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The marine environment pollution is becoming an important factor that

restricts the sustainable development of mariculture in China. This study

takes 10 Chinese coastal provinces (cities) as the study area, based on the

rationalization and upgrading dimensions of industrial structure, and

innovatively constructs an analytical framework of marine environmental

pollution and offshore aquaculture structure to identify the intrinsic

relationship between them; and introduces a spatial econometric model to

alleviate the estimation bias caused by the public goods attribute of marine

environment and improve the reliability of research conclusions. The results

show that: (1) The rationalization of the offshore aquaculture structure in China

is relatively weak, showing a “concentrated and contiguous” distribution

pattern towards the developed aquaculture areas; at the same time, but the

differences between regions are expanding; (2) The rationalization and

upgrading of the offshore aquaculture structure are affected by the pollution

of the marine environment. The degree of upgrading shows different trends; (3)

There is a significant spatial adjacency and threshold effect of the negative

impact of marine environmental pollution on offshore farming structure.

However, due to the limitations of data, the accuracy of our data and the

effectiveness of the measurement of industrial structure indicators still need to

be improved. Therefore, governmental departments should consider the

development of the surrounding areas as well as the pollution emission in

the region, and jointly promote the optimization and adjustment of China’s

offshore aquaculture structure through the construction of a coordinated

management mechanism of marine pollution prevention and treatment.

KEYWORDS

marine environmental pollution, offshore aquaculture structure, spatial spillover,
heterogeneity in damages, structure rationalization and upgrading
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1 Introduction

Since the reform and opening, serious resource and

environmental crisis has been brought with the rapid

development of China’s industrial and agricultural economy,

including greenhouse gas emission, water eutrophication, soil

hardening and acidification, etc. (An et al., 2022; Xu et al., 2022).

At the same time, as one of the important “contributors” of

environmental pollution, fishery development is also facing

numerous constraints and negative effects of environmental

pollution. The deterioration of ecological environment will not

only adversely affect the output of aquatic products, but also

pose a non-negligible threat to the quality and output of aquatic

products and even fishermen income (Kifani et al., 2019). As an

important source of high-quality protein for human beings, the

transformation of the production structure of offshore

aquaculture is a fundamental part of building a strong marine

state and realizing the Chinese nation’s strength towards the sea

(Shang, 2019; Wei et al., 2022). Under the new economic

normal, the contradiction between the total supply and

effective supply of marine fishery culture has been exacerbated

by the demand upgrading of market consumption and the

tightening constraints on resources and environment.

Following the sustainable development concept of resource-

saving and environment-friendly is conducive to the formation

of a fishery industrial form with harmonious economic,

ecological, and social benefits; at the same time, this trend is

increasingly emerging as an important element of the current

supply-side structural reform of China’s fisheries (Li et al., 2019).

More importantly, the marine water body is the carrier of

fishery production compared to field crops, and it is more

sensitive to environmental pollution, especially changes in the

environmental quality of the water body (Landrigan et al., 2020).

In the field of natural science, studies at home and abroad have

long confirmed that chemical air pollution has a non-negligible

impact on crop production. The nitrogen oxides, ozone and

deepening of haze will damage the photosynthesis and the ability

to resist diseases of crops (Field and Barros, 2012; Rai, 2016;

Powell and Reinhard, 2016). In the field of economics, scholars

have also confirmed the negative impact of ozone pollution on

grain production through the economic framework and

econometric models, and it is estimated that the global loss

caused by ozone pollution is as high as 18 billion dollars every

year, while the economic loss of grain production of China alone

is as high as 6.45 billion dollars (Yi et al., 2016; Carter et al., 2017;

Yi et al., 2020);. The research on the impact of environmental

pollution on industrial structure and production mode mainly

focuses on industrial industries, that is, the difference of

environmental regulation standards will lead to the relocation

of high-polluting industries, and then promote the passive

upgrading of industrial structure in this region; at the same
Frontiers in Marine Science 02
time, environmental regulation will greatly enhance the

“compliance cost” of enterprises, thus forcing enterprises to

change production mode or improve production efficiency

(Song and Wang, 2017; Wu et al., 2021). Although economics,

ecology and other related disciplines have carried out a detailed

and in-depth analysis on the impact of environmental pollution

and economic activities, especially on agricultural production

(Laekemariam et al., 2017; Saddique et al., 2020), there is still an

expandable research space to a certain extent (Li et al., 2022a;

Yuan et al., 2022). On the one hand, most of the existing studies

focus on the micro level, that is, the impact on grain yield per

unit area and fishermen income, and there is little research and

analysis on the adjustment of fishery production structure from

the macro level (Liu et al., 2022). On the other hand, studies in

the field of economics usually ignore the public product

attributes of pollution carriers such as air and water, and

pollutants have strong spatial correlation and spatial

adjacency, showing a more complex kind of spatial structure

characteristics (Chen and Ding, 2021). Therefore, if we only

examine the impact of environmental pollution on offshore

aquaculture production structure from a single region, it will

cover up the spatial adjacency effect of environmental pollution,

which will lead to the bias of traditional econometric

estimation results.

Therefore, this paper takes offshore aquaculture as a case

study to analyze and assess the impact of environmental pollution

on its production structure adjustment, and to better understand

the evolution and adjustment of the production structure of

China’s offshore aquaculture industry. In addition, the marginal

contributions of this paper are from the two dimensions of

rationalization and upgrading of production structure, by

discriminating the internal relationship between environmental

pollution and marine production structure, it further enriches the

existing research perspective of the impact of environmental

pollution on aquaculture production. At the same time, through

the spatial econometric model, we correct the estimation errors

caused by the attributes of environmental public goods, further

improving the universality and representativeness of the

research conclusions.
2 Theoretical framework
and methodology

2.1 Theoretical effects of environmental
pollution on the production structure of
marine fishery culture

The marine culture should take both the ecosystem recovery

ability and environmental carrying capacity into the

consideration, which underscores the need for more
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reasonable input structure of factors and advanced production

modes (Li and Liu, 2022; Li et al., 2022b). The degree of

rationalization of industrial structure is mainly expressed as

the degree of coordination between industries and the degree of

effective use of resources, which further reflects the degree of

industrial convergence. The rationalization of the production

structure of offshore aquaculture industry aims to reflect the

effective and reasonable degree of resource utilization. The

degree of upgrading of industrial structure is mainly expressed

as the process of sequential evolution from the lower to the

higher state of industry (Wang et al., 2022; Xin-gang and Jin,

2022). In cases where the extensive development of marine

fishery culture has coincided with the deterioration of marine

ecosystems, the upgrading of the production structure is heavily

weighted in ascent of marine fishery culture production from its

original state to optimal mode, thus contributing to balance the

relat ion between output growth and protection of

marine ecosystems.

As economically rational human beings, producers will

adjust the allocation of production factors according to the

current environmental state and technological conditions to

maximize profits (Tyl and Gomez, 2022). To clarify the

mechanism of the influence of marine pollution on the

rationalization and advanced production structure of offshore

aquaculture, the following analytical logic diagram is

constructed in this paper. In Figures 1A, B, the internal

correlation of the output quantity, Q, amount of materials

input, K, and environmental pollution degree, w, with fishery

output losses, D, is presented, respectively. First, in terms of

production structure rationalization, when the pollution level of

the external environment is at a normal levelW1 (Figure 1B), the

optimal factor input under the condition of profit maximization

of fisherman is K1 and the optimal output level is Q. When the

pollution level of the external environment further increases, i.e.,

the pollution level rises from W1 to W2, its negative impact on

the total output is further enhanced and the marginal output
Frontiers in Marine Science 03
curve of factors decreases from MP1 to MP2 (Figure 1A). At this

point, based on the profit maximization objective, fishermen will

inevitably reduce the amount of factor inputs, which will lead to

the deviation of factor inputs from the optimal state. At the same

time, in the face of the production instability and uncertainty

caused by environmental pollution, risk-averse fishermen tend

to take appropriate measures to reduce the potential production

risks and losses that may be caused by changes in water quality

and environment (Kroetz et al., 2022). In real life, fishermen can

reduce potential production risks by increasing fishery medicine

inputs, increasing culture density, and many other adaptation

measures to increase the intensity of production inputs. This

precautionary increase in non-desired inputs will inevitably

cause a decrease in green production efficiency and thus

reduce the rationality of the industrial structure.

In term of upgrading of the production structure, the costs of

environmental pollution are unlikely to be evenly distributed

across individuals. It is worth noting that heterogeneity in

effects may stem from differences in the degree of pollution and

individual adaptability, holding other factors constant (Yuan et al.,

2021). Specifically, if effects are nonlinear with respect to degree of

pollution, then two individuals facing various degree of pollution

will experience different marginal damages, even if they are

identical in terms of all other factors that determine

vulnerability; In cases where the terrigenous waste is still the

main source of marine pollution, compared with modern marine

cultured modes concealing itself at a safe distance from the coast,

the fishery cultures (e.g., oyster beds), on the mudflats, suffer from

more serious pollution. Therefore, Differences in marginal

damages may also arise because environmental conditions and

geographical location differ across populations (Morente-López

et al., 2022). Alternatively—or in addition, even if two individuals

are identical in terms of degree of pollution, heterogeneity also

may stem from differences in individual adaptability that controls

how pollution translates into damages, such as defensive

investments (e.g., building a canal.) or avoidance behavior (e.g.,
A B C

FIGURE 1

Differences in marginal damage from pollution and impacts. (A) Total Production vs. Marginal Production Curve. (B) The graph of the
relationship between the degree of pollution and the level of loss. (C) The graph of individual heterogeneity analysis in the same pollution level.
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adjusting structure of factor input). In other words, in term of

marine ranches, a set of technology portfolios including heat-

resistant livestock breeds, improvement of the feed structure and

sources and wastewater purification, could be used to purify the

water environment (Howard et al., 2017). In this situation, the

differences in degree of pollution and individual adaptability led to

heterogeneous marginal damages. As shown in Figure 1C, the

marginal hazard curve of fisherman m with a stronger resistance

and adaptability towards pollution is obviously lower than that of

the fisherman n. Now, even if in cases where a lower level of

external environmental pollution (WL), due to heterogeneous

marginal damages (Apata, 2011; Burke et al., 2015; Solomon

and Paulina, 2019), the higher comparative income of modern

marine fishery culture is apparent and thus will lead to the

upgrading of production structure.
1 The main tests include the likelihood ratio test (LR Test), the Lagrange

multiplier test (LM Test), and the Wald test.
2.2 Methodology

As a typical public belonging, the external environment,

such as waters, has obvious neighborhood effects on

agricultural production (Bocher, 2012; Di and Veronesi,

2014; Huang and Wang, 2015). On the one hand, the

worsening of environmental pollution in some places has not

only directly affected the pollution site, but also caused negative

neighborhood effects. On the other hand, the quality of the

regional water environment is non-exclusive and free of

charge. To improve the water environment quality through

control of the sewage discharge is not a behavior that “every

miller draws water to his own mill” but is a public property that

is free of charge and non-exclusive. This means that the

improved water environment quality can benefit surrounding

regions as well. Hence, to recognize neighbor effects of

environmental pollution on the production structure of the

marine fishery culture, this paper further constructs the

following spatial weight matrix model since measuring the

internal space relevance of the marine fishery culture structural

adjustment in different regions.

TISit = bXit + ro
N

j=1
WijTISit + fo

N

j=1
WijXit + mi + at + ϵit

 ϵit = lWijϵt + nit

(1)

Where TISit denotes the production structure of marine

fishery culture in province i in year t and is the explanatory

variable of this paper. Wij is the matrix of spatial weight

coefficients; Xit is the vector of independent variables of interest.

r , f , b denotes the regression coefficient; mi denotes the spatial
effect; at denotes the time effect; and ϵit is the random error term.

l denotes the spatial error regression coefficient. When f=0 , then
Eq. (2) is the Spatial Lag Model (SLM); when f=−rb , then Eq. (3)

is the Spatial Error Model (SEM); When r≠0 , f≠0 and l=0 , then
equation (4) is the Spatial Durbin Model (SDM), and the specific

models are equations (2)-(4), respectively.
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TISit = bXit + ro
N

j=1
WijTISit + mi + at + ϵit (2)

TISit = bXit + mi + at + ϵit (3)

TISit = bXit + ro
N

j=1
WijTISit + fo

N

j=1
WijXit + mi + at + nit (4)

Following that, relevance test is conducted to identify the

model that is the most consistent with the data structure of this

paper1. Concerning the spatial weight matrix, this paper denotes

it by the highly recognized binary near-space matrix. Generally,

this paper focuses on examining two prominent endogenous

issues that might affect the marine fishery culture structural

adjustment. On the one hand, the factor input that is caused by

the production scale variation will directly exert an impact on

the marine environment. On the other hand, the marine fishery

culture structure is also an important factor that affects

environmental pollution (Salmi et al., 2012). Thereby, this

paper resorts to the robustness test to improve the accuracy of

research findings.
2.3 Measurement of the nearshore
aquaculture production structure

As an industry that relies on marine resources and

environment for input and output, the marine fishery culture

is characterized strikingly by resource competition and

environmental impact. In other words, development of the

marine fishery culture is largely restricted by the fishery

resource environmental capacity of the specific fishery.

Considering a limited bearing capacity of the sea area, how to

effectively control the cultivation output has been a linchpin to

realization of rational production layout. So, this paper refers to

existing marine bearing capacity assessment indexes and

industrial structure rationality measurement methods and

adopts the Theil index to reflect the rationality degree of the

breeding industry’s production structure (Zhang et al., 2018;

Zhang et al., 2020). Below is the computing formula:

TIt,i = (Yt,i=o
n

i=1
Yt,i) ln (

Yt,i

Lt,i
= o

n

i=1
Yt,i=o

n

i=1
Lt,i

 !
) (5)

where i denotes the region of province i, t denotes time, and

Yt,i、Lt,i denote the output value of marine fishery culture and

the marine resource endowment condition of the region,

respectively. Therefore, Y/L then denotes the output efficiency

per unit resource endowment. Based on classical economic
frontiersin.org
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theory, when the economy is in equilibrium, all factors of

production can be fully utilized, i.e., the output efficiency of

factors is the same, so we have Yi/Li=Y/L, while Ti is zero.

Conversely, if the output efficiency deviates from the

equilibrium state, it indicates the irrational production

structure of the region.

In this paper, we use vectorial pinch angles to measure the

upgrading of production structure (He and Wang, 2012). First,

according to the source of farming can be divided into four

categories: pond, common net, deep-water net and factory2, and

the proportion of each category corresponding to the farming

production is classified as a spatial vector, which in turn

constitutes a 4-dimensional production structure spatial vector

X0=(x0,1, x0,2, x0,3, x0,4). Further construct the basic unit vectors

X0=(1,0,0,0),X0=(0,1,0,0), X0=(0,0,1,0), X0=(0,0,0,1), X0=

(0,0,0,1) and calculate the angle qj between the space vector X0

and it. Further based on the weights wj of the angle qj , the index
of upgrading of production structure is obtained as follows.

qj¼ arccos o
4

i=1
(xj,i · x0,i)=(o

4

i=1
x2j,i)

1=2 · (o
4

i=1
x20,i)

1=2

 !
(6)

UIt,i =o
4

j=1
(wj � qj) =o

4

j=1
(

vj

o4
i=1vi

� qj) (7)

where the weight wjis determined by the calculation of the

coefficient of variation, and vj is the coefficient of variation of the

angle of entrainment qj . Based on the monotonically decreasing

nature of the inverse cosine function, it is known that when the

index UI is larger than the angle qj , it means that in the process

of restructuring the production of marine fishery culture, the

proportion of low-level aquaculture modes such as ponds and

common nets decreases relatively fast. And the proportion of

deep-water nets, factory, and other high-level farming mode is

relatively faster, which means that the higher the upgrading of

production structure.
2.4 Core explanatory variables and
control variables

Existing research concerning the core explaining variable,

extent of environmental pollution, is mainly concentrated on the

environment of the land area (Xue et al., 2021), and their

measurement methods adopted can be generally boiled down

into four kinds, namely the single index approach,

comprehensive index approach, assignment scoring approach,
2 Based on the attribute characteristics of culture methods, raft, cage,

and bottom seeding methods are included in this paper together with the

common netting methods.
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and classified observation. Since the marine environmental

pol lut ion has complex sources and the impact of

environmental pollution is lagged and cumulative, this paper

combines the existing research findings to choose the single

index approach. According to the percentage of the type-1 and

type-2 nearshore seawater, the extent of environmental pollution

of different regions is measured to reflect their respective water

environment quality more directly.

Additionally, considering the status and relevant literatures

of the nearshore aquaculture industry, this paper sets the

following control variables. ①Market demand (Mark), which is

measured by the per capita regional consumption of aquatic

products. Consumers are at the demand terminal of the aquatic

product market (Miao et al., 2021). Driven by the consumption

layer upgrade and personalization with the improvement of

consumers’ income level, the aquatic product demand scale

has been constantly expanding and diversifying structurally.

So, under the objective restriction that the marine fishing scale

expansion is limited, and the output can hardly meet the

demand growth effectively, the demand for high-quality

aquatic products has been an essential driving force that

prompts the marine fishery culture to adjust its production

structure (Merino et al., 2012). ②External risk, which is

measured by the typhon-struck area (Rds) and the disease-

struck area (Dds), there is no doubt that factors such as

marine hazards (typhoons and storms) will have a negative

impact on nearshore farming structures (Gao et al., 2020);

③Comparative earning level (Earn), which is denoted by the

ratio of the unit value of products obtained through marine

fishing to the unit value of products provided by marine fishery

culture, which can portray the demand for the wild aquatic

products and cultivated aquatic products (Davidson et al., 2012);

④Production technology, which is measured by two dimensions

(Ren, 2021a), namely the number of marine technical personnel

(Srp) and the number of marine technological research projects

(Orp). The structural adjustment and upgrade of the marine

fishery culture calls for the effective support of supporting

techniques (He et al., 2022). Advances of production

technologies can be penetrated into labor, capital and other

elements to be an important factor that promotes the production

structural adjustment of the marine fishery culture;

⑤Development of relevant industries (Mach), which is

indicated by the marine aquatic product processing capacity

(Wang et al., 2021).
2.5 Data sources

This paper focuses on the production structure of offshore

aquaculture. Considering the feasibility, significance and

representativeness criteria of the analyzed data, the panel data

of 10 coastal provinces (municipalities directly under the central

government) in China are thus selected for the study. The main
frontiersin.org
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provinces include Tianjin, Hebei, Liaoning, Shandong, Jiangsu,

Zhejiang, Fujian, Guangdong, Guangxi, and Hainan. The data

were mainly obtained from the “China Rural Statistical

Yearbook”, “China Marine Statistical Yearbook”, “China

Ocean Yearbook”, and “China Marine Environmental Quality

Bulletin”. The sample data were selected for the time span of

2003-2019, in which the relevant missing data were replaced by

the mean values of the previous and later periods of the sample

data in this paper. The results of descriptive statistics about the

indicators can be found in Table 1.
3 Adjustment and change of the
production structure of marine
fishery culture in China

3.1 Evolution of rationalization of
production structure of marine fishery
culture in China

Although the rationality of marine fishery culture

production structure in China’s most provinces and cities

showed an upward trend, the overall level was still relatively

weak (Table 2). From the time sequence change trend, the

rationality of marine fishery culture production structure in

Hebei, Jiangsu and Shandong provinces shows an upward trend,

while that in Tianjin, Liaoning, Zhejiang, Fujian, Guangdong,

and Guangxi provinces shows a downward trend, while Hainan

Province shows no obvious change. From a relative level, the

rationality of marine fishery culture production structure in

Liaoning, Tianjin, Hebei, and Guangxi is relatively poor,

followed by Zhejiang and Guangdong, while the rationality of

Shandong, Jiangsu and Fujian is relatively high. In economically

developed and densely populated areas, the environment of

coastal waters is polluted owing to the direct discharge of

plenty of industrial, domestic, and municipal sewage into the
Frontiers in Marine Science 06
sea, thus greatly increasing the potential difficulty of fishery

production. In addition, the sea area where Liaoning, Tianjin,

Guangxi, and other provinces are located is relatively semi

enclosed inland sea, whose water exchange capacity is weak,

thus further aggravating the pressure of external environmental

pollution on fishery production.
3.2 Evolution of upgrading of
production structure of marine fishery
culture in China

The upgrading degree of marine fishery culture production

structure in China’s coastal areas showed an upward trend

overall, but the regional differences showed an expanding

trend (Table 3). From the time sequence change trend, in

2003, the overall upgrading degree of fishery production in

coastal areas was relatively low, and the differences among

regions were relatively small. The highest upgrading degree of

fishery production was Tianjin, and the lowest was Liaoning and

Guangxi. Later, with the establishment of China’s strategic goal

of building a blue granary and a marine power, all regions

continue to strengthen the guidance of relevant policy, and the

construction of new offshore equipment such as marine ranch

entered an acceleration period (Ren, 2021b). With its own

policies, resources and late development advantages, the

upgrading index of marine fishery culture production structure

in Hainan, Liaoning and Shandong provinces has been growing

rapidly for a long time, with an average annual increase rate of

more than 40%. After 2014, Hainan Province has become the

region with the highest upgrading degree of production structure

of marine fishery culture in China. However, it can’t be ignored

that the differences among regions are expanding with the

acceleration of the upgrading process of marine fishery

culture. In 2003, the difference between the region with the

highest upgrading degree and the region with the lowest

upgrading degree was only 0.021, while in 2019, the gap

widened to 0.081.
TABLE 1 Descriptive statistics results.

Variables Symbols Mean. S. D. Min. Max.

Rationalization of production structure Ui 0.067 0.035 0.016 0.165

Upgrading of production structure Ti 0.071 0.094 0.000 0.425

Extent of environmental pollution Poll 0.653 0.292 0.000 1.000

Market demand Mark 10.686 5.773 2.212 22.362

Typhon-struck area Rds 30913.860 50853.950 0.000 360,999

Disease-struck area Dds 16586.181 17826.311 0.000 95,727

Number of marine technical personnel Srp 1224.907 953.382 28.000 4,820

Number of marine technological research projects Orp 595.107 649.837 10.012 3,047

Comparative earning level Earn 0.876 0.319 0.162 1.788

Development of relevant industries Mach 0.364 0.212 0.007 0.932
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4 An empirical examination of the
structural adjustment evolution of
production in China’s marine
fishery culture

The empirical test in this paper employs a two-step approach:

firstly, a spatial test of the rationalization and upgrading degree of

the production structure of marine fishery culture based on the

classical region-wide Moran’s I index method is conducted to

determine whether there is spatial correlation among the regions.

Given that the calculation method of this model is relatively

mature, we will not repeat it in this paper; secondly, a suitable
Frontiers in Marine Science 07
spatial econometric model is selected to identify the spatial effect

of environmental pollution on the restructuring of marine fishery

culture production and its degree of influence.
4.1 Spatial autocorrelation tests

The spatial autocorrelation of the rationalization and

upgrading degree of marine fishery culture restructuring was

examined in the whole spatial area based on Moran’s I index.

Given that the spatial autocorrelation of data is an essential

precondition for the use of spatial weight matrix model, the

spatial autocorrelation of the rationalization and upgrading

degree was examined in the whole spatial area based on
TABLE 2 Rationalization index of production structure of China’s marine fishery culture.

2003 2005 2007 2009 2011 2013 2015 2017 2019 Change trend

Tianjin 0.002 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Hebei 0.000 0.004 0.009 0.010 0.017 0.017 0.018 0.015 0.013

Liaoning 0.016 0.041 0.063 0.084 0.073 0.064 0.036
0.026

0.004

Jiangsu 0.045 0.056 0.080 0.074 0.041 0.096 0.077 0.093 0.087

Zhejiang 0.058 0.056 0.051 0.046 0.047 0.042 0.041 0.039 0.046

Fujian 0.244 0.142 0.148 0.110 0.114 0.110 0.118 0.172 0.164

Shandong 0.209 0.253 0.299 0.352 0.330 0.404 0.425
0.312

0.352

Guangdong 0.058 0.051 0.058 0.057 0.054 0.057 0.056 0.053 0.050

Guangxi 0.015 0.015 0.011 0.009 0.008 0.013 0.010 0.080 0.007

Hainan 0.017 0.017 0.017 0.017 0.017 0.013 0.016
0.016

0.017
TABLE 3 Upgrading index of production structure of China’s marine fishery culture.

2003 2005 2007 2009 2011 2013 2015 2017 2019 Change trend

Tianjin 0.037 0.048 0.036 0.070 0.122 0.143 0.103
0.102

0.109

Hebei
0.019 0.021 0.022 0.103 0.102 0.103 0.103

0.104
0.103

Liaoning 0.016 0.017 0.018 0.091 0.090 0.093 0.098
0.096

0.097

Jiangsu 0.016 0.017 0.017 0.081 0.084 0.083 0.087
0.084

0.087

Zhejiang 0.022 0.023 0.021 0.083 0.077 0.078 0.085
0.084

0.085

Fujian 0.019 0.020 0.021 0.067 0.077 0.080 0.078
0.079

0.080

Shandong
0.018 0.022 0.063 0.106 0.104 0.107 0.106

0.105
0.107

Guangdong 0.021 0.021 0.022 0.066 0.063 0.068 0.069
0.068

0.070

Guangxi 0.016 0.017 0.026 0.049 0.070 0.073 0.072
0.073

0.074

Hainan 0.023 0.033 0.095 0.071 0.076 0.076 0.163
0.158

0.151
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Moran’s index (Furková, 2021). The test results show that the

Moran’s index does not equal zero for both the rationalization

and upgrading degrees, i.e., there is a significant negative spatial

autocorrelation of marine fishery culture structures in

contiguous regions, which means that the application of

spatial weight matrix model is necessary and feasible.

As shown in Figure 2, Specifically, from the time-series

dimension, the Moran’s index of the degree shows an overall

fluctuation. On the rationalization side, the absolute value of

Moran’s index has been on a downward trajectory since 2003

and fell significantly from 2003 to 2012, which means that the

differences in rationalization degree among contiguous regions is

relatively stable with time. In contrast, on the premiumization

side, the Moran’s index state clearly that the negative spatial

autocorrelation is statistically significant. More important, the

absolute value of index of the upgrading structure presents the

trend offirst decline then up, which means that the differences in

upgrading degree among contiguous regions is enlarging

progressively with time.
4.2 Empirical test results and
interpretation of the econometric model

Firstly, the spatial model was estimated using the method of

great likelihood (QMLE), and the Wald test and LM test were

used to determine the suitability of the spatial error model

(SEM), spatial lag model (SLM), and spatial Durbin model

(SDM). The result of Table 4 shows that the rationalization

and upgrading of the marine fishery culture structure

significantly reject the original hypothesis at the 1% confidence

level, so it is more appropriate to choose the spatial Durbin

model (SDM) to analyze the impact of environmental pollution

on the restructuring of the marine fishery culture. Secondly, the
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Hausman test shows that there is a significant difference between

the fixed-effect model and the random-effect model, and the

estimation results of the fixed-effect model are more reliable. In

summary, this paper starts the subsequent analysis based on the

estimation results of the spatial Durbin model (Table 5).

In terms of the rationalization of the production structure,

the estimated coefficient of the degree of environmental

pollution is negative and does not pass the significance test,

which indicates that although the degree of pollution in each

region has a negative impact on the rationalization of the

production structure of marine fishery culture, the effect is not

significant. In general, the level of market demand and

comparative returns has a significant inhibition effect on the

rationalization of the production structure of marine fishery

culture. As an important source of high-quality protein for

human beings, the rapid growth in demand for aquatic

products has pushed up the level of farming density, and input

of production materials such as bait, leading to excessive input of

production factors; at the same time, the difference in safety

attributes and nutrition between wild aquatic products and

farmed aquatic products has led to a higher willingness to pay

for wild aquatic products among some consumers, which in turn

has induced producers to pay more for wild aquatic products in

the context of depleting marine fishery resources, producers still

invest a lot of resources to catch wild fishery products (Ottinger

et al., 2016; Su et al., 2020).

In terms of the upgrading of production structure, the

estimated coefficient of environmental pollution level is

significantly positive at 5% confidence level, indicating that the

improvement of environmental pollution level in each region

contributes to the upgrading of production structure of marine

fishery culture. At the same time, market demand and the level

of comparative returns show a significant positive effect on the

upgrading production structure. Compared with ponds and
FIGURE 2

A correlation test of production restructuring in China’s marine fishery culture.
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other near-shore aquaculture, modern aquaculture models such

as deep-water nets and marine pastures can fully consider the

quality of aquatic products and ecological protection of the

environment, then meeting consumer demand for the safety

attributes and nutritional value of aquatic products (Du and Li,

2022; Li et al., 2022b). It is noteworthy that the estimated

coefficient of natural disasters such as typhoons is significantly

negative. In the process of modern marine fisheries construction,

the occurrence of disasters such as typhoons will greatly increase

the business risk of producers and thus present a significant

disincentive to potential entrants to modern marine fisheries

such as marine ranches, as the construction concept is clearly

ahead of the existing technology and the technical system of

disaster warning and prevention is still to be further developed.

The number of marine scientific research topics has a significant

role in promoting the upgrading process of fisheries, while the
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continuous deepening of relevant basic research can effectively

resolve and resist the impact of external risks on

fisheries production.

This study provides further decomposition based on the

spatial effects of the restructuring of marine fishery culture in

each region to understand the impact of changes in different

variables on the influence of each component in the system. In

terms of the spatial effects, the estimation results are basically

consistent with the theoretical analysis above, and the intensity

of the impact of each factor is significantly higher. In terms of the

estimated results for the rationalization of production structure:

although the improvement of the environment does not

significantly increase the rationalization of the production

structure of farming in the region, it has a significant spatial

adjacency effect. The spatial adjacency effect of environmental

pollution has become an important constraint for regional
TABLE 4 Model test results and conclusions.

Condition Rationalization Upgrading

Ch2 P-value Conclusion Ch2 P-value Conclusion

Wald Test( f=0 ) 36.36 0.0000 Rej. SLM 30.17 0.0000 Rej. SLM

LM Test( f=−rb ) 23.23 0.0012 Rej. SEM 32.22 0.0003 Rej. SEM
f

TABLE 5 Spatial Durbin Model (SDM) estimation results.

Variable Rationalization Upgrading

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

lnEr -0.0028 0.0005 0.0002 -0.0011 0.0048* 0.0050**

(0.0049) (0.0048) (0.0048) (0.0033) (0.0025) (0.0025)

lnRds 0.0020*** 0.0011 0.0010 0.0009* -0.0007* -0.0007*

(0.0007) (0.0007) (0.0007) (0.0005) (0.0004) (0.0004)

lnDds 0.0007 0.0012 0.0010 0.0026*** -0.0004 -0.0004

(0.0013) (0.0013) (0.0013) (0.0009) (0.0007) (0.0007)

lnMark 0.0307*** -0.0047*** -0.0048*** 0.0478*** 0.0027*** 0.0025***

(0.0100) (0.0012) (0.0013) (0.0066) (0.0006) (0.0007)

lnOrp 0.0059 0.0001*** 0.0001*** 0.0089*** -0.0002 -0.0003

(0.0040) (0.0000) (0.0000) (0.0027) (0.0003) (0.0003)

lnSrp -0.0083* -0.0004 -0.0003* 0.0278*** 0.0004*** 0.0005**

(0.0044) (0.0004) (0.0002) (0.0029) (0.0004) (0.0006)

lnMach -0.0016 -0.0109 -0.0127 -0.0100*** 0.0207*** 0.0224***

(0.0032) (0.0142) (0.0141) (0.0021) (0.0074) (0.0074)

lnEarn -0.0165*** -0.0162** -0.0168** 0.0059 0.0002 0.0005**

(0.0057) (0.0077) (0.0076) (0.0038) (0.0003) (0.0002)

R2 0.5693 0.5632 0.5933 0.6284 0.6231 0.6783

Space-time effect Uncontrol Uncontrol Uncontrol Uncontrol Uncontrol Control

Spatial effect Uncontrol Control Control Uncontrol Control Control

Hausman -4.75*** -3.85***
ron
***, **, * indicate significant at the statistical level of 1%, 5%, and 10%, respectively.
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environmental governance due to the property of public goods

of environmental quality and the existence of free-rider behavior

(Tamura, 2006; Stirling, 2007). Under the influence of the spatial

adjacency effect of marine pollution, it is difficult for the

participating regions to achieve the expected treatment effect

even after paying the treatment cost and economic loss cost,

which eventually leads to the lack of willingness and motivation

for most regions to take the lead in treatment. Nevertheless,

along with the increasing public demand for a better
Frontiers in Marine Science 10
environment, especially the central government’s increasing

efforts in environmental management and supervision, once a

region intensifies its environmental management efforts, it will

trigger the surrounding regions to compete for action, which will

change from vicious bottom-to-bottom competition to benign

top-to-top competition (Tang et al., 2016). At the same time, the

impact of storm surge hazard situation and relative price on the

production structure of farming industry also shows a significant

spatial adjacency effect. As shown in Table 6.
TABLE 6 Spatial Durbin model direct effect and adjacency effect decomposition.

Variable Rationalization Upgrading

Space lag-term Direct effect Adjacency effect Space lag-term Direct effect Adjacency effect

lnEr 0.0051 0.0000 0.0126** 0.0063*** 0.0028*** 0.0172***

lnRds -0.0008* 0.0010 -0.0017* -0.0000 -0.0008** -0.0004***

lnDds 0.0001 0.0011 0.0003 0.0016*** 0.0003 0.0050***

lnMark -0.0004 -0.005*** -0.0010 0.0011*** 0.0022*** 0.0022*

lnOrp 0.0001*** 0.0001*** 0.0001*** 0.0001** -0.0000 0.0001*

lnSrp 0.0000 -0.0000 0.0002 0.0002*** 0.0002*** 0.0002***

lnMach -0.0095 -0.0131 -0.0246 0.0254*** 0.0347*** 0.0924***

lnEarn 0.0175*** -0.0167** -0.0400*** 0.0084*** 0.0039 0.0270***
***, **, * indicate significant at the statistical level of 1%, 5%, and 10%, respectively.
TABLE 7 Robustness test results.

Variable Rationalization Upgrading

Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

lnEr
-0.0035** -0.0058*** -0.0059*** -0.0049*** -0.0037*** -0.0039***

(0.0016) (0.0015) (0.0015) (0.0012) (0.0008) (0.0008)

lnRds
0.0019*** 0.0015** 0.0015** 0.0002 -0.0008** -0.0008**

(0.0007) (0.0007) (0.0007) (0.0006) (0.0004) (0.0004)

lnDds
0.0009 -0.0005 -0.0006 -0.0027*** -0.0003 -0.0003

(0.0013) (0.0012) (0.0012) (0.0010) (0.0007) (0.0007)

lnMark
0.0198** -0.0045*** -0.0045*** 0.0203*** 0.0022*** 0.0018**

(0.0097) (0.0013) (0.0014) (0.0037) (0.0006) (0.0007)

lnOrp
0.0077** 0.0000*** 0.0000*** -0.0145*** -0.0000* -0.0000

(0.0039) (0.0000) (0.0000) (0.0028) (0.0000) (0.0000)

lnSrp
-0.0072* -0.0000* -0.0000** 0.0327*** 0.0000*** 0.0000***

(0.0043) (0.0000) (0.0000) (0.0031) (0.0000) (0.0000)

lnMach
0.0029 0.0098 0.0086 0.0005 0.0292*** 0.0311***

(0.0036) (0.0139) (0.0138) (0.0024) (0.0075) (0.0075)

lnEarn
-0.0124** -0.0124* -0.0128* 0.0082* 0.0010 0.0018

(0.0058) (0.0073) (0.0073) (0.0042) (0.0038) (0.0039)

R2 0.4417 0.5632 0.4299 0.6619 0.7263 0.639

Log-L 269.36 342.33 335.89 302.32 420.03 441.95

Space-time effect Uncontrol Uncontrol Control Uncontrol Uncontrol Control

Spatial effect Uncontrol Control Control Uncontrol Control Control

Hausman -4.75*** -3.85***
fro
***, **, * indicate significant at the statistical level of 1%, 5%, and 10%, respectively.
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From the estimated results of the upgrading of aquaculture

production structure, the absolute value of the estimated

coefficient of the direct effect of the degree of environmental

pollution is significantly lower than that of the estimated

coefficient of the indirect effect, indicating that its promotion

effect on the upgrading of aquaculture production structure in

the neighboring regions is significantly higher than that of the

local, i.e., there is a significant spatial neighboring effect. On the

one hand, the upgrading production structure of marine fishery

culture caused by the improvement of the local environmental

pollution level can promote the upgrading and improvement of

the production structure of neighboring regions in the form of

local healthy competition; on the other hand, the basic way of

marine pollution control is the concerted action among regions,

so the improvement of the local marine pollution control level

can reduce the local uncertainty about the results of pollution

control, and also promote the neighboring regions to increase

the degree of pollution control (Hilsdorf et al., 2022). The degree

of pollution control in the neighboring regions will be increased.

The storm surge disaster, pests and diseases, market demand,

marine scientific research input, processing capacity, and relative

price all show significant spatial neighboring effects, and the

promotion of upgrading production structure of marine fishery

culture in neighboring provinces is greater than local.
4.3 Robustness test

Along with the rapid growth of China’s mariculture

production and area, a large amount of exogenous bait,

fertilizer, fisheries medicine, and excretion waste has led to an

increase in the eutrophication of seawater, and marine fishery

culture has increasingly become one of the important sources of

current offshore pollution (Alves et al., 2021). Therefore, a

reciprocal causal relationship between marine pollution and

fishery products may be presented, which in turn raises the

issue of endogeneity of the core explanatory variables. To further

test the reliability of the estimation results, this paper adopts the

amount of direct discharge of industrial effluent into the sea in

marine fishery areas as the core explanatory variable to measure

the status of environmental pollution in each province.

According to the results of Table 7, in terms of the validity of

the model estimation, the model estimation has significantly

improved the goodness-of-fit after the introduction of direct

industrial wastewater discharge into the sea as the instrumental

variable, regardless of whether the production structure is

rationalized or optimized. Similarly, the Hausman test results

also indicate that there is a significant difference between the

fixed effects model and the random-effects model, and the

estimation results of the fixed effects model are more reliable.

Further from the results of the empirical study, the significance

of the effect of changes in the degree of environmental pollution
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on the restructuring of marine fishery culture is significantly

higher. Among them, the environmental pollution degree

pollution presents a significant inhibitory effect on the

rationalization of the production structure of marine fishery

culture, while the significance of the estimation of the upgrading

production structure is also significantly increased and is

basically consistent with the above findings, which means that

the test results are robust.
4.4 Threshold test

In view of the theoretical analysis of the non-linear variation

of the impact of environmental pollution on fishery production

and the significant spatial and temporal differences between

different provinces and regions in the status quo of marine

fishery culture and the degree of environmental pollution, this

paper further investigates whether there is a “threshold effect” on

the impact of the degree of environmental pollution on the

restructuring of marine fishery culture with the help of the panel

threshold regression model proposed by Hansen (1999). The

paper further investigates whether there is a “threshold effect”,

i.e., whether the marginal constraint degree of environmental

pollution on the restructuring of marine fishery culture changes

significantly and abruptly with the deepening of the

environmental pollution degree. Combined with the

econometric model of this paper, the following panel threshold

regression model is built:

TISit = b0 + b1LnEr · 1(LnEr ≤ g ) + b2LnEr · 1(LnEr

> g ) + aLnXit + m1 (7)

TISit = b0 + b1LnEr · 1(LnEr ≤ g1Þ+b3LnEr · 1(g1 < LnEr

≤ g2Þ+b3LnEr · 1(LnEr > g2) + lLnXit + m2 (8)

The formula (7) and (8) are the single-threshold model and

the double-threshold model. The threshold variable

TISitindicates the production structure of marine fishery

culture, g is the threshold value. 1(·)indicates the sex function,

which takes the value of 1 when the expression in parentheses is

true and 0 otherwise; Wijis the matrix of spatial weight

coefficients; Xit is the control vector. with the aid of Hansen’s

method of bootstrap, no threshold value, one threshold value

and two thresholds are tested for the rationalization and

upgrading production structure, respectively. The results are

shown in Table 8.

When the number of thresholds is derived and for the

threshold values, the results of the panel threshold regression

for production restructuring of the marine fishery culture can be

obtained, as shown in Table 9. where models (13) and (14)

correspond to the threshold models for rationalization and

upgrading production structure of the marine fishery culture,
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separately. The results show that there are large differences in the

effects of different levels of marine environmental pollution on

both rationalization and upgrading of fishery outcomes. For the

rationalization of production structure of marine fishery culture,

the estimated coefficient is -0.0035 when the degree of marine

environmental pollution is relatively light (lnEr ≤ 10.8846),

while when the degree of marine environmental pollution

crosses the threshold value. The estimated coefficient becomes

-0.0073. The increase in the degree of marine environmental

pollution will inevitably increase the probability of pest and

disease disasters, which in turn will trigger fishermen to increase

the input of risk control factors such as fisheries medicine while

reducing the marginal output level of production factors such as

young fry. Thus, the degree of environmental pollution that

hinders the rationalization of the production structure of marine

fishery culture will gradually increase with the increase of the

pollution level.

Compared with the regression results of the rationalization

of the production structure of marine fishery culture, we can see

that not only the threshold values of the upgrading production

structure of the marine fishery culture are different, but also the

trend of the estimated coefficients are also very different,

specifically: when the degree of environmental pollution is
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relatively light (lnEr ≤ 8.0196), its estimated coefficient is

-0.008, and with the deepening of the degree of environmental

pollution, its estimated coefficient gradually decreases to -

0.0032, i.e., although the degree of environmental pollution

hinders the process of upgrading of the production structure

of marine fishery culture, this hindering effect tends to weaken

with the deepening of the degree of environmental pollution.

The reason for this is that when the pollution level is

relatively weak, traditional inshore aquaculture can still cope

with it by increasing factor inputs. However, with the further

deepening of pollution, the marginal income level of production

factors decreases, and fishermen will choose to change their

production methods to pursue profit maximization, thus

pushing the production structure of marine fishery culture in

the direction of upgrading development (Ding et al., 2017), and

this pushing effect shows a non-linear trend and may show an

increasing trend with the deepening of environmental pollution.
5 Conclusion

In summary, marine environmental pollution brings

negative impact on offshore aquaculture. Therefore, this paper
TABLE 8 Threshold variable test for the degree of environmental pollution.

Structure
type

Num.Threshold ValueThreshold
F

Value
PValue

Structure
type

Num.Threshold ValueThreshold FValue PValue

Rationalization

One
Threshold

10.8846 47.72 0.28

Upgrading

One
Threshold

8.7535 75.35 0.04

Two
Threshold

10.8846
10.4347

37.07 0.26
Two

Threshold
8.7535
8.0196

77.15 0.04

Three
Threshold

8.9220 22.54 0.71
Three

Threshold
8.1101 24.30 0.91
fronti
TABLE 9 Panel threshold model estimation results.

Variable Model 13 Variable Model 14

Coef. Std. Err. Coef. Std. Err.

lnRds 0.0020*** -0.0007 lnRds 0.0014*** -0.0004

lnDds 0.0015 -0.0013 lnDds 0.0023*** -0.0008

lnMark 0.0390*** -0.0102 lnMark 0.0477*** -0.0062

lnOrp 0.0084** -0.0038 lnOrp 0.0036 -0.0025

lnSrp -0.0124*** -0.0042 lnSrp 0.0279*** -0.0027

lnMach 0.0022 -0.0035 lnMach -0.0046** -0.0023

lnEarn -0.0125** -0.0055 lnEarn 0.0118*** -0.0036

lnEr·1(lnEr ≤ 10.8846) -0.0035** -0.0016 lnEr·1(lnEr ≤ 8.0196) -0.0080*** -0.0012

lnEr·1(lnEr>10.8846) -0.0073*** -0.0016 lnEr·1(8.0196<lnEr ≤ 8.7535) -0.0054*** -0.0012

lnEr·1(lnEr>8.7535) 0.0032*** 0.001

Cons. -0.2324*** -0.0191 Cons. -0.112*** 0.012

R2 0.6421 R2 0.723
***, **, * indicate significant at the statistical level of 1%, 5%, and 10%, respectively.
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creatively introduces the externality theory of public goods,

constructs the influence mechanism of marine environmental

pollution on offshore aquaculture structure, based on the

concept of rationalization and upgrading industrial structure;

meanwhile, we use spatial econometrics as a basis to further

correct the setting bias of public goods attributes and to

safeguard the robustness of the conclusions to a certain extent.

The results show that: ①The rationality of the production

structure of marine fishery culture in our country is relatively

weak, and it presents a spatial distribution pattern of partial

concentration and overall dispersion; the upgrading degree of

fishery production is overall on the rise, but the difference

among regions is expanding, and there is an obvious Spatial

condensation distribution. ②Affected by the degree of

environmental pollution, the rationalization and upgrading of

marine fishery culture production structure show different

trends. On the one hand, environmental pollution reduces the

rationalization degree of the production structure of marine

fishery culture; on the other hand, with the elimination of

environmental pollution, the upgrading degree of production

structure of marine fishery culture has been continuously

improved. ③The negative impact of environmental pollution

on production structure has significant adjacency effect and

threshold effect.

The research conclusions above have positive significance for

policymaking. Firstly, local governments should fully attach

importance to the protection and governance of the marine

environment while using the series of existing supporting

policies to drive the production structure adjustment of marine

fishery culture. Secondly, in view of the spatial adjacency and

relevance of marine pollution, the follow-up should actively

construct an inter-regional marine environment collaborative

governance mechanism, break the departmentalism of regional

pollution governance, and avoid the dilemma of collective action

and bottom-by-bottom competition. On the one hand, taking

minimizing the coordination and communication cost of regional

prevention and governance as the criterion, scientifically delimit

the regional governance boundary of marine pollution across

provinces and cities. For this, we can try to establish a multi-level

authority structure of vertical management of the central

government among different institutions, different regions, and

various cities in the region. On the other hand, based on the

heterogeneity characteristics among regions, we can identify the

distinct interest demands of different subjects and establish a more

targeted and diversified governance incentive and compensation

mechanism. At the same time, we should constantly innovate the

channels and mechanisms for public to participate in and improve

the public’s sense of responsibility and supervision efficiency by

encouraging new media and building a communication platform

between the government and civil society organizations. In

addition, we should further strengthen the overall planning and

top-level design of authoritative institutions, especially the central
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authority, and strengthen the supervision strength and sustainable

development of environmental protection. We’re expected to

continue to deepen the reform of the ecological civilization

system, realize the separation of environmental governance

responsibilities, law enforcement and supervision, and

eventually improve the efficiency of environmental supervision

and protection.

Our work has certain limitations. In this paper, our index

choice for industrial structure rationalization is the Thayer index,

which is a measure of the degree of coupling between factor input

structure and output structure, but rather single to a certain

extent. In view of the special characteristics of the mariculture

industry structure, in future research, we consider using the

industrial structure deviation index (the degree of difference

between the proportion of value added of each industry and the

corresponding proportion of labor force) to represent the

industrial structure rationalization, to further enhance the

scientific and rational nature of the research conclusions. In

addition, this study chooses provinces (cities) as the research

object, which are still larger in spatial scope to a certain extent.

Next, we will continue to consider communicating with some of

our partner counties to narrow the scope of the study to the

county level to better identify the impact mechanisms of marine

environmental pollution on offshore aquaculture structure.
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