralization ion in summer, which may be related to the fact

that biomass burning is an important anthropogenic activity in

rural sites (Xu J. S. et al., 2017; Agarwal et al., 2020). The NF values

ofNH+
4 were the highest in winter, spring, and autumn, suggesting

its dominant impact in neutralizing aerosol acidity. This result is

supported by a previous study (Xu J. S. et al., 2017). Nss-Ca2+ was

the second largest contributor to the neutralization of aerosol

acidity, possibly due to the enhanced soil dust brought by strong

wind, as suggested by the significant positive correlation between

Ca2+ and the wind speed (p< 0.01; Table 2). Nearby agricultural

fields and unpaved roads (Xu J. S. et al., 2017; Agarwal et al., 2020)

could be the origins of this soil dust. The NF values of nss-Mg2+

were the lowest during the sampling periods, indicating that it had

a minor neutralization effect.
The role of precipitation in
chemical conversions

As was previously discussed, in this study, the aerosol acidity

and concentration were correlated with excess NO−
3 and SO2−

4 .

Knowledge of the origin and processes of these ions could help

lessen aerosol pollution. Aerosol acidity is greatly affected by the
TABLE 3 The neutralization factors (NFs), i.e., NH4
+, nss-K+, nss-Mg2+, and nss-Ca2+, in the TSPs in Zhanjiang.

NH+
4 nss-K+ nss-Mg2+ nss-Ca2+

Winter 0.11 0.04 0.01 0.05

Spring 0.07 0.06 0.01 0.06

Summer 0.02 0.20 0.01 0.09

Autumn 0.07 0.04 0.01 0.06

Average 0.07 0.08 0.01 0.07
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oxidation of nitric oxide (NOx) to NO−
3 and of sulfur dioxide

(SO2) to SO
2−
4 in the atmosphere (Cao et al., 2020). The nitrogen

oxidation ratio (NOR) and the sulfur oxidation ratio (SOR) J. S.

were estimated using the following equations (Lin, 2002; Xu

et al., 2017) in order to gain a better understanding of the

conversions of NO−
3 and SO2−

4 :

SOR = ½nss − SO2−
4 �=(½nss − SO2−

4 � + ½SO2�), (10)

NOR = ½NO−
3 �=(½NO−

3 � + ½NO2�) (11)

Here, ½nss − SO2−
4 �, [SO2], ½NO−

3 �, and [NO2] refer to the mass

concentrations of the ions (mg/m3). The higher SOR and NOR

values observed (threshold: 0.1) suggest the presence of more

gaseous precursors that generate sulfate- and nitrate-containing

secondary aerosols through oxidation (Colbeck and Harrison,

1984; Ohta and Okita, 1990; Kaneyasu et al., 1995).

The monthly and seasonal variations in air temperature,

NOR, SOR, and the amount of rainfall are presented in Figure 6.

As can be seen, the monthly average values of NOR and SOR

were higher than 0.1, indicating a considerable conversion of

gaseous precursors to NO−
3 and SO

2−
4 in the atmospheric aerosols

during the sampling periods. The fact that NO2 and SO2 were

relatively abundant in winter and autumn (Figure 4B) could

contribute to the higher occurrences of NO−
3 and SO2−

4

(Figure 2D), which were seasonally consistent with the lower

pH values (Figure 2A). The decreased production of secondary

aerosols in summer is indicated by the valleys in the SOR and

NOR curves (Figure 6). This seasonal pattern is contrary to the

results of previous studies (Zhang et al., 2011; Xu J. S. et al.,

2020). The ambient oxidant (O3) for chemical conversion is

relatively abundant (Figure 4B), so the different meteorological

conditions may be the cause of the low conversion rates. The

conversion of NO2 to NO−
3 and SO2 to SO2−

4 is favored by warm
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and humid ambient conditions (Zhang et al., 2011; Xu J. S. et al.,

2020). Since the city investigated in this study is warmer and

moister than Xi’an (Zhang et al., 2011), the chemical conversion

of NO2 and SO2 occurred year-round, and the calculated

oxidation ratio was higher than that in the abovementioned

area. Additionally, the amount of rainfall in Zhanjiang is about

twice than that in the abovementioned area and is mainly

concentrated in summer (Figure 4), which gives rise to a

precipitation-driven removal process. Therefore, the

coexistence of low gaseous precursors (Figure 4B), low

precursor conversions (Figure 6), and frequent plentiful

rainfall (Figure 3) in summer in Zhanjiang may be related to

the removal effect caused by the precipitation. Gaseous

precursors can be captured by precipitation below the clouds

(Chen et al., 2020), and a lack of reactants may induce low

oxidation ratios (Jiang, 2016).

It has been reported that gaseous precursors are

predominantly emitted by fossil fuel combustion (> 70%; Lv,

2019; Liu et al., 2019), and high concentrations of NO2 and SO2

in winter are influenced by additional coal combustion for

heating (Zhang et al., 2011). Thus, the reduction in NO2 and

SO2 in summer seems to suggest a decrease in fossil fuel usage in

addition to the removal effect caused by precipitation. However,

we believe that the reduced combustion in summer is unlikely to

be based on the ratio of NO−
3 to SO2−

4 (NO−
3=SO

2−
4 ) and

power production.

The NO−
3=SO

2−
4 ratio of the atmospheric aerosols is

recognized as an effective approach to assessing stationary and

mobile sources of nitrogen and sulfur and has been widely used

at various locations around the world (Arimoto et al., 1996; Tan

et al., 2009; Safai et al., 2010; Begam et al., 2017). When this ratio

is > 1, the emissions are considered to be produced by mobile

sources; otherwise, they are emitted from stationary sources
FIGURE 6

Monthly average values of air temperature, NOR, SOR, and amount of rainfall.
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(Arimoto et al., 1996; Lv, 2019). As can be seen from Figure 7,

the monthly average NO−
3=SO

2−
4 ratios during the sampling

periods were<1 (from 0.05 to 2.57, averaged at of 0.55 ± 0.33),

indicating that the predominance of stationary sources over

mobile sources in Zhanjiang. Thus, the NO2 and SO2 in the

atmosphere during the sampling periods were associated with

local emissions.

China is a coal-fired country, and more than half of the coal

is consumed by electric power plants, so power production can

be considered to be an indicator of the local fossil fuel

consumption. Power production continues at a high rate in

summer; whereas it has a relatively low rate in winter and

autumn (Figure 7), implying an adequate amount of gaseous

precursors should be present in the hot and rainy season.

However, the observations in summer showed low values

(Figure 4B), which in turn supports the possibility of a

precipitation-driven removal process.
Possible air quality improvement process
and source identification in a heavy
industry coastal city

Aerosol pollution is a significant global problem caused by

rapid economic and industrial development. The inconsistency

between heavy industrial activities and low aerosol

concentrations during our sampling campaign in Zhanjiang

may be related to a precipitation-driven removal effect (Hou

et al., 2018) and the marine dilution effect. Aerosols from marine

emissions are considered to be relatively clean (Jickells et al.,

2003; Xiao et al., 2017; Zhou et al., 2019), which results in
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potential dilution and air quality improvement when mixed with

polluted aerosols produced by terrestrial anthropogenic

activities. Since the study area is bordered by the SCS, the

marine effect should be taken into account in this region.

Thus, the aerosols from non-sea salt contributions were

evaluated, and the results are presented in Table 4. More than

50% of the Mg2+ in Zhanjiang was sourced from sea salt

(Table 4), indicating that the Mg2+ is predominantly from

marine emissions. The higher ratios (>90%) of nss-K+/K+, nss-

Ca2+/Ca2+, and nss − SO2−
4 =SO2−

4 found during sampling

campaign (Table 4) indicate minor contributions from marine

emissions to these WSIIs in the aerosols.

In order to investigate the effects of precipitation on the

TSPs, linear regression analysis (SPSS version 22.0, IBM Corp.)

was conducted to quantitatively describe the impacts of

precipitation on the TSPs. The frequency and amount of

precipitation were selected as the precipitation characteristics,

as was suggested by Hou et al. (2018). As can be seen from the

data shown in Figure 8, the TSPs were negatively affected by

precipitation, indicating that the atmospheric aerosol lifetime

was sensitive to precipitation (Hou et al., 2018), and

precipitation significantly contributed (> 50%) to the decrease

in the TSPs pollution in Zhanjiang. The high coefficient of

determination (R2 = 0.63) in Figure 8A further suggests that

the precipitation frequency had a larger effect on the removal

efficiency than the amount of precipitation. The model results of

Hou et al. (2018) also highlight the importance of precipitation

frequency in shortening aerosol lifetime.

Principal component analysis (PCA, SPSS version 22.0, IBM

Corp.) was conducted in this study and presented in Table 5.

Principal Components Analysis (PCA) is an algorithm to
FIGURE 7

Monthly average values of the NO3=SO
2
4 ratio (mass concentration ratio) and power production in Zhanjiang during the sampling periods (data

from the Zhanjiang Bureau of Statistics, https://www.zhanjiang.gov.cn/tjj/).
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transform the columns of a dataset into a new set of features

called Principal Components (PC). According to the results of

PCA, a large chunk of the information across the full dataset is

effectively compressed in fewer feature columns (i.e., PC1, PC2,

PC3, etc.), while still preserving as much information as possible.

This enables dimensionality reduction and ability to visualize the

separation of classes or clusters (https://builtin.com/data-

science/step-step-explanation-principal-component-analysis).

The extracted PC with eigenvalue > 1.0 is retained for

interpretation and the loading above 0.5 of each component is

determined to be the major contribution to each of the PC scores

(Gao et al., 2011; Zhang et al., 2011; Agarwal et al., 2020; Liu

et al., 2021a; Liu et al., 2021b). In these studies, the determined

component is regarded as tracer of certain source (Gao et al.,

2011; Zhang et al., 2011; Agarwal et al., 2020; Liu et al., 2021a;

Liu et al., 2021b). Similarly, the determined component can be

used for tracing sources in the present study.

As presented in Table 5, three factors were identified

(eigenvalue > 1.0) as PCs and accounted for 90.0% of the total

data variance. PC1 was strongly loaded with TSPs, NH+
4 , Mg2+,

Ca2+, Cl-, NO−
3 , and SO2−

4 . NH+
4 , NO

−
3 , and SO2−

4 were mainly

from a secondary formation process (Agarwal et al., 2020). As

was previously discussed, Cl- reflects the influence of coal

combustion (Xue et al., 2016; Jain et al., 2017; Xu J.S. et al.,

2017). Ca2+ and Mg2+ reflect the contributions of soil dust and
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are the principal crustal elements (Gao et al., 2011; Zhang et al.,

2011; Meng et al., 2016; Saxena et al., 2017; Jaiprakash et al.,

2017). Therefore, PC1 was identified as a mixture of secondary

aerosols, coal combustion, and soil dust. PC2 explained 27.4% of

the total variance and was observed to be heavily loaded for Na+,

Mg2+, and Cl-, which were possibly influenced by sea salts. This

is in agreement with the results for other coastal areas (Xu J. S.

et al., 2017), that is, the aerosols in these areas exhibited oceanic

characteristics. Thus, the presence of these ions indicates that

PC2 was primarily sourced from marine emissions. PC3 was

characterized by a high loading of K+ and accounted for 11.5% of

the variance. Moreover, K+ was found to be uncorrelated with

most of the WSIIs in Zhanjiang (Table 2), suggesting that the

PC3 source is biomass burning.

We summarize the possible removal effect of TSPs in

Zhanjiang in a conceptual diagram (Figure 9), showing

frequent precipitation could remove a large amount of gas

precursors and local secondary aerosols. The aerosols sourced

from clean marine emissions therefore act as the supplement in

the ambient, leading to the observance of relatively high

contribution in the TSPs. This result may provide useful

information for lessening aerosol pollution under the

background of the pervasive anthropogenic aerosols pollution

around the world, and the relocation site chosen for

industrial activities.
TABLE 4 Non-sea salt ionic fractions in Zhanjiang.

nss-K+/K+ nss-Mg2+/Mg2+ nss-Ca2+/Ca2+ nss − SO2−
4 =SO2−

4

Winter 93% 45% 93% 96%

Spring 91% 27% 91% 92%

Summer 96% 33% 93% 89%

Autumn 94% 44% 94% 96%

Average 94% 37% 93% 93%
BA

FIGURE 8

Linear regressions of (A) TSPs and precipitation frequency and (B) TSPs and amount of precipitation.
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As stated above, gas precursors and local secondary

aerosols can be captured by frequent precipitation and

abundant rainfall. These materials thus enter the marine

environment in the coastal area as atmospheric deposition,

which may aggravate nutrients loading and even result in

eutrophication and hypoxia (Duce et al., 2008; Chen et al.,

2017; Wu et al., 2018; Cui et al., 2020). The impacts of

atmospheric deposition on marine environment require

attention and need further exploration.
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Conclusions

The goal of this study was to clarify the discrepancy

between industrial activities and low aerosol concentrations

in a tropical coastal city due to a precipitation-driven removal

process and the marine dilution effect. In Zhanjiang, 72h

TSPs collection and WSIIs analysis were conducted during a

one-year sampling campaign. The results of this investigation

show that the TSP mass concentrations and the total WSII
TABLE 5 The results of the PCA for the mass concentrations of the TSPs and WSIIs in Zhanjiang.

PC1 PC2 PC3

TSPs 0.894 -0.318 0.000

Na+ 0.496 0.825 -0.188

NH+
4 0.880 -0.302 0.038

K+ 0.196 0.154 0.959

Mg2+ 0.632 0.710 -0.170

Ca2+ 0.574 -0.641 0.059

Cl- 0.598 0.710 0.170

NO−
3 0.898 -0.098 -0.055

SO2−
4 0.813 -0.377 -0.132

Eigenvalue 4.413 2.468 1.038

% of variance 49.033 27.418 11.532

Cumulative variance 49.033 76.451 89.983

Factors Secondary aerosol, coal combustion, and soil dust Marine emission Biomass burning
The bold values indicate strong loadings.
FIGURE 9

Conceptual diagram for TSPs removal process in Zhanjiang.
frontiersin.org

https://doi.org/10.3389/fmars.2022.977120
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhou et al. 10.3389/fmars.2022.977120
concentrations in Zhanjiang were lower in the spring and

summer and were higher in the winter and autumn. This

seasonal pattern and high aerosol acidity (indicated by the ion

balance, neutralization factors, and pH values) further suggest

that the TSPs, WSIIs, and acidic gaseous precursors were

removed by frequent precipitation and abundant rainfall. The

PCA results revealed that secondary aerosols and sea salts

were important sources of the TSPs and WSIIs. One of the

more significant findings of this study is that a combination of

high precipitation frequency and marine dilution can lessen

aerosol pollution in a heavy industrial city.
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