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Seasonal variations in
biochemical (biomolecular and
amino acid) compositions and
protein quality of particulate
organic matter in the
Southwestern East/Japan Sea
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Yejin Kim1, Sanghoon Park1, Jaesoon Kim1, Kwanwoo Kim1,
Jae Joong Kang2 and Sang Heon Lee1*

1Department of Oceanography, Pusan National University, Busan, South Korea, 2Oceanic Climate
and Ecology Research Division, National Institute of Fisheries Science, Busan, South Korea
The biochemical compositions of marine particulate organic matter (POM) can

provide significant information to understanding the physiological conditions

of phytoplankton and food quality for their potential consumers. We

investigated the seasonal variations in biomolecular and amino acid (AA)

compositions of the bulk POM in the southwestern East/Japan Sea from four

different sampling months (February, April, August, and October) in 2018. In

terms of the biomolecular composition of the POM, overall carbohydrates

(CHO) were predominant among three biomolecules accounting for 48.6%

followed by lipids (LIP; 35.5%) and proteins (PRT; 15.9%) in the East/Japan Sea.

However, markedly seasonal differences in the biomolecular composition of

POM were found from February to October, which could be due to seasonally

different conditions favorable to phytoplankton growth. Dominant AA

constituents to trace POM lability were glycine (GLY), alanine (ALA), and

glutamic acid (GLU), suggesting that our POM was the mixtures of

decomposing and fresher materials. Furthermore, the significantly negative

correlation between the proportion of total essential amino acids (EAAs) and

PRT composition (r = -0.627, p< 0.01) was probably reflected by nutrient

availability to phytoplankton partitioning EAAs or non-essential AAs (NEAAs).

The different biomolecular compounds under un- or favorable growth

conditions for phytoplankton could determine the nutritional quality of POM

as potential prey as well as degradation status of POM. Therefore, the

biochemical compositions of phytoplankton-originated POM hold important

ecological implications in various marine ecosystems under ongoing

climate changes.

KEYWORDS

particulate organic matter, phytoplankton, biomolecular composition, amino acid
composition, essential amino acids, food quality, East/Japan Sea
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Introduction

Marine particulate organic matter (POM) mostly derived from

phytoplankton is the foundation of marine food webs and plays a

key role in primary producer-herbivore interactions as a pivotal

food source (Dzierzbicka-Głowacka et al., 2010; Andersson et al.,

2017). The major biochemical components of POM within a

euphotic zone are composed of organic biomolecules such as

carbohydrates (CHO), proteins (PRT), and lipids (LIP) that

phytoplankton synthesize through photosynthesis by taking up

inorganic carbon (Fernández-Reiriz et al., 1989; Geider and La

Roche, 2002). Increasing or decreasing their synthesis of individual

biomolecules depends on facing environmental conditions (e.g. the

availability of light and nutrients, temperature and salinity, and the

physiological state of phytoplankton (Geider and La Roche, 2002;

Bhavya et al., 2019).

Among these biomolecules, amino acids (AAs) have received

considerable attention because of their importance to indicate

organic matter degradation (Dauwe and Middelburg, 1998;

Dauwe et al., 1999) and PRT quality (Oser, 1959; Mente et al.,

2002). AAs are the most labile fraction of bulk POM and those

compositional changes can provide information on the

degradation state of POM, phytoplankton assemblage

composition, and phytoplankton growth phase (Hecky et al.,

1973; Kolmakova and Kolmakov, 2019; Shields et al., 2019). On

the other hand, essential AAs (EAAs) are considered vital to

most herbivores since they cannot synthesize the EAAs by

themselves, and therefore the availability of EAAs in their diet

can affect consumers’ growth and reproduction (Muller-

Navarra, 1995; Kleppel et al., 1998; Kolmakova and

Kolmakov, 2019).

The East/Japan Sea is a marginal sea located in the

northwestern Pacific Ocean that has shown marked seasonal

patterns in water properties (Kim et al., 2007). Meanwhile, the

East/Japan Sea has been considered to be a highly productive

region, especially the southwestern part (Lee et al., 2009; Yoo and

Park, 2009; Lee et al., 2014), although nitrogenous nutrients are

nearly depleted (Kim et al., 2010). Recently, the East/Japan Sea has

undergone dramatic environmental changes in physicochemical

properties over recent decades (Jo et al., 2017 and references

therein). Several studies reported a drastic increasing trend in sea

surface temperature in the East/Japan Sea during summer as well as

winter after 2010 (Kim and Kim, 1996; Kim et al., 2001; Han and

Lee, 2020). Furthermore, Lee et al. (2014) observed different trends

of spring blooms in terms of timing, magnitude, and duration

between 1998–2001 and 2008–2011. These changes in marine

environmental conditions as climate stressors could have

influenced cell physiological processes and in turn biochemical

compositions of phytoplankton (Kremp et al., 2012; Bhavya et al.,

2019). Therefore, biochemical compositions could provide a clue to

understanding the physiological response of the phytoplankton

community to the ongoing environmental changes.
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Here, the aims of the paper were to (1) investigate the

seasonal variability in the biochemical (biomolecular and AA)

compositions of bulk POM, and (2) determine major controlling

factors for the changes in these compositions and PRT quality in

the southwestern East/Japan Sea.
Materials and methods

Study area and sampling

The field survey was conducted at each 9-10 stations as a

part of the serial oceanographic observation project of the

National Institute of Fisheries Science (NIFS) in the

southwestern part of the East/Japan Sea on the research vessel

Tamgu 3 during four periods (February, April, August, and

October 2018) (Figure 1 and Table 1). We chose geographically

dispersed 9-10 stations for providing a representative data

covering the southwestern East/Japan Sea (Figure 1). For

seasonal analyses, these four sampling months were used to

represent late winter, spring, summer, and autumn, respectively.

The vertical temperature and salinity profiles were obtained with

a conductivity-temperature-depth (CTD) recorder (SeaBird

Electronics Inc, SBE 911 plus). In order to estimate the

euphotic zone depth at which photosynthetic available

radiation (PAR) is 1% of its surface value, the secchi disk was

used to measure the secchi depth (Kirk, 1985). Then, light

penetration depths were calculated by the light attenuation

coefficient of PAR estimated from the secchi depth (Kirk,

1985; Padial and Thomaz, 2008). Seawater samples for

biological and chemical analyses were collected at three light

depths (representing 100, 30, and 1% of the light penetration

depths which were estimated by Secchi disk) using 10 L Niskin

bottles equipped with CTD/rosette sampler.
Analyses of major dissolved inorganic
nutrients and photosynthetic pigments

Seawater samples for analyses of major dissolved inorganic

nutrients (phosphate, nitrate + nitrite, ammonium, and silicate)

were prefiltered through the Whatman GF/F filter (25 mm, 0.7 mm
pore) on board and immediately frozen at -20°C for later

processing. Nutrient concentrations were determined

photometrically following the standard procedure according to

the ‘QuAAtro Applications’ using an automatic analyzer

(QuAAtro, Seal Analytical, Norderstedt, Germany)at the

laboratory in the NIFS.

Samples for determination of total chlorophyll-a (chl-a)

concentration were filtered onto 25 mm GF/F filter papers

(Whatman, 0.7 mm pore) and extracted in 90% acetone in the

refrigerator at 4°C for 24 hours (Parsons et al., 1984). The chl-a
frontiersin.org

https://doi.org/10.3389/fmars.2022.979137
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jo et al. 10.3389/fmars.2022.979137
concentration was calculated by measuring the fluorescence

using the pre-calibrated 10-AU fluorometer (Turner Designs,

USA). Measurements of size-fractionated chl-a concentration

were performed on water samples serially passed through a 20

μm-Polycarbonate Track Etched (PCTE) membrane filter (GVS,

47mm), a 2 μm-PCTE membrane filter (Whatman, 47mm), and

a 0.7 mm-GF/F filters (Whatman, 47mm). The size-fractionated

chl-a fluorescence was measured according to the same analysis

procedure of total chl-a.

Photosynthetic pigments were extracted from frozen filters

(1 L or 2 L of seawater, by 47 mmWhatman GF/F filters of pore

size of 0.7 μm) in 5mL of 100% acetone (LiChrosolv, Merck,

HPLC gradient grade) with 100 μL canthaxanthin (Sigma-

Aldrich, USA) as an internal standard and stored in the

refrigerator at 4°C for 24 hours as described in a previous

study (Kim et al., 2020). The filtrates were filtered by using

polytetrafluoroethylene (PTFE)syringe filters of pore size 0.2 μm

(Advantec, Japan). For quantifying pigment concentrations, the

samples were analyzed using a high-performance liquid

chromatography system (HPLC; Agilent Infinity 1260, Santa

Clara, CA, USA) following the method of Zapata et al. (2000)

with slight modifications (Kim et al., 2020). The pigments used

for phytoplankton taxonomic identification were entered into

the CHEMTAX program, which allowed estimating the

contribution of the main phytoplankton classes based on the

ratio of each diagnostic pigment to total chl-a (Mackey et al.,

1996). The detailed analytical procedures were reported in Kim

et al. (2020).
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Particulate organic carbon, nitrogen, and
stable carbon isotopes (d13C) analyses
of POM

Water samples (0.3 L) for POC and PON concentrations

were filtered through the Whatman GF/F filter (25 mm, 0.7 mm
pore). The filtered samples were immediately frozen and then

acidified over fuming Hydrochloric Acid (HCl; Wako, Japan) to

eliminate inorganic carbon at the home laboratory. The filters

were transferred into tin capsules and then were analyzed for

POC, PON contents, and d13C using a Finnigan Delta+ XL mass

spectrometer (ThermoFinnigan, Bremen, Germany) at the stable

isotope laboratory of the University of Alaska Fairbanks, USA.
Biomolecular composition analyses

Seawater samples for biomolecular composition (CHO,

PRT, and LIP) of POM were collected from three light depths

(100, 30, and 1%). Each sample (0.5 L) was filtered through a

47mm Whatman GF/F filter (0.7 mm pore) and the filtered

samples were immediately frozen (- 80 °C). In the laboratory,

The UV-visible spectrophotometric (Hitachi UH-5300, Japan)

methods were used to measure each biomolecular concentration.

The phenol-sulfuric method proposed by Dubois et al. (1956)

was used to quantify the total CHO of POM. The total PRT

content was determined according to Lowry et al. (1951). The

total LIP content was extracted according to the method of Bligh
FIGURE 1

Study region in the southwestern East/Japan Sea showing the location of sampling stations.
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TABLE 1 Information on sampling stations, associated environmental variables, and concentrations of major inorganic nutrients during this study.

Month station Latitude
(°N)

Longitude
(°E)

Light
depth
(%)

Sampling
depth (m)

Zm
(m)

Water
Temperature

(°C)

Salinity PO4

(mM)
NO2

+NO3

(mM)

NH4

(mM)
SIO2

(mM)
N/P ratio
(molar:
molar)

Feb. 103-07 36.50 130.00 100 0 87 10.19 34.39 0.45 7.23 0.47 10.11 17.2

30 14 10.19 34.39 0.44 6.75 0.34 10.12 16.1

1 54 10.18 34.39 0.42 6.84 0.32 9.47 16.9

103-11 36.50 131.24 100 0 33 10.99 34.44 0.35 5.59 0.32 9.64 16.7

30 12 10.92 34.44 0.34 5.26 0.38 9.78 16.4

1 46 9.73 34.32 0.34 6.87 0.33 10.02 21.4

105-05 37.55 129.37 100 0 30 8.20 34.29 0.52 8.13 0.41 11.22 16.3

30 13 8.19 34.28 0.40 7.30 0.31 6.08 18.9

1 51 4.55 34.06 0.87 12.74 0.60 16.62 15.3

105-07 37.55 130.00 100 0 123 9.51 34.28 0.36 6.95 0.32 8.43 20.3

30 14 9.46 34.28 0.33 6.36 0.25 5.27 20.1

1 54 9.34 34.27 0.40 6.83 0.32 8.29 17.8

105-11 37.55 131.24 100 0 135 8.89 34.28 0.43 6.73 0.21 8.14 16.3

30 14 8.95 34.23 0.41 6.54 0.40 8.20 17.0

1 54 8.94 34.23 0.42 7.28 0.66 8.14 18.8

107-05 38.20 129.37 100 0 27 8.80 34.21 0.43 7.04 0.89 8.67 18.6

30 11 8.84 34.25 0.35 6.79 0.88 6.35 22.0

1 43 7.18 34.24 0.48 6.79 0.30 9.87 14.8

107-07 38.20 130.00 100 0 190 8.86 34.20 0.39 6.51 0.01 8.90 16.9

30 11 8.84 34.17 0.43 6.48 0.03 8.74 15.3

1 43 8.85 34.17 0.42 6.53 0.02 8.39 15.8

209-05 35.75 129.64 100 0 51 11.68 34.45 0.47 6.74 0.37 11.33 15.0

30 14 11.68 34.45 0.46 6.81 0.33 11.31 15.5

1 54 10.67 34.40 0.56 8.16 0.34 13.09 15.2

209-08 35.51 130.28 100 0 49 12.73 34.55 0.37 5.26 0.28 11.84 14.8

30 16 12.67 34.54 0.40 5.35 0.28 11.94 14.1

1 60 12.09 34.51 0.44 5.22 0.20 12.32 12.2

Apr. 102-06 36.08 129.80 100 0 54 14.65 34.57 0.20 0.83 1.52 4.97 11.9

30 11 14.56 34.58 0.17 0.94 1.46 3.62 14.5

1 43 14.40 34.57 0.23 3.02 2.02 4.72 22.3

103-04 36.51 129.50 100 0 26 12.52 34.35 0.11 0.61 0.25 4.06 8.0

30 4 12.52 34.34 0.09 0.61 0.28 2.31 10.2

1 16 12.51 34.35 0.13 0.97 0.30 5.87 10.0

103-10 36.51 130.93 100 0 11 12.66 34.45 0.06 0.40 0.26 3.14 10.5

30 6 12.66 34.45 0.07 0.41 0.26 3.06 9.9

1 24 11.23 34.36 0.13 1.83 0.43 5.55 17.5

104-05 37.06 129.56 100 0 37 13.52 34.50 0.14 1.50 1.55 3.27 21.9

30 7 13.51 34.49 0.14 1.65 1.35 6.26 21.3

1 27 13.50 34.49 0.16 1.81 1.45 3.33 20.0

104-09 37.06 130.63 100 0 34 11.23 34.39 0.17 2.56 1.63 6.48 24.0

30 7 11.22 34.39 0.18 2.55 1.61 4.14 23.2

1 27 10.91 34.39 0.16 3.29 1.33 3.99 29.5

105-10 37.55 130.93 100 0 48 11.47 34.44 0.22 2.74 0.33 6.71 13.8

30 6 11.46 34.44 0.16 2.73 0.42 4.69 20.2

1 24 11.28 34.44 0.19 2.94 0.36 6.74 17.8

106-03 37.90 128.95 100 0 31 12.20 34.44 0.12 1.95 1.46 3.62 28.6

30 7 12.21 34.45 0.15 2.22 1.55 4.00 24.6

(Continued)
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TABLE 1 Continued

Month station Latitude
(°N)

Longitude
(°E)

Light
depth
(%)

Sampling
depth (m)

Zm
(m)

Water
Temperature

(°C)

Salinity PO4

(mM)
NO2

+NO3

(mM)

NH4

(mM)
SIO2

(mM)
N/P ratio
(molar:
molar)

1 27 12.21 34.45 0.14 2.09 1.40 3.77 25.2

106-10 37.90 130.94 100 0 32 10.00 34.33 0.12 1.49 1.31 3.29 23.8

30 10 9.97 34.33 0.13 2.47 1.38 3.71 28.7

1 38 8.24 34.24 0.28 4.48 1.67 4.24 21.7

107-07 38.20 130.00 100 0 29 10.93 34.44 0.17 3.71 0.25 2.89 23.4

30 14 10.86 34.40 0.28 3.76 0.27 3.99 14.6

1 30 10.16 34.35 0.19 3.62 0.25 4.08 20.0

209-07 35.61 130.01 100 0 60 15.35 34.58 0.16 1.85 0.15 5.25 12.4

30 6 15.35 34.58 0.17 1.88 0.15 6.56 12.0

1 22 15.36 34.58 0.18 1.86 0.19 7.52 11.6

Aug 102-09 36.08 130.62 100 0 23 26.65 32.76 0.14 0.14 0.52 5.23 4.9

30 16 26.63 32.77 0.12 0.09 N.D. 3.77 N.D.

1 60 17.47 33.31 0.35 5.74 0.66 8.22 18.4

103-09 36.51 130.62 100 0 9 26.02 33.27 0.16 0.19 0.24 4.95 2.7

30 17 24.73 33.33 0.17 0.14 0.24 6.15 2.2

1 65 16.41 34.21 0.64 9.74 0.24 14.16 15.5

104-04 37.06 129.48 100 0 19 26.34 33.19 0.14 0.19 0.51 4.11 5.1

30 14 26.30 33.20 0.14 1.90 0.38 3.96 16.5

1 54 15.69 34.21 0.57 10.48 0.66 13.40 19.4

104-11 37.06 131.26 100 0 9 25.19 33.15 0.15 0.05 0.53 4.26 3.9

30 14 24.91 33.33 0.13 0.09 0.76 4.16 6.4

1 54 9.34 34.23 0.46 8.43 0.66 10.02 19.7

105-07 37.55 130.00 100 0 21 27.45 33.00 0.13 0.10 0.28 3.15 3.0

30 16 27.55 32.94 0.13 0.09 0.29 2.95 3.0

1 60 14.72 34.27 0.51 11.46 0.25 9.69 23.1

105-11 37.55 131.24 100 0 12 26.56 33.08 0.08 0.35 0.26 3.83 7.9

30 16 21.38 33.49 0.06 0.12 0.32 2.97 6.9

1 60 9.62 34.30 0.54 8.68 0.29 11.40 16.7

106-05 37.90 129.37 100 0 9 25.48 33.05 0.09 0.17 0.60 3.88 8.5

30 12 17.10 33.67 0.07 0.21 0.39 4.54 8.4

1 46 6.23 34.16 0.54 9.76 0.48 8.19 19.1

107-03 38.21 128.84 100 0 6 27.08 32.92 0.07 0.37 0.53 0.89 12.7

30 10 23.57 33.47 0.10 0.32 0.45 1.60 7.4

1 30 6.09 33.98 0.11 0.78 0.48 2.85 11.7

107-07 38.20 130.00 100 0 7 29.15 32.23 0.07 0.14 0.40 0.70 7.9

30 13 22.98 32.82 0.08 0.17 0.37 1.61 7.0

1 49 14.83 34.30 0.66 10.74 0.36 14.84 16.8

209-07 35.61 130.01 100 0 17 26.54 32.44 0.11 0.15 0.34 6.04 4.5

30 16 26.85 32.35 0.11 0.37 0.25 5.89 5.8

1 66 14.22 34.15 0.69 11.60 0.28 17.09 17.2

Oct. 102-07 36.08 130.00 100 0 40 21.65 33.96 0.13 1.72 0.74 1.60 18.6

30 10 21.66 33.96 0.11 1.61 0.57 1.41 19.1

1 38 21.70 34.03 0.14 1.71 0.70 1.70 17.1

103-05 36.51 129.59 100 0 30 20.25 33.55 0.08 1.81 0.46 2.41 27.1

30 10 20.22 33.55 0.12 1.80 0.44 3.20 18.6

1 38 13.09 34.36 0.82 6.40 0.63 13.97 8.6

103-09 36.51 130.62 100 0 36 20.36 33.45 0.08 2.38 0.34 2.41 32.5

(Continued)
Frontiers
 in Marine
 Science
 05
 fro
ntiersin.org

https://doi.org/10.3389/fmars.2022.979137
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jo et al. 10.3389/fmars.2022.979137
and Dyer (1959) and Marsh and Weinstein (1966) with minor

modifications. More detailed analytical procedures and

calibration methods are explained in Bhavya et al. (2019).
AA composition analysis and
degradation index

Water samples for total particulate hydrolyzable amino acids

(PAA) analysis were collected from different three-light depths

(100, 30, and 1%). Seawater (1 L) from each station was filtered

through 47 mm GF/F filters (Whatman, 0.7 mm pore) aboard

and frozen immediately at -80 °C until analysis. The

composition of PAA was determined by HPLC after HCl

hydrolysis and ortho-phthalaldehyde (OPA) and 9-

fluorenylmethyl chloroformate (FMOC) (Agilent Technologies,

Santa Clara, CA, USA) derivatization according to the procedure

in Bartolomeo andMaisano (2006) and Agilent Application note

(Henderson et al., 2000). More details on the calibration method

and sample measurements are described in our previous study

(Jo et al., 2021). PAA compositions were determined for the

following 16 L-AAs (Agilent Technologies, Santa Clara, CA,

USA): Aspartic acid (ASP), Glutamic acid (GLU), Serine (SER),
Frontiers in Marine Science 06
Histidine (HIS), Glycine (GLY), Threonine (THR), Arginine

(ARG), Alanine (ALA), Tyrosine (TYR), Cystine (CY2), Valine

(VAL), Methionine (MET), Phenylalanine (PHE), Isoleucine

(ILE), Leucine (LEU), Lysine (LYS). The concentration of each

AA was expressed as a mole percentage (mol%) of PAA.

Additionally, individual AAs were grouped into nine essential

(EAA: histidine, threonine, arginine, valine, methionine,

phenylalanine, isoleucine, leucine, and lysine) and six non-

essential (NEAA: aspartic acid, glutamic acid, serine, glycine,

alanine, and tyrosine) ones.

The mole percentages (mol%) of PAA were used to calculate

the degradation index (DI) proposed by Dauwe et al. (1999). For

the calculation of DI from PAA in this study, mole percentages

of the AAs were standardized using averages, and standard

deviations and multiplied with factor coefficients as given in

Dauwe et al. (1999) according to the formula:

DI =  o
i
½vari − AVGvari

STDvari
� � fac · coefi

where vari is the mol% of the individual AA, AVGvari and

STDvari are the mean and standard deviation of the AAmol% in

our data set and fac·coefi is the factor coefficient for each AA in

Dauwe et al. (1999).
TABLE 1 Continued

Month station Latitude
(°N)

Longitude
(°E)

Light
depth
(%)

Sampling
depth (m)

Zm
(m)

Water
Temperature

(°C)

Salinity PO4

(mM)
NO2

+NO3

(mM)

NH4

(mM)
SIO2

(mM)
N/P ratio
(molar:
molar)

30 9 20.31 33.43 0.10 2.19 0.62 2.26 28.6

1 35 20.27 33.45 0.26 4.29 0.66 4.52 18.8

104-08 37.06 130.31 100 0 36 18.56 33.26 0.23 1.60 1.27 3.17 12.3

30 7 18.57 33.27 0.24 1.79 0.87 3.43 11.0

1 27 18.42 33.25 0.08 1.60 0.65 2.49 27.4

105-03 37.55 129.17 100 0 26 18.88 33.26 0.08 0.12 0.61 2.39 9.6

30 7 18.87 33.27 0.07 0.85 0.58 2.50 19.2

1 27 18.49 33.42 0.11 1.04 0.54 3.85 13.8

105-11 37.55 131.24 100 0 61 20.11 33.56 0.05 0.94 0.49 1.66 25.9

30 8 20.10 33.55 0.06 0.96 0.58 1.07 25.1

1 30 19.99 33.54 0.06 0.92 0.37 1.26 22.1

106-07 37.90 130.00 100 0 39 19.54 33.27 0.25 0.40 0.67 5.32 4.3

30 12 19.52 33.25 0.16 0.40 0.67 3.56 6.8

1 46 17.06 33.96 0.26 5.87 0.61 6.08 24.5

107-03 38.21 128.84 100 0 14 17.67 33.33 0.08 0.08 0.17 0.86 3.0

30 8 17.66 33.33 0.07 0.27 0.17 0.87 6.4

1 30 7.55 34.16 0.98 14.02 0.14 18.69 14.5

107-07 38.20 130.00 100 0 37 19.69 33.22 0.08 0.31 0.18 2.02 6.5

30 12 19.55 33.22 0.05 0.28 0.24 1.66 10.5

1 46 16.32 34.00 0.59 10.19 0.14 12.16 17.5

209-04 35.79 129.55 100 0 60 20.90 33.94 0.25 3.29 0.77 4.02 16.5

30 6 20.92 33.96 0.25 3.21 0.77 3.91 16.2

1 22 20.52 33.95 0.25 3.28 0.72 3.79 16.0
fro
Zm, Mixed layer depth, PO4, Phosphate, NO2+NO3, Nitrate+Nitrite, NH4: ammonium, SiO2: Silicate, N.D., No data.
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Statistical analysis

The concentrations of total chl-a, POC/N, and biomolecular

compounds used for presenting the spatial and temporal

variations are expressed as depth-weighted averages which can

be obtained by dividing the trapezoidal integration of measured

values for each biochemical parameter by the maximum

sampling depth (Crosbie and Furnas, 2001). We utilized the

depth-weighted average because it assumed homogeneity within

the euphotic water column, which made it better suited for the

distributional patterns of our samples (Wei et al., 2020). The

depth-weighted average equation was calculated following this

formula (Wei et al., 2020):

A = o
n−1

i=1

Ai + Ai+1

2
� (Di+1 − Di)

" #
=D

where A is the mean value of each biochemical parameter; Ai is

the concentration of each biochemical parameter at layer i (m);

Di is the depth at sampling layer i (m); D is the depth of the

maximum sampling layer (m), and n is the number of

sampling layers.

To explore significant differences between the two or more than

two variables were performed using the t-test or analysis of variance

(ANOVA) with the post hoc test (Scheffe’s test). Pearson’s correlation

coefficients were used to examine the significant correlation between

variables. In all statistical analyses, the statistical significance of the

results was accepted at p values<0.05. Statistical analyses were

achieved using an IBM SPSS statistics software package 25.0 (IBM

software, Chicago, IL, USA).

To investigate which environmental variables could best

describe the variability in biochemical compositions (biomolecular

and AA compositions) of POM, a multivariate form of direct

gradient analysis (Redundancy Analysis, hereafter RDA) was

performed using the CANOCO software 4.5 (Biometris,

Wageningen, The Netherlands) for Windows (ter Braak and

Šmilauer, 2002). Prior to RDA, a detrended correspondence

analysis (DCA) was executed to ensure the applicability of the

linear RDA. DCA result showed a gradient length of the first axis

smaller than 3 standard deviations, suggesting that redundancy

analysis (RDA) was the appropriate method for our data (Ramette,

2007). The Monte Carlo permutation test with 999 permutations

was conducted to evaluate the statistical significance of the first

ordination axis and the first four canonical axes together.
Results

Hydrological and chemical properties

Depth profiles of water temperature, salinity, and

concentrations of major dissolved inorganic nutrients during the

four cruises are represented in Table 1. Overall, when mixed layer
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depth is located below the euphotic zone, the vertical distributions

of temperature and salinity within the euphotic zone were rather

homogenous during this study. By contrast, when mixed layer

depth was shallower than 1% light depth, temperature values at 1%

light depth were lower than those in the upper layer (100 and 30%

light depths). The ranges of temperature within the euphotic water

column in February, April, August, and October were 4.55 – 12.73°

C, 8.24 – 15.36 °C, 6.09 – 29.15°C, and 7.55 – 21.70°C, respectively

(Table 1). The salinity showed low variability throughout the study

period ranging from 32.23 to 34.58 with the highest values in April

(mean ± S.D. = 34.44 ± 0.09) and the lowest values inAugust (mean±

S.D. = 32.23 ± 0.63) (Table 1).

The major dissolved inorganic nutrients (phosphate, nitrate +

nitrite, ammonium, and silicate) also showed seasonal variations

(Table 1). In general, February was characterized by higher

concentrations of phosphate, nitrate + nitrite, and silicate than

other periods (Table 1). The highest variability among the sampling

stations in ammonium concentrations was observed in April, with

the higher values (> 1.3 mM) throughout the euphotic water column

collected from some stations (st.102-06, 104-05, 104-09, 106-03, and

106-10). In August and October, phosphate, nitrate + nitrite, and

silicate at the 1% light depth had even higher values than those in

the upper layer (100 and 30% light depths). The phosphate

concentrations within the euphotic zone were 0.33 – 0.87 mM in

February, 0.06 – 0.28 mM in April, 0.06 – 0.69 mM in August, and

0.05 – 0.98 mM in October (Table 1). The concentrations of

nitrate + nitrite in February showed higher values (5.22 – 12.74

mM), whereas those in the upper layer in August almost were

depleted. The ammonium concentrations during this study were

mostly low (< 1 mM) except above-mentioned stations in April. The

ranges of silicate concentrations within the euphotic zone in this

study were 5.27 – 16.62 mM in February, 2.31 – 7.52 mM in April,

0.70 – 17.09 mM in August, and 0.86 – 18.69 mM in October,

respectively (Table 1). Dissolved inorganic nitrogen (nitrate + nitrite

+ ammonium; N) to phosphorus (P) ratio (N/P ratio) within the

euphotic layer ranged from 12.2 to 22.0 in February (mean ± S.D. =

16.9 ± 2.3), from 8.0 to 29.5 in April (mean ± S.D. = 18.4 ± 6.4),

from 2.2 to 23.1 in August (mean ± S.D. = 10.4 ± 6.3), and from 3.0

to 32.5 in October (mean ± S.D. = 16.6 ± 7.8) (Table 1).
Phytoplankton biomass and
community structure

Overall, the phytoplankton biomass represented by depth-

weighted average concentrations of total chl-a from surface to

1% light depth varied seasonally from 0.1 to 3.0 mg L-1, with

higher values (mean ± S.D. = 1.9 ± 0.7 mg L-1) in April and lower

values (mean ± S.D. = 0.2 ± 0.1 mg L-1) in August. The depth-

weighted average total chl-a concentrations within the euphotic

zone ranged from 0.4 to 2.0 mg L-1 in February, from 1.1 to 3.0 mg
L-1 in April, from 0. 1 to 0.4 mg L-1 in August, and 0.4 – 2.1 mg L-1

in October (Table 2).
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The mean contributions of different size-fractionated chl-a

(> 20 mm, 2 – 20 mm, and 0.7 – 2 mm) profiles during this study

were variable among the sampling stations except for August

(Table 2). In this study, the relative contributions of large (>20

μm), middle (2 – 20 μm), and small-sized (0.7 – 2 μm) fractions

to the total phytoplankton chl-a concentrations were 4.0 – 72.9,

12.0 – 41.8, and 13.4 – 68.6%, respectively (Table 2). In August,

the relative contributions of size-fractionated chl-a indicate

small-size class (0.7 – 2 μm) to be the major contributor

(mean ± S.D = 56.2 ± 13.0%) except st. 209-07 (Table 2). By

comparison, for the other three months (February, April, and

October), changes in size groups of phytoplankton were highly

dynamic and the relative dominances of large-sized or small-

sized phytoplankton appeared across the study region (Table 2).

The relative contribution of different phytoplankton groups to

total chl-a estimated by CHEMTAX varied also largely across the

sampling stations during our study (Table 2). However, diatoms

had the greatest average contribution to total chl-a (mean ± S.D =

36.3 ± 22.5%) throughout this study period. In February,

cryptophytes and prasinophytes had relatively higher

contributions where diatoms were not predominated.

Dinoflagellates appeared peculiarly with a maximum value of

25.8% in April (Table 2). The contribution of cyanobacteria

increased in August and October (mean ± S.D = 28.5 ± 17.5%

and 13.9 ± 12.3%, respectively) along with a higher proportion of

small-sized class (0.7 – 2 μm) (Table 2).
Particulate organic carbon, nitrogen, and
stable carbon isotopes (d13C) of POM

The analytical results of the parameters POC, PON, C/N ratio,

POC/Chl-a ratio, and d13C of bulk POM are displayed in Table 3.

The depth-weighted average POC and PN concentrations of POM

varied over a wide range during this study (Table 3). The euphotic

depth-averaged C/N molar ratios showed wide variability

depending on the seasons, ranging from 5.4 to 15.8 with the

highest values in August (range: 10.8 – 15.8) and lower values in

April and October (range: 5.9 – 8.5, 5.4 – 9.3, respectively) (Table 3).

There was a wide range of variability in the mean POC/Chl-a ratio

within the euphotic zone among sampling months, ranging from

66.6 to 299.3 (February), 58.9 to 131.3 (April), 532.7 to 1328.0

(August), and 88.2 to 189.0 (October), respectively (Table 3). The

averages of the POC/Chl-a ratio in August were markedly higher

than those during other sampling seasons (one-way ANOVA, p<

0.05). The d13C values of surface POM ranged from -26.3 to -18.8

‰ with lower variability throughout the study period (Table 3).
Biomolecular composition of POM

The depth-weighted average concentrations and relative

proportions of CHO, PRT, LIP, and food material (hereafter FM;
Frontiers in Marine Science 08
i.e., the sum of the CHO, PRT, and LIP concentrations in POM;

Danovaro et al., 2000) varied significantly at similar sampling

stations depending on the season (Table 4). Taking the entire

data set into account, the depth-weighted average concentrations

of biomolecules (CHO, PRT, and LIP) ranged from 60.0 to 253.9,

from 2.7 to 147.4, and 44.3 to 157.7 mg L-1, respectively (Table 4).
The depth-weighted average FM concentration in the total POM in

the southwestern East/Japan Sea varied from 130 to 471.8 mg L−1 in
this study and reached its maximum value in April consistent with

the total chl-a biomass peak. Indeed, a linear relationship observed

between the total FM concentration and the total chl-a

concentration (r = 0.783, n = 115, p< 0.01) indicates that FM

concentrations vary coincidentally with phytoplankton biomass.

The relative proportions of biomolecular components (CHO,

PRT, and LIP) in the total POM were averaged from the surface to

1% light depth since there were no statistically significant differences

among the three light depths (one-way ANOVA, p > 0.05). CHO

were the largest contributor to the biomolecular composition of the

bulk POM, representing on average 48.6% (S.D = 11.3%) during the

study period although the biomolecular composition of POM

displayed a remarkable seasonal variability (Table 4 and

Figure 2). CHO composition was discovered to be clearly high

(46.6 – 69.4%) in February at all the stations, while PRT

composition was lower (2.4 – 18.7%) than those of other seasons

(Table 4). The contribution of CHO notably decreased (35.2 –

54.5%) whereas PRT showed a distinct increase (20.7 – 32.9%) in

April relative to February (Table 4). However, CHO proportion was

found to be dominant again in August and contributed

approximately > 50% to total biomolecular composition in the

total POM (Table 4 and Figure 2). In comparison, the contribution

of LIP in October was much higher than that of other months and

comprised 38.6 to 57.5% of POM (Table 4 and Figure 2). The

ternary diagram illustrated the relative proportions of CHO, PRT,

and LIP indicating that the biomolecular composition of bulk POM

showed a clear seasonality than their regional variability (Figure 3).

Plotting the analyzed samples on this plot were divided into three

groups: overwhelmingly predominant CHO proportion in February

and April, relatively higher PRT proportion in August, and

dominant LIP proportion in October (Figure 3).
Amino acid composition of POM and
amino acid indices

The concentrations measured at 14 detected AAs were

summed to quantify the total PAA concentrations. The PAA

concentrations in bulk POM during the study showed no

differences between the three light depths except in October

(one-way ANOVA, p > 0.05, OCT: one-way ANOVA, p< 0.05, p =

0.011). The PAA concentrations within the euphotic zone spanned

the range from 0.07 to 0.31 mM in February, from 0.27 to 1.71 mM
in April, from 0.12 to 0.55 mM in August, and from 0.13 to 0.78 mM
in October, respectively (Supplementary Table 1). The high PAA
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TABLE 2 Depth-weighted average total chl-a concentrations, averaged compositions of different size-fractionated chl-a and phytoplankton communities from three light depths in southwestern
East/Japan Sea, 2018.

mposition (%)

Pelagophytes Chlorophytes Cyanobacteria Diatoms

8.4 1.3 0.0 51.7

5.3 0.8 0.1 74.8

9.5 2.0 0.8 39.2

14.1 2.7 0.3 16.6

13.5 1.4 0.0 16.3

17.0 2.0 0.8 12.5

6.8 4.2 0.0 51.5

14.0 2.7 0.0 28.9

13.0 1.7 0.0 59.9

0.0 4.5 11.0 36.3

7.3 2.4 5.4 41.9

10.3 4.5 10.5 25.7

13.0 1.6 4.3 24.8

16.1 4.1 8.0 12.3

13.0 4.1 10.3 13.6

9.5 5.5 11.0 18.6

9.6 2.8 8.5 14.8

20.1 0.1 3.2 16.6

4.8 0.0 1.0 26.2

7.4 16.2 30.7 32.4

28.8 16.1 28.0 8.2

18.3 18.8 35.0 17.4

0.0 28.8 28.6 28.3

10.7 4.4 66.5 16.8

16.2 8.2 34.3 20.4

11.1 8.0 11.8 39.2

0.0 6.1 10.7 37.2

11.7 8.8 34.9 28.3

0.0 5.4 4.3 81.9

0.0 5.4 3.4 85.1

0.0 3.1 2.1 75.1

(Continued)
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Month Station Chl-a Phytoplankton community c

depth-weighted
(mg L-1)

>
20
mm
(%)

2-
20
mm
(%)

0.7-2
mm
(%)

Prasinophytes Dinofla-gellates Cryptophytes Prymnesio-phytes

FEB. St.103-07 0.9 38.0 22.7 39.3 16.0 0.0 20.1 2.5

St.103-11 2.0 72.9 13.7 13.4 5.5 0.0 11.6 1.9

St.105-05 0.4 9.9 39.1 51.0 19.9 0.0 24.2 4.4

St.105-07 0.5 17.9 25.0 57.1 25.7 0.0 34.3 6.3

St.105-11 0.5 16.8 25.5 57.7 26.7 0.0 34.8 7.2

St.107-05 0.8 10.9 34.1 55.0 23.6 0.0 35.9 8.1

St.107-07 0.4 45.4 15.3 39.3 11.0 0.0 20.9 5.5

St.209-05 0.4 16.1 41.8 42.1 27.3 0.0 23.3 3.7

St.209-08 0.8 57.1 20.2 22.7 8.9 0.0 12.7 3.7

APR. St.102-06 1.4 60.7 12.0 27.2 21.3 9.8 9.3 7.8

St.103-04 2.8 41.7 29.7 28.7 15.8 12.3 3.7 11.2

St.103-10 3.0 29.7 30.6 39.7 12.6 8.1 15.4 12.9

St.104-05 2.3 21.2 39.0 39.7 27.0 8.7 3.1 17.4

St.104-09 2.3 4.0 37.9 58.1 21.3 7.9 18.4 11.8

St.105-10 1.5 7.2 37.7 55.1 22.7 10.1 15.6 10.6

St.106-03 1.6 20.9 22.9 56.2 23.2 9.1 13.6 9.5

St.106-10 1.1 20.2 30.4 49.4 27.0 19.5 8.0 9.8

St.107-07 1.1 19.1 32.3 48.6 18.0 25.8 9.2 7.1

St.209-07 2.1 50.8 23.6 25.6 35.3 9.5 12.2 11.0

AUG. St.102-09 0.2 18.2 17.6 64.2 0.0 3.2 0.3 9.8

St.103-09 0.3 13.6 18.2 68.2 0.0 6.0 0.4 12.4

St.104-04 0.2 13.2 18.2 68.6 0.0 0.0 0.0 10.5

St.104-11 0.2 26.8 20.6 52.6 0.0 0.0 0.2 14.1

St.105-07 0.1 17.6 20.7 61.7 0.0 0.0 0.1 1.5

St.105-11 0.2 12.4 41.3 46.3 0.1 0.1 8.9 11.7

St.106-05 0.4 12.9 32.7 54.4 8.7 0.1 7.0 14.2

St.107-03 0.3 14.6 25.1 60.4 7.8 0.0 25.6 12.5

St.107-07 0.2 18.1 21.2 60.7 0.0 0.0 6.3 9.8

St.209-07 0.3 42.1 33.0 25.0 0.0 5.2 0.0 3.2

OCT. St.102-07 1.2 72.3 14.3 13.5 0.0 0.0 3.3 2.9

St.103-05 1.1 41.0 32.2 26.8 0.0 0.0 17.3 2.3
o
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concentrations were observed in April when the maximum total

chl-a also occurred. Furthermore, PAA concentrations were

positively correlated with total chl-a and PRT concentrations (r =

0.726 and r = 0.812 for chl-a and PRT, respectively, p< 0.01, n =

115). Although the seasonal variations were seen in the mean mol

fractions of individual AAs in PAA between February and October,

themost abundant AAs throughout this study were GLY, GLU, and

ALA (Figure 4). Among these AAs, the highest mean mol

percentages (>20%) in PAA were only found for GLY (Figure 4).

In contrast, the minor constituents of the PAAwere LYS, MET, and

ILE in most PAA samples. 5 AAs (ASP, GLU, VAL, MET, and ILE)

did not show statistically significant changes with the season in this

study (Figure 4; one-way ANOVA, p > 0.05). Seasonal

contributions of a sum of 9 EAAs to total AAs (∑EAA%) in bulk

POM are given in Figure 5A. Ranges of ∑EAA% for February, April,

August, and October were 45.1 – 56.9, 36.1 – 46.4, 37.1 – 48.9, and

40.4 – 52.3%, respectively (Supplementary Table 1). ∑EAA% was

observed significantly higher in February, followed by October and

August, and finally April, with significantly lower values (Figure 5A;

one-way ANOVA, p< 0.05). In contrast, the percentage

compositions of total 6 NEAAs (∑NEAA%) from February to

October accounted for 43.1 – 54.9, 53.6 – 63.9, 51.1 – 62.9, and

47.7 – 59.6%, respectively (Supplementary Table 1).

The carbon and nitrogen normalized yields of AAs (AA-

POC% and AA-PON%) represent the portion of POC and PON

contributed by detecting all AAs in each PAA sample

(Supplementary Table 1). The PAA contributed between 3.1

and 49.7% of total POC and between 14.3 and 89.3% of total

PON in this study (Figures 5B, C, and Supplementary Table 1).

Seasonal trends in the AA-POC% and AA-PON% appeared to

be similar to PAA concentrations with higher values occurring

in April and October (Figures 5B, C).

A less clear trend emerged in the calculated DI values of bulk

POM between three light depths (100, 30, and 1%) during the

entire sampling period (Supplementary Table 1), but differences

in those depending on the season were significant (Figure 5D;

one-way ANOVA, p< 0.05). DI values for all PAA samples

ranged from -1.00 to 1.60, with an average of 0.00 ± 0.46. DI

values were comparatively higher in February (mean ± S.D. =

0.30 ± 0.51) compared to other seasons (mean ± S.D. = -0.09 ±

0.52 (Apri l ) , -0 .11 ± 0.41 (August) , -0 .07 ± 0.29

(October), respectively).
RDA results

The RDA results showed that the cumulative percentage

variance of biochemical compositions data of the first four axes

was 30% (Table 5). Furthermore, the cumulative percentage

variance of biochemical compositions–environment relation

explained by the first and second axes was 75.2% (Table 5).

There was a strong correlation between biochemical

compositions and environmental factors with biochemical
T
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composition-environment correlations of 0.799 on the first axis

and 0.616 on the second axis (Table 5). The Monte Carlo

permutation test (999 permutations under full model) found

that both the first canonical axis and the sum of all canonical

axes were significant (F = 25.901, p = 0.001, and F = 3.904, p =

0.001, respectively), which indicated that environmental variables

well explained the biochemical compositions of bulk POM.
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The RDA triplot (Figure 6) illustrates the relationships

among the probabilities for biochemical compositions of POM

(biomolecular and AA compositions) and environment variables

during this study. In the RDA triplot, the orientations of samples

collected from February and April were markedly distinguished

along the first ordination axis (Figure 6). Results of the RDA

suggest that CHO, HIS, and ∑EAA% were positively correlated
TABLE 3 Depth-weighted average concentrations of POC and PON, the mean ratios of C/N (molar) and POC/Chl-a, and d13C (‰) of particulate
organic matter (POM).

Month Station depth-weighted average C/N ratio (molar:molar) POC/Chl-a ratio d13C (‰)

POC (mg C L-1) PON (mg N L-1)

FEB. St.103-07 103.8 14.2 8.9 110.4 -26.3

St.103-11 134.3 20.3 7.8 66.6 -23.5

St.105-05 103.1 12.0 10.8 267.6 -25.4

St.105-07 102.5 12.5 10.2 200.5 -24.3

St.105-11 110.4 11.7 10.8 220.7 -24.7

St.107-05 106.2 14.9 8.4 132.2 -25.5

St.107-07 79.3 8.8 11.0 194.4 -24.7

St.209-05 122.0 14.7 10.7 299.3 -22.8

St.209-08 96.9 15.1 7.6 116.8 -23.0

APR. St.102-06 125.9 24.2 6.5 90.6 -22.5

St.103-04 183.6 31.4 7.1 65.7 -21.4

St.103-10 220.5 41.1 6.3 74.6 -22.6

St.104-05 139.2 26.3 6.2 60.3 -22.9

St.104-09 135.0 26.7 5.9 58.9 -24.0

St.105-10 124.2 21.7 6.5 81.2 -21.5

St.106-03 106.5 20.4 6.2 66.7 -23.5

St.106-10 118.6 19.6 7.3 112.1 -24.7

St.107-07 150.4 21.2 8.5 131.3 -24.2

St.209-07 160.7 24.8 8.0 75.9 -24.3

AUG. St.102-09 151.3 13.0 13.3 756.2 -25.2

St.103-09 165.3 15.8 14.5 599.1 -25.2

St.104-04 144.6 13.7 12.4 614.3 -23.6

St.104-11 162.7 15.0 12.3 1078.9 -24.0

St.105-07 185.2 12.7 15.8 1328.0 -24.9

St.105-11 187.6 18.2 12.7 904.5 -24.4

St.106-05 201.3 17.9 14.2 532.7 -18.8

St.107-03 205.4 16.8 14.4 773.2 -23.5

St.107-07 150.3 16.7 10.8 691.5 -23.3

St.209-07 183.2 17.1 12.6 667.4 -23.0

OCT. St.102-07 137.0 18.8 8.5 112.7 -21.7

St.103-05 143.2 19.6 9.3 134.5 -21.8

St.103-09 121.1 18.8 7.7 150.3 -21.5

St.104-08 183.9 41.0 5.4 88.2 -21.5

St.105-03 96.7 20.2 5.8 103.7 -22.3

St.105-11 93.3 18.8 6.2 125.5 -22.0

St.106-07 71.8 13.8 6.3 189.0 -21.2

St.107-03 135.7 24.4 6.8 121.3 -22.0

St.107-07 74.2 15.0 6.2 188.6 -22.1

St.209-04 110.1 21.5 6.3 93.1 -23.5
fro
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with major inorganic nutrients (SiO2, PO4, and NO2+NO3)

except for NH4 and associated with February. In contrast,

PRT, ∑NEAA%, and SER were explained by Dino, Prymnesio,

and NH4 and were largely associated with April (Figure 6).

According to the second ordination axis, LIP, LEU, and ALA

were positively correlated with Chloro, Temp, and Cyano, and

oriented opposite to Prasino and Sal (Figure 6).
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Discussion

Characteristics of the bulk POM

Generally, POM is a heterogeneous mixture of various

particulate matters including autotrophic and heterotrophic

organisms, detrital components, and terrestrial organic matters
TABLE 4 Depth-weighted average concentrations of each biomolecular compound (CHO, PRT, and LIP) and food materials (FM; the sum of CHO,
PRT, and LIP concentrations) and percentages of the biomolecular composition of POM in southwestern East/Japan Sea, 2018.

Month Station depth-weighted average concentration (mg L-1) Composition (%)

CHO PRT LIP FM CHO PRT LIP

FEB. St.103-07 130.3 22.7 53.9 206.9 62.7 11.2 26.1

St.103-11 100.2 40.2 75.1 215.6 46.6 18.7 34.7

St.105-05 123.6 10.1 57.1 190.8 62.0 7.1 30.9

St.105-07 172.6 15.7 70.0 258.2 68.4 6.0 25.6

St.105-11 182.7 13.8 58.4 254.9 69.4 5.5 25.1

St.107-05 149.5 24.1 73.6 247.3 62.0 8.7 29.3

St.107-07 111.3 2.7 62.5 176.4 62.8 2.4 34.8

St.209-05 145.8 10.8 59.6 216.1 68.7 3.5 27.9

St.209-08 124.6 15.4 71.1 211.1 69.0 4.7 26.3

APR. St.102-06 72.3 88.6 79.7 240.6 35.2 32.9 31.9

St.103-04 253.9 95.0 122.8 471.8 54.5 20.7 24.9

St.103-10 154.2 147.4 155.5 457.1 36.1 28.7 35.1

St.104-05 120.0 93.9 98.2 312.1 39.1 29.1 31.8

St.104-09 122.6 90.9 112.3 325.8 37.2 28.3 34.5

St.105-10 138.5 71.1 83.7 293.4 48.4 22.9 28.7

St.106-03 119.2 88.7 87.7 295.5 42.4 28.0 29.7

St.106-10 130.8 66.0 93.2 290.1 44.9 23.2 32.0

St.107-07 134.9 106.0 107.0 347.9 39.8 29.8 30.4

St.209-07 152.2 77.7 102.5 332.4 44.6 25.0 30.4

AUG. St.102-09 73.9 21.6 49.4 144.9 54.5 13.2 32.3

St.103-09 71.1 16.9 61.6 149.6 50.5 11.6 37.9

St.104-04 75.1 11.4 44.3 130.8 59.0 8.6 32.4

St.104-11 77.4 15.8 64.8 158.0 48.6 12.7 38.6

St.105-07 84.2 16.1 64.4 164.8 52.9 10.9 36.2

St.105-11 89.5 21.0 61.4 171.8 55.8 10.8 33.4

St.106-05 84.0 37.2 66.0 187.3 49.0 18.3 32.8

St.107-03 85.8 28.0 68.5 182.4 49.6 14.6 35.8

St.107-07 100.8 22.1 61.6 184.6 55.5 11.0 33.5

St.209-07 96.0 23.9 68.3 188.2 51.3 13.1 35.6

OCT. St.102-07 77.8 39.3 118.4 235.5 35.6 16.2 48.2

St.103-05 92.4 36.5 124.7 253.5 39.1 13.4 47.5

St.103-09 60.0 33.5 117.4 210.8 30.7 15.9 53.4

St.104-08 117.5 111.5 157.7 386.7 33.0 26.4 40.6

St.105-03 104.7 34.7 92.0 231.4 46.1 14.5 39.3

St.105-11 87.3 42.5 116.3 246.1 36.5 17.2 46.3

St.106-07 75.3 19.9 145.4 240.6 32.2 10.3 57.5

St.107-03 116.5 52.1 107.1 275.7 44.1 17.3 38.6

St.107-07 76.8 20.2 102.8 199.8 38.6 10.6 50.8

St.209-04 88.9 42.8 109.1 240.8 40.8 16.6 42.6
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(Harmelin-Vivien et al., 2008). Molar carbon to nitrogen (C/N

ratio), POC/Chl-a ratio, and stable isotope of organic carbon (d13C)
can be widely used for identifying the source of POM in marine

environments (Gearing et al., 1984; Zweifel et al., 1993; Savoye et al.,

2003). The range of C/N ratios except August varied from 5.4 to

11.0 (mean ± S.D = 7.7 ± 1.7) in this study (Table 3), which

indicates a dominant contribution of marine phytoplankton to

POM ranging from 6 to 10 (Meyers, 1994; Montagnes et al., 1994;

Tyson, 1995). However, the high C/N ratios of POM (10.8 – 15.8;

an average of 13.3) were observed in August compared with those in

other seasons (Table 3). Moreover, the low chl-a concentrations (0.1

– 0.4 mg L-1) and high POC/Chl-a ratios (532.7 – 1328.0) obtained

in August could be related to high contributions of non-autotrophic

materials (Tables 2 and 3) (Frigstad et al., 2011). Normally, POC/

Chl-a ratios lower than 200 indicate that POM is mainly composed

of afresh-produced phytoplankton and/or autotrophic organisms,

whereas the ratios higher than 200 are indicative of detrital and

degraded materials or heterotrophic dominated organic matter

(Savoye et al., 2003). Therefore, the POM in August could be a
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mixture of non-autotrophic materials and degraded and

phytodetrital organic matter. Compared to the C/N ratio ranging

from -23 to -19‰ (Fry and Sherr, 1989; Middelburg and Herman,

2007; Harmelin-Vivien et al., 2008), spatial and seasonal variations

in d13C of the surface bulk POMwere not observed throughout this

study, although the ranges were wide varying from -26.3 to -18.8‰

(mean ± S.D = -23.3 ± 1.5‰) (Table 3). Although the d13C values

in our POM samples were found relatively lower than the carbon

isotopic range of typical marine phytoplankton, d13C values in

company with other indicators (C/N and POC/Chl-a ratios) suggest

that the POM in our samples was sourced mainly from

phytoplankton and phytoplankton-derived phytodetritus.
Seasonal variation in the biomolecular
composition of POM

In this study, CHO were most predominant among three

biomolecules accounting for 48.6% of the bulk POM followed by
A B

C D

FIGURE 2

Spatial distribution of the biomolecular composition of POM averaged from three different light depths (100, 30, and 1%) in (A) February, (B)
April, (C) August, and (D) October.
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LIP (35.5%) and PRT (15.9%) (Table 4), which is consistent with

the CHO-rich POM previously observed in the southwestern

East/Japan Sea (Jo et al., 2017; Jo et al., 2018). However, a

considerable seasonal difference in the biomolecular

composition of POM was observed from February to October

during this study (Figures 2 and 3). This seasonal variation in the

biomolecular composition could be explained by the seasonal

cycle of phytoplankton biomass and bloom. Typically, the East/

Japan Sea has a bimodal pattern of spring and autumn blooms

(Vinogradov et al., 1996; Kim et al., 2000; Choi et al., 2016).

In February, we found substantial proportions of CHO (> ca.

50%) and considerably lower PRT composition (7.5 ± 5.0%) of

POM (Table 4 and Figure 2A). During winter, phytoplankton

encounter low temperature and light intensity along with deep

turbulent vertical mixing within the euphotic zone (Townsend

et al., 1992). When phytoplankton are exposed to these

conditions, they have mechanisms to adapt to the winter

season by suppressing metabolic activity (Antia, 1976; Peters,

1996; Furusato et al., 2004). In this study, the mixed layer depths

were shallower than their euphotic depths at some stations (st.

103-07, 105-07, 105-11, and 107-07) (Table 1), indicating weak

mixing conditions during late winter. However, lower chl-a

concentrations were observed in February (Table 2), despite

high concentrations of inorganic nutrients (phosphate, nitrate +

nitrite, and silicate) within the euphotic zone (Table 1). The

CHO-rich and PRT-low POM in February could be explained by

the reduction in physiological activity.

The mean PRT composition of POM in April (mean ± S.D. =

26.9 ± 3.8%) was ca. 4 folds as high as that in February
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(mean ± S.D. = 7.5 ± 5.0%) (Table 4). The higher concentrations

of total chl-a and FM in April (Tables 2 and 4) could have been

related to the spring bloom of phytoplankton (Yoo and Kim, 2004;

Choi et al., 2016). The concentrations of phosphate, and nitrate +

nitrite throughout the euphotic zone in April were lower than those

in February (Table 1) and showed remarkable negative relationships

with total chl-a concentration (DIP vs. Chl-a: r = -0.739, p< 0.01,

n = 30; NO2+NO3 vs. Chl-a: r = -0.709, p< 0.01, n = 30). This

suggests that phosphate and nitrate + nitrite concentrations were

consumed by the phytoplankton growth during the spring bloom.

In contrast with those in February, relatively higher PRT and lower

CHO compositions prevailed during the spring bloom was

associated with high phytoplankton biomass, and active growth

conditions (Morris, 1981; Rıós et al., 1998; Jo et al., 2021).

An increase in CHO proportion and lower PRT contribution in

thebulkPOMreappeared inAugust (Table4andFigure2C),which is

most likely connected with phytodetrital and degraded materials in

August asmentioned above. During summer, enhanced degradation

of most bioavailable materials especially more N-rich compounds

(e.g. PRT) than C-rich (e.g. CHO and LIP) is progressed by elevated

temperatures and solar irradiation (Álvarez-Salgado et al., 2006;

Lønborg et al., 2017). The increasing temperature could accelerate

PRT decomposition because of the activity of PRT degrading

enzymes along with growth in the bacterial community (Piontek

et al., 2009; Ye et al., 2017) and also lead to reducing PRT synthesis of

phytoplankton (Konopka and Brock, 1978; Thompson et al., 1992;

Lee et al., 2017a). Especially in the summer of 2018, the longest

heatwave period and highest air temperature were reported in the

East/Japan Sea (Wie et al., 2021). Consistently, very high sea surface
FIGURE 3

Ternary diagram illustrating the relative proportions of CHO, PRT, and LIP in POM during this study.
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temperatures(upto29.15°C;Table1)wereobservedinAugustduring

this study.

The relatively predominant LIP (mean ± S.D. = 46.5 ± 6.3%)

observed during October in this study is similar to those in the East/

Japan Sea previously reported by Kang et al. (2017) and Jo et al.

(2018) (Table 4 and Figure 2D). Therefore, the higher incorporation

of carbon to LIP during the fall season in the East/Japan Sea could be

a seasonal characteristic pattern of the photosynthetic carbon

allocations of phytoplankton. Under nitrogen-depleted or/and other

non-optimized conditions, microalgae can accumulate CHO rather

than LIP, whereas can promote the accumulation of reserve LIP in

place of CHO as these stresses persist (Hu, 2013; reference therein). In

other words, they can store secondary carbon and energy reserve in

the form of triacylglycerol for the long-term survival of microalgae

under stress-inducing conditions (Hu, 2013). Considering the

possibility of continuous nutrient stress, the relatively predominant

LIP during October in this study could result from long-lasting

nutrient stress conditions induced by thermal stratification from

summer. Indeed, high levels of inorganic nutrient concentrations

were found only at the 1% light depths (Table 1).
Seasonal variations in the AA
composition of POM and AA indices

PAA concentrations in this study varied from 0.07 to 1.71

mM in accordance with seasons, stations, and sampling depths
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(Supplementary Table 1). They were correlated with total chl-a

concentration, which is consistent with previous studies

conducted in temperate oceans (Chen et al., 2004; Chen et al.,

2021; Kuznetsova et al., 2004; Unger et al., 2005; Ji et al., 2019;

Liu and Xue, 2020; Alyuruk and Kontas, 2021). Furthermore,

this result along with a positive correlation between PAA and

total PRT concentrations suggests that the production of PAA

was mainly derived from the PRT of phytoplankton in this study

(Jo et al., 2021).

Dominant AA constituents in PAA measured during this

study were GLY, GLU, and ALA in this order (Figure 4). This is

in agreement with the previous findings that dominant AA

forms are similar in various ocean areas (Tsukasaki and

Tanoue, 2010; Wu et al., 2016; Zhang et al., 2016; Alyuruk and

Kontas, 2021; Jo et al., 2021). The predominance of GLY

composition (> ca. 20 mol%) has been reported in POM

(Liebezeit and Bölter, 1986; Shields et al., 2019; Jo et al., 2021)

as well as DOM and sediments in marine environments (Dauwe

and Middelburg, 1998; Duan and Bianchi, 2007; Wu et al., 2016;

Zhang et al., 2016). The high proportion of GLY is generally

attributed to the degradation product of the other AAs and

structural material due to increased microbial activity (Lee and

Cronin, 1984; Dauwe and Middelburg, 1998). As microbial

degradation proceeds, GLY enriched in the cell wall material is

protected against degradation, resulting in the accumulation of

GLY in decomposing POM (Lee and Cronin, 1984; Dauwe and

Middelburg, 1998). In contrast, GLU is an important component
FIGURE 4

Average mol percentages of individual PAA in the bulk POM during four sampling months. Different letters indicate significant differences by
Scheffe’s method (p< 0.05).
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of intracellular PRT and indicative of fresh POM since its

abundance is higher in the cytoplasm and tends to be

decreased during degradation (Lee and Cronin, 1984; Dauwe

and Middelburg, 1998; Sheridan et al., 2002). Therefore, the

overall AAs characteristics of our POM samples during this

study were structural AAs (such as GLY and ALA; Hecky et al.,

1973) and GLU common in the fresh materials (Lee and Cronin,

1984; Dauwe and Middelburg, 1998), indicating that POM was

the mixtures of decomposing material and fresher POM.

In various oceans, typically the AA-POC% and AA-PON%

contribute ca. 30% of POC and ca. 50% of PON, respectively,

although they are variable (Tsukasaki and Tanoue, 2010). On the

average, AA accounted for 14.3 ± 8.1% (3.1 – 49.7%) of total

POC and 35.8 ± 13.4% (14.3 – 89.3%) of total PON throughout

this study (Supplementary Table 1). These values are somewhat

lower than typical levels in the suspended POM (Supplementary

Table 2). The contribution of AA to the total POC reflects the

freshness of POM and the bloom phase of phytoplankton (Davis

et al., 2009; Shields et al., 2019). In general, the AA-POC%

decreases with enhanced degradation, since AA-containing

compounds (e.g., PRT) have a higher susceptibility to

microbial degradation than other compounds (Davis et al.,

2009; Shields et al., 2019). Furthermore, POM derived from

phytoplankton in the mid-exponential growth phase has higher

AA-POC% values, while lower AA-POC% is found during
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stationary and decomposition phases of phytoplankton

(Shields et al., 2019). The values of AA-POC% in April (22.1 ±

8.1%) are significantly higher than those in other seasons

(Figure 5B; one-way ANOVA, p< 0.05), indicating that POM

contained more fresh organic materials during the spring bloom

period (Lehmann et al., 2020). In contrast, we observed

significantly lower AA-POC yields in February and August

(Figure 5B; 9.5 ± 2.3% and 7.5 ± 2.3%; one-way ANOVA, p<

0.05), indicating that POM during these periods contained

high quantities of other C-rich materials such as degraded

detritus or transparent exopolymer particle (TEP) related with

particulate CHO (Shields et al., 2019). In consistency with AA-

POC%, AA-PON% could also be indicated for diagenesis of

POM and fresh phytoplankton (Duan and Bianchi, 2007; Zhu

et al., 2016). The higher values of AA-PON% also were found in

April with a spring phytoplankton bloom (Figure 5C). However,

no significant difference in AA-PON% was found among other

seasons (Figure 5C; one-way ANOVA, p > 0.05). Therefore, AA-

POC% could be a more sensitive indicator for the freshness of

POM and the bloom phase of phytoplankton than AA-PON%.

Like the AA-POC% and AA-PON%, the DI scores for the

exponential growth phase including fresh POM have more

positive values while those in the stationary or degradation

phase have more negative values (Duan and Bianchi, 2007;

Zhu et al., 2016). However, we found higher values of DI in
A B

C D

FIGURE 5

Boxplots of (A) total EAA composition (∑EAA%), (B) carbon and (C) nitrogen normalized yields of PAA (AA-POC% and AA-PON%), and (D)
degradation index (DI). Different letters indicate significant differences by Scheffe’s method (p< 0.05).
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February (Figure 5D; -0.72 – 2.17; one-way ANOVA, p< 0.05),

which does not correspond to the degradation state based on the

AA-POC% and AA-PON%. AA-POC% and AA-PON% have

been used as the most sensitive indicators of initial degradation
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stages, whereas the DI can be more suitable for intermediate

timescales (Dauwe et al., 1999; Wu et al., 2007; Shields et al.,

2019). Furthermore, DI scores can be influenced by sources of

POM, and therefore, they could not provide a clear distinction
TABLE 5 Ordination results of the RDA during this study.

RDA Axes 1 2 3 4 Total variance

Eigenvalues 0.204 0.047 0.034 0.015 1

Biochemical compositions -environment correlations 0.799 0.616 0.538 0.471

Cumulative percentage variance of biochemical compositions data 20.4 25.1 28.5 30

Cumulative percentage variance of biochemical compositions-environment relationship 61 75.2 85.3 89.7

Sum of all eigenvalues 1

Sum of all canonical eigenvalues 0.334
FIGURE 6

Results of the redundancy analysis (RDA) for biochemical compositions (biomolecular and AA compositions) of POM in relation to
environmental variables sampled in the southwestern East/Japan Sea from February to October 2018. Each abbreviation represents as Aspartic
acid (ASP), Glutamic acid (GLU), Serine (SER), Histidine (HIS), Glycine (GLY), Threonine (THR), Arginine (ARG), Alanine (ALA), Valine (VAL),
Methionine (MET), Phenylalanine (PHE), Isoleucine (ILE), Leucine (LEU), Lysine (LYS), non/essential amino acid composition (∑NEAA%, ∑EAA%),
biomolecular composition (CHO, PRT, and LIP), relative contributions of Prasinophytes (Prasino), Dinophytes (Dino), Cryptophytes (Crypto),
Prymnesiophytes (Prymnesio), Pelagophytes (Pelago), Chlrophytes (Chloro), Cyanophytes (Cyano), and Bacillatiophytes (Bacillar), temperature
(Temp), salinity (Sal), phosphate (PO4), nitrate + nitrite (NO2+NO3), ammonium (NH4), and silicate (SiO2).
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between the influences of source and degradation (Ingalls et al.,

2003; Zhang et al., 2016). In calculating a DI score, enriched GLY

in POM has more negative loading because GLY is preferentially

preserved relative to other AAs during degradation (Lee and

Cronin, 1984; Ingalls et al., 2003). On the other hand, a high

proportion of GLY was observed in diatom-dominated

phytoplankton communities (2006; Ingalls et al., 2003). Thus,

POM including a large number of diatom cells can have lower DI

values (Keil et al., 2000; Ingalls et al., 2003). However, no

relationship between GLY and diatoms was found in this

study (p > 0.05). Although diatoms (33.6 ± 22.5%) were the

dominant algal group throughout this study period, spatial and

temporal variations in phytoplankton community compositions

appeared complicatedly (Table 2). Therefore, the DI value

inconsistent with AA-POC% and AA-PON% could be caused

by a combination of source effect and degradation of POM in

this study (Ingalls et al., 2003; Zhang et al., 2016). Taking our

results into account, a combined evaluation of degradation

indicators is necessary to avoid faulty interpretation, especially

for seasonal snapshots of the AA data sets.
Drivers of PRT quality associated with
EAA under different sampling seasons

The PRT quality can be evaluated by the ∑EAA% which has

a direct effect on nutritional quality for higher trophic levels (Ju

et al., 2008). Field and laboratory studies have shown that ∑EAA

% in microalgae and cyanobacteria communities are rather

stable within a narrow range (from 41 to 55%) (Kolmakova

and Kolmakov, 2019 and the reference therein). However, ∑EAA

% during this study had a relatively wider range (36.1 – 56.9%;

Supplementary Table 1) and a clear season difference

(Figure 5A). Furthermore, the most striking feature of ∑EAA%

throughout this whole study was a particularly strong negative

correlation with PRT composition (Figure 6; Pearson’s

correlation: r = -0.615, n = 115, p< 0.01). Such a relationship

can be largely attributed to nutrient availability (especially

nitrogen) because the biosynthesis of EAAs is far more

influenced by nutrient availability than NEAAs because EAAs

are synthesized from the conversion of NEAAs as a precursor

and therefore require additional processes and enzyme reactions

(Grosse et al., 2019; Grosse et al., 2020). Since the reductions of

these several additional steps and enzyme production are

beneficial for phytoplankton under N-limited conditions, the

conversion of NEAAs to EAAs could substantially be decreased

(Grosse et al., 2017; Grosse et al., 2019). In the present study, we

used< 1 mM absolute dissolved inorganic nitrogen (DIN: nitrite

+ nitrate + ammonium) concentration and an N/P ratio of< 10

to assess nitrogen limitation (Justić et al., 1995; Jo et al., 2018).

Although DIN concentration and N/P ratio below threshold

values that determine nitrogen limitation were observed in the

whole upper layer in August (Table 1), a pervasive nitrogen
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limitation could not be inferred from those observations during

other three seasons. However, ambient nutrient concentrations

and stoichiometric ratios cannot be always the best predictors

for nutrient limitation because their interpretations are

complicated by excessive uptake of nutrients in deficient cells

(Healey, 1979; Lean and Pick, 1981) and different nutrient

requirements of diverse algal groups (Ho et al., 2003).

Therefore, nitrogen availability for phytoplankton could be

supported by the biochemical compositions as indicators of

nutrient status (Morris et al., 1974; Dortch and Whitledge,

1992). RDA results in this study demonstrated obvious

seasonal distinctions in the biochemical compositions of POM

between February and April (Figure 6), which may be due to the

consequences of nutrient availability. We found that EAAs

(particularly HIS) were associated with higher nutrient

concentrations (except for ammonium) in this study

(Figure 6). In winter, a strong water mixing induced by the

Asian monsoon and a low phytoplankton nutrient uptake

caused by weak solar radiation and short photoperiod induce

accumulated inorganic nutrients in the whole euphotic zone

(Lim et al., 2012; Baek et al., 2020). Consequently, the increased

nutrient loading could have enhanced the biosynthesis of EAAs

more than NEAAs in phytoplankton communities, although the

lower PRT composition of POM indicated a physiologically

inactive status of phytoplankton. In comparison, higher PRT

compositions in April were associated with the active growth

phase of phytoplankton during the spring bloom period, while

relatively lower availability of ambient nutrients in response to

the high nutrient consumption of increased phytoplankton

biomass could have caused phytoplankton to convert

insufficiently EAAs from NEAAs, which subsequently lowered

∑EAA%. Furthermore, our RDA result revealed significant

positive relationships between flagellates (including

dinoflagellates and prymnesiophytes) and ∑NEAA% in this

study (Figure 6). Under nitrogen-limited conditions, flagellate-

dominated communities show an apparent qualitative shift

toward NEAAs compared to diatom-dominated communities

(Grosse et al., 2019). Therefore, the relative qualitative changes

in contributions of EAAs and NEAAs during our study could

have been greatly influenced by the ambient nutrient availability

or/and changes in phytoplankton community composition

(Grosse et al., 2020).
Summary and conclusions

This study found seasonal differences in the relative

dominance of biochemical (biomolecular and AA)

compositions of bulk POM associated with the bloom/growth

phase and seasonal physiological condition of phytoplankton

communities in the East/Japan Sea. Although CHO were

predominant overall, PRT and LIP compositions increased

during the spring and autumn bloom periods. Moreover, a
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negative correlation between PRT and ∑EAA% was also found in

this study, indicating that PRT quality and partition of EAAs

and NEAAs could be influenced by seasonal nutrient availability

as well as phytoplankton community composition. These

changes in the biochemical (biomolecular and AA)

compositions of bulk POM mainly derived phytoplankton

could have significant ecological implications for bacterial

degradation and recycling (Ingalls et al., 2006; Sabadel et al.,

2019; Lehmann et al., 2020) and higher trophic levels as potential

prey (Guisande et al., 2000; Vargas et al., 2006; Jo et al., 2021).

Especially, the PRT quality with respect to AA composition of

POM deserves a greater attention because adequate availability

of EAAs in potential prey is crucial for the optimal growth and

reproduction of zooplankton (Kolmakova and Kolmakov, 2019).

Although we cannot directly assess food quality for herbivores

by correlation and similarity analyses between biochemical

compositions of POM and zooplankton (Jo et al., 2017; Jo

et al., 2021), we identified seasonal dynamics and potential

drivers of biochemical compositions in phytoplankton-derived

POM which could be ecologically associated with zooplankton.

This work lays the foundation for evaluating in situ dynamics of

nutritional quality for herbivores in the southwestern East/

Japan Sea.

Under current climate change, the East/Japan Sea has

experienced many changes in physical and biogeochemical

properties, and subsequently nutrient availability, primary

production, and phytoplankton communities (size structure

and species composition) (Kim et al., 2001; Chiba et al., 2012;

Lee et al., 2017b; Kang et al., 2020). These environmental

changes could have impacts on both the quantity and quality

of POM in the East/Japan Sea. Further elucidation of the spatial

and seasonal variations in biochemical (biomolecular and amino

acid) compositions of POM and validation of various

relationships with environmental parameters are required to

understand changes in nutritional quality as prey and

subsequent effects on higher trophic level organisms under

ongoing climate changes in the East/Japan Sea. This study

could help future studies to understand the climate-induced

changes on the quantity and quality of POM in diverse marine

ecosystems over broader temporal-spatial scales.
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Savoye, N., Aminot, A., Tréguer, P., Fontugne, M., Naulet, N., and Kérouel, R.
(2003). Dynamics of particulate organic matter d15N and d13C during spring
phytoplankton blooms in a macrotidal ecosystem (Bay of seine, France).Mar. Ecol.
Prog. Ser. 255, 27–41. doi: 10.3354/meps255027

Sheridan, C. C., Lee, C., Wakeham, S. G., and Bishop, J. K. B. (2002). Suspended
particle organic composition and cycling in surface and midwaters of the equatorial
pacific ocean. Deep. Res. Part I Oceanogr. Res. Pap. 49, 1983–2008. doi: 10.1016/S0967-
0637(02)00118-8

Shields, M. R., Bianchi, T. S., Osburn, C. L., Kinsey, J. D., Ziervogel, K.,
Schnetzer, A., et al. (2019). Linking chromophoric organic matter transformation
with biomarker indices in a marine phytoplankton growth and degradation
experiment. Mar. Chem. 214, 103665. doi: 10.1016/j.marchem.2019.103665
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