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Interannual variability of the North Equatorial Current (NEC)/Undercurrent

(NEUC) in the northwestern Pacific was investigated with the mooring array

measurements at 130°E during 2014-2021, in combination with the satellite

altimetry. Mooring observations indicate that the velocity of the NEC/NEUC in

the upper 900 m exhibits significant variations on the interannual time scale.

The westward-flowing NEC strengthens when the underlying eastward-

flowing NEUC weakens, and the NEUC branch at 8.5°N is intensified during

the mature phase of El Niño and reaches the maximum velocity during the

decay phase of El Niño. The phase of the interannual variation of the currents

delays with the increasing latitude, with the signal at 15°N lagging that at 8.5°N

by about one year. Based on a 1.5 layer reduced gravity model, the interannual

variation is suggested to be controlled mainly by the westward propagating

baroclinic Rossby wave induced by the wind stress curl forcing in the central

Pacific. Different propagating speed of the baroclinic Rossby wave at different

latitudes explains the meridional phase lag of the interannual signal. Empirical

Orthogonal Function and vertical mode decomposition analysis suggest that

the interannual variation of the NEC/NEUC velocity in the northern part is

dominated by surface-intensified signals with a vertical structure of the first

baroclinic mode, while that in the southern part is dominated by subsurface-

intensified signals which is associated with the combination of the first two

baroclinic modes. The low-order mode baroclinic response of the ocean to the

wind forcing accounts for the interannual fluctuation of the NEC/NEUC

velocity observed by the mooring array.

KEYWORDS

North Equatorial Current, North Equatorial Undercurrent, interannual variability,
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Introduction

The northwestern tropical Pacific Ocean has a complex

three-dimensional ocean circulation system, including the

wind-driven currents like the westward-flowing North

Equatorial Current (NEC), northward-flowing Kuroshio

Current (KC), and southward-flowing Mindanao Current

(MC), as well as the subsurface current system beneath them,

such as the eastward-flowing North Equatorial Undercurrent

(NEUC), southward-flowing Luzon Undercurrent (LUC), and

northward-flowing Mindanao Undercurrent (MUC) (e.g., Lukas

et al., 1991; Hu et al., 2015). Among others, the NEC, as the

boundary of the tropical and subtropical gyres and the origin of

the low latitudes western boundary currents, play crucial roles in

mass and heat exchange between the mid- and low-latitude

North Pacific Ocean, and are of particular importance for

understanding the ocean and climate variability (e.g., Qiu

et al., 2015b).

Many studies have focused on the characteristics and

variability of the NEC on different time scales with

hydrographic observations, satellite altimetry and numerical

models. The NEC is a stable westward current which is

confined between 8°N and 17°N in the surface layer and could

extend to 28°N with the increasing depth (e.g., Nitani, 1972; Qiu

et al., 2015b). On the seasonal time scale, several studies

demonstrated different variations of NEC based on direct/

indirect measurements or model simulations, and the

difference was mainly attributed to the discrepancy among

different datasets, along with the phase lag of the annual cycle

across the basin (e.g., Qiu and Joyce, 1992; Donguy and Meyers,

1996; Qiu and Lukas, 1996; Qu and Lukas, 2003; Kim et al., 2004;

Wang et al., 2019). They generally associated the dynamics of

seasonal variation with local or remote wind forcing through

Ekman pumping or propagation of Rossby/Kelvin waves (e.g.,

Kessler, 1990; Qiu and Lukas, 1996; Ueki et al., 2003; Chen and

Wu, 2011; Wang et al., 2019; Liu and Zhou, 2020).

On the interannual time scale, the NEC variation was

generally believed to be closely related to El Niño-Southern

Oscillation (ENSO). Studies found that the NEC bifurcation,

where the western boundary currents change direction, migrated

north during El Niño and south during La Niña, while the NEC

transport increased in El Niño and decreased in La Niña, which

was mainly ascribed to the westward propagating baroclinic

Rossby waves generated by anomalous winds in the central

Pacific (e.g., Qiu and Joyce, 1992; Qiu and Lukas, 1996; Kim

et al., 2004; Kashino et al., 2009; Zhai and Hu, 2012; Zhang et al.,

2017b; Azminuddin et al., 2019). Nevertheless, there were also

some studies suggesting that not all extremes of the NEC

transport were correlated with ENSO events (e.g., Qiu and

Lukas, 1996; Zhai and Hu, 2013; Qiu et al., 2015b).

In comparison, the understanding of NEUC remains

fragmentary due to the lack of in-situ observations. Based on
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several CTD transects, Wang et al. (1998) observed the eastward

flow under the NEC and named it as NEUC. Using recently

accumulating profiling floats, Qiu et al. (2013b) presented the

basin-scale structure of NEUC, and suggested that there were

three quasi-steady eastward jets under the NEC at 9°N, 13°N,

and 18°N, which were called NEUC jets. Regarding the

formation mechanism of NEUC jets, Qiu et al. (2013a)

proposed it was related to ‘turbulent Sverdrup balance’. The

meridional convergence of eddy flux generates the time-mean

zonal jets, and the eddies are sourced from wind-driven annual

baroclinic Rossby waves in the eastern Pacific through triad

interactions. Furthermore, limited observations and numerical

simulations demonstrated significant temporal variations of the

NEUC. Repeat underwater glider observations during 2009-2014

indicated that the NEUC was strong and had a greater width

when the NEC at the surface was weak (Schönau and Rudnick,

2015). Based on 39-year high-resolution LASG/IAP (State Key

Laboratory of Numerical Modelling for Atmospheric Sciences

and Geophysical Fluid Dynamics/Institute of Atmospheric

Physics) Climate Ocean Model (LICOM) simulation, Li et al.

(2018) suggested that the NEUC transport exhibited

pronounced interannual and decadal variations with periods of

2-7 years and 13-19 years, which were in connection with ENSO

and Pacific Decadal Oscillation (PDO), respectively. By

analyzing 48-year hydrographic observations at 137°E from

the Japan Meteorological Agency, Ishizaki et al. (2019)

reported that NEUC had significant interdecadal variability,

which was divided into two branches from 1967 to 1976/77,

merged into one from 1976/77 to 1997/98, and separated into

two branches again after that.

Previous studies on the NEC paid more attention to the

integrated transport crossing a certain meridional section. In

fact, the NEC is a very broad flow. Due to the b effect, the

response of such a broad flow to wind forcing is different at

different latitudes, which was often neglected by previous

studies. Limited by the lack of in-situ observations, studies on

the NEUC often relied on model simulations, which hampered

our understanding of the NEUC variability and its relationship

with the overlying NEC and ENSO events. To unveil the multi-

scale variability of the NEC and NEUC, a mooring array

including 5 moorings was deployed at 130°E between 8°-18°N

by NPOCE (Northwestern Pacific Ocean Circulation and

Climate) program since September 2014 (Hu et al., 2011; Hu

et al., 2020). Recent studies used the mooring measurements

before January 2018 and investigated the intraseasonal and

seasonal variability of the NEC and NEUC (Zhang et al.,

2017a; Wang et al., 2019; Wang et al., 2022). In this work, we

further extended the mooring measurements to December 2021

and explored the interannual variability of the NEC/NEUC at

different latitudes along 130°E.

The rest of the paper is organized as follows. Section 2

describes the data and methods. Section 3 presents the mean
frontiersin.org

https://doi.org/10.3389/fmars.2022.979442
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2022.979442
structure and interannual variability of the NEC/NEUC. The

meridional phase lag and vertical structure of the interannual

signal are also depicted and investigated in Section 3. Section 4

includes a brief summary and discussion.
Data and method

A mooring array including 5 subsurface moorings were

designed along 130°E in the northwestern Pacific to measure

the structure and variations of the NEC/NEUC, and the water

depth is approximately 5500 m (Figure 1). These moorings were

deployed at 8°N, 10.5°N, 13°N, 15.5°N and 18°N in September

2014 and retrieved after one year. After that, the moorings were

moved to 8.5°N, 11°N, 12.5°N, 15°N and 17.5°N in the cruise of

September 2015 in order to better capture the NEUC jets, which

were retrieved every year since then.

Each mooring was equipped with two RD Instruments

(RDI) 75-kHz Acoustic Doppler Current Profilers (ADCPs) on

the main float at the depth of 450 m, one of which looks upward

and the other looks downward to collect the velocity data hourly.

The standard bin size is 8 m, and the two ADCPs are able to

capture the currents in the upper 900 m. In this work, the

velocity raw data was first processed with standard quality

control procedures, and the data with Percent Good 4 (PG4)

value (a measure of the percentage of good data collected by the
Frontiers in Marine Science 03
four beams of the ADCP) less than 85% was removed. Then, the

hourly velocity was interpolated vertically onto 10 m intervals,

and was daily averaged to remove tidal signals. The

measurements above 40 m were dropped due to their large

biases produced by the backscattering noise from the sea surface.

It should be noted that there are one mooring lost and a couple

of ADCPs failing to record the data due to instrument damages.

Details of the moorings that have ADCP records are listed in

Table 1. For convenience, all the records from nine moorings

were processed onto five mooring sites at 8.5°N, 11°N, 12.5°N,

15°N, and 17.5°N. In detail, we made corrections to the mooring

data at 10.5°N, 13°N, 15.5°N and 18°N before September 2015 by

considering the meridional structure of the mean zonal flow at

130°E derived from high-resolution (0.25°×0.25°) T/S profiles of

World Ocean Atlas 2018 (WOA18, Garcia et al., 2019). For

example, the meridional difference of mean zonal flow between

10.5°N and 11°N was estimated first with WOA18. Then, the

mooring data at 10.5°N before September 2015 was corrected

with this meridional difference, and the obtained results was

considered to be the velocity information at 11°N. Further, the

data was merged with the ADCP measurements at 11°N after

September 2015. Similar corrections were also made to the

ADCP measurements at other latitudes. In addition, several

discrete single-point current meters (CMs) distributed between

1000-4000 m on each mooring, including Nortek Aquadopp,

ALEC and Aanderaa Seaguard current meters. The vertical
FIGURE 1

Location of the subsurface mooring array at 130°E. Black triangles denote the moorings deployed during September 2014 and September 2015
at 10.5°N, 13°N, 15.5°N and 18°N, red circles represent the moorings deployed during September 2015 and December 2021 at 8.5°N, 11°N, 12.5°
N, and 15°N, and green circle represents the mooring deployed during September 2015 and January 2018 at 17.5°N. The mean ocean
circulation system in this region is shown by red and blue arrows. NEC, NECC, STCC, KC, MC, NEUC, LUC, MUC, ME, and ITF stand for North
Equatorial Current, North Equatorial Countercurrent, Subtropical Countercurrent, Kuroshio Current, Mindanao Current, North Equatorial
Undercurrent, Luzon Undercurrent, Mindanao Undercurrent, Mindanao Eddy, and Indonesian Throughflow, respectively.
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interval between these current meters is about 500 m. Their

observation period is the same as that of the ADCPs mentioned

above, and the sampling period is 1 hour. These CM records will

be used in the vertical mode projection in Section 3.4. The

vertical mode projection needs the time series of velocity profile

over the full depth. But the deep current meter records at 12.5°N

for 2019 are abnormal due to instrumental malfunctions, and the

current meter records at 17.5°N are only above 1400 m, which

are insufficient for the projection. Considering better vertical

coverage and continuity of the time series, the current meter

records at 8.5°N, 11°N and 15°N were used in the vertical mode

projection. Since this work mainly focuses on the interannual

variations of the NEC/NEUC, the mooring data were therefore

smoothed with a 1-year low-pass filter (moving average) to

remove the intraseasonal and seasonal signals, and the values

in the first 6 months and last 5 months were abandoned due to

the bias near the endpoints of the time series caused by the filter.

The filtered time series were used in the following analysis.

The gridded Sea Surface Height (SSH) and geostrophic

currents from the AVISO (Archiving, Validation, and

Interpretation of Satellite Oceanographic) products were also

utilized in this study. This dataset merges measurements from

different satellites such as Topex/Poseidon, European Remote

Sensing Satellite-1 (ERS-1), ERS-2, Geosat Follow-On, Jason-1

and Jason-2. The daily data with the resolution of 0.25°×0.25° for

the period of 2001-2021 was downloaded from the Copernicus

Marine Environment Monitoring Service (CMEMS) website,

and then averaged to obtain monthly time series. Details of

the AVISO products are available in Boebel and Barron (2003)

and Barron et al. (2009).

In addition, the monthly wind data from the fifth generation

of European Centre for Medium-range Weather Forecasting

(ECMWF) reanalysis (ERA5) with the resolution of 0.25°×0.25°

during 1993-2021 was utilized in this study. It was provided by

the Copernicus Climate Change Service (C3S), and the gridded

monthly wind speed vector at 10-meter above the sea surface

was used to derive the wind stress curl, which was then used to
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force the 1.5 layer reduced gravity model. The temperature

anomalies in this study were derived from the gridded Argo

observations since 2014, detailed descriptions can be referred to

Roemmich and Gilson (2009).
Results

Mean structure of the NEC/NEUC

Figure 2 shows the time series of zonal velocity measured by

mooring ADCPs along 130°E at different latitudes. By and large,

the NEC exists stably between 8°N-18°N during the whole

observation period from March 2015 to July 2021, while the

NEUC beneath that appears intermittently at most of the

latitudes. It is obvious that the intensity of NEC/NEUC is

stronger at 8.5°N, 11°N, 12.5°N, compared with that at the

other two latitudes, while the depth of the NEC deepens with

increasing latitudes. Since the ADCP at 8.5°N well captures the

structure and variability of the NEC and NEUC, we described

the ADCP measurements at this site as an example (Figure 2E).

The energetic westward-flowing NEC at this latitude is located in

the upper 200 m, with the strongest current appearing in

December 2017 and March 2021, with the velocity reaching

-0.25 m/s at the depth of 70 m and -0.22 m/s at the depth of 90

m, respectively. Below 200 m, there appears to be an intermittent

eastward-flowing NEUC, which seems to be associated with

interannual events. It is strong during the period of March 2016-

April 2017 and June 2019-June 2020 with the maximum velocity

of 0.14 m/s at 430 m and 0.10 m/s at 400 m, when the overlying

NEC is weak and shallow. During April 2017-November 2018

and October 2020-July 2021, the NEUC becomes weak, while the

NEC strengthens and deepens. Notably, an obvious eastward

flow appears in the upper 200 m during March-August 2015 at

17.5°N (Figure 2A), which is probably related to the Subtropical

Countercurrent (STCC). STCC is a surface-trapped eastward

flow in the upper 200 m with multiple branches between 17°N

and 25°N (e.g., Yoshida and Kidokoro, 1967; Kobashi et al.,

2006). Based on ADCP records along 135°E and satellite

altimetry, a recent study demonstrated that the southern

STCC is profoundly intensified by the mesoscale/sub-

mesoscale eddy activities in El Niño (Azminuddin et al., 2019).

Therefore, the northern part of the NEC could also be affected by

meridional fluctuations of the STCC.

In order to examine the mean velocity structure of the NEC/

NEUC along the 130°E section, the temporally mean zonal

current derived from moorings at different latitudes is shown

in Figure 3. It is obvious that the main body of the NEC is

concentrated above the isopycnal of 26.8 sq, and therefore 26.8

sq is considered as the bottom boundary of the NEC in this

study. The velocity core of the NEC is located in the upper 100 m

south of 12.5°N with a maximum of -0.24 m/s, and it deepens to
TABLE 1 Mooring locations along 130°E and corresponding ADCP
observation periods.

Sites Periods

8.5°N 26 Sep. 2015-27 Dec. 2021

10.5°N 06 Sep. 2014-28 Sep. 2015

11°N 14 Sep. 2015-26 Dec. 2021

12.5°N 26 Dec. 2016-25 Dec. 2021

13°N 09 Sep. 2014-16 Sep. 2015

15°N 29 Sep. 2015-23 Dec. 2021

15.5°N 9 Sep. 2014-14 Sep. 2015

17.5°N 12 Sep. 2015-20 Jan. 2018

18°N 29 Sep. 2014-12 Sep. 2015
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200 m with increasing latitudes. Below 26.8 sq, two pronounced

NEUC jets appear at ~8.5°N and ~12.5°N with a zonal velocity of

0.042 m/s and 0.024 m/s, respectively. An eastward flow with a

velocity of 0.017 m/s is also observed below the depth of 600 m

at ~17.5°N. Qiu et al. (2013b) and Wang et al. (2015) suggested

that the northern branch of the NEUC is located around 18°N

based on Argo and CTD data. Therefore, the eastward flow

below 600 m at 17.5°N is believed to be associated with the
Frontiers in Marine Science 05
northern NEUC jet, and the ADCP captures the upper part of

the jet. Furthermore, the NEUC at 8.5°N seems stronger than

that at the other two latitudes. The depth of NEUC jet is below

200 m at 8.5°N, which deepens gradually and reaches 600 m at

17.5°N. These results are generally consistent with the mean

velocity structure derived from Argo floats and CTD

measurements by previous studies in terms of the position and

strength of the currents (e.g., Qiu et al., 2013b; Wang et al.,
FIGURE 3

Mean zonal velocity (color, m/s) along 130°E section derived from all the mooring ADCP measurements during 2014-2021. Black curves denote
potential density surfaces derived from WOA18.
A

B

D

E

C

FIGURE 2

Time series of zonal velocity (m/s) measured by the mooring ADCPs at (A) 17.5°N, (B) 15°N, (C) 12.5°N, (D) 11°N and (E) 8.5°N along 130°E. All
the time series have been smoothed with a 1-year low-pass filter.
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2015). The mean volume transports of the NEC and NEUC

estimated from the ADCPmeasurements are -30.4 Sv and 5.1 Sv,

respectively. Here, the NEC transport was defined as the integral

of negative velocities from surface to 26.8 sq between 8.5°-17.5°

N, and the NEUC transport was calculated by integrating

positive velocities from 26.8 sq to 900 m between 8.5°-17.5°N.

Based on multiple glider transects along 134.3°E between 8.5°-

16.5°N, the mean NEC transport from the surface to 27.3 sq is

around -37.6 Sv with a standard deviation of 15.6 Sv (Schönau

and Rudnick, 2015), and the ADCP-derived NEC transport

generally agrees with the glider observations.
Interannual variation of NEC/NEUC

Seven years of ADCP measurements enable us to explore the

interannual variability of the NEC/NEUC. Figure 4 shows the

time series of zonal velocity anomalies derived from mooring

ADCP records at different latitudes. Significant variations of the

currents could be noticed on interannual time scale.

Interestingly, the zonal velocity in the upper 900 m at 8.5°N

and 17.5°N exhibits prominent vertically synchronous

fluctuations. For example, positive velocity anomalies appear

in both the surface and subsurface layers from March 2016 to

March 2017 and from April 2019 to July 2020 at 8.5°N, which

turns into negative anomalies simultaneously from April 2017 to

October 2018 and from October 2020 to July 2021 (Figure 4E).

The vertically synchronous fluctuations also exist at 17.5°N
Frontiers in Marine Science 06
(Figure 4A). Such vertically synchronous fluctuations in the

upper 900 m imply that the eastward NEUC is strong when the

overlying westward NEC is weak. This phenomenon coincides

well with recent repeated glider observations by Schönau and

Rudnick (2015). They suggested that persistent eastward

undercurrents affected the transport variability of the NEC,

with the NEC being weaker when there was a stronger NEUC.

Therefore, their vertically synchronous fluctuations might be

controlled by the same mechanism. Notably, the currents exhibit

subsurface-intensified interannual features at 8.5°N with the

strongest signal appearing between 300-500 m, and the signal

is surface-intensified at 17.5°N, indicating different oceanic

processes occur between these two latitudes. In addition, the

interannual variation of the currents in the upper 900 m between

11°N and 15°N is not always vertically synchronous over the

observation period (Figures 4B–D), implying the multimodal

vertical structure of the interannual signal at these latitudes,

which will be investigated in section 3.4.

In addition, there seems to be a meridional phase lag between

the zonal velocity anomalies at different latitudes on interannual

time scale, with the signal at higher latitudes lagging that at lower

latitudes (Figure 4). For example, positive velocity anomalies shift to

negative velocity anomalies that appears in March 2017 at 8.5°N, in

June 2017 at 11°N, in February 2018 at 12.5°N, and in April 2018 at

15°N (Figures 4B–E). The signal at 15°N lags that at 8.5°N by about

one year. To further examine the reliability of this meridional phase

lag phenomenon, the lagging time was quantified by performing a

lead-lag analysis to the time series of velocities averaged in the upper
A

B

D

E

C

FIGURE 4

Time series of zonal velocity anomalies (m/s) derived from mooring ADCP measurements at (A) 17.5°N, (B) 15°N, (C) 12.5°N, (D) 11°N, and
(E) 8.5°N along 130°E. All the time series have been smoothed with a 1-year low-pass filter.
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200 m between every two adjacent sites from 8.5°N to 15°N. The

results suggest that the interannual signal at 11°N lags that at 8.5°N

by 3 months with a correlation of 0.81, the signal at 12.5°N lags that

at 11°N by 8 months with a correlation of 0.77, and the signal at 15°

N lags that at 12.5°N by 4 months with a correlation of 0.52. All of

the correlations are significant at the 95% confidence level.

Therefore, the phase lag of the zonal velocity at different latitudes

is reliable. Recent study based on the same ADCP datasets along

130°E and satellite altimetry demonstrated a similar phase lag

feature on seasonal time scale except for a slight phase advance

from 8°N to 13°N (Wang et al., 2019). The propagation speed

change of Rossby wave with latitudes plays a key role in explaining

the phase lag feature, and the slight phase advance was attributed to

the Asian monsoon (Wang et al., 2019). The difference of lead-lag

relations on different time scales implies that the mechanism of the

phase lag on interannual time scale might be different, which will be

explored in the following analysis.

Considering the significant fluctuations of the velocity in the

upper ocean observed by the ADCP measurements, the

interannual variation of the currents should be captured well

by the satellite altimetry. We firstly compared the altimeter-

derived zonal currents with the mooring ADCP measurements,

and the two time series agreed well with each other (Figure 5).

The correlation between them is 0.74, 0.71, 0.96, 0.77, and 0.97 at

8.5°N, 11°N, 12.5°N, 15°N and 17.5°N, respectively, all of which

are above the 95% confidence level. The high correlation

indicates that the interannual variability of the currents

detected by mooring ADCPs is well reflected by the satellite

altimetry. Moreover, the meridional phase lag characteristics of

the zonal velocity time series with latitudes are also well captured

by the satellite altimetry. The large scale coverage of satellite

observations enables us to further investigate the interannual

variation of the currents in this region.

Figures 6A, C show the Sea Surface Height Anomalies

(SSHA) and corresponding zonal geostrophic velocity

anomalies at 130°E between 8°-18°N derived from satellite

altimetry (2014-2018). The time series were moving-averaged

in every 3° latitude band to avoid the influence of mesoscale

features. Obviously, there are phase-lagged signals in the velocity

with increasing latitudes. A positive velocity signal appears in

July 2016 at 8.5°N, and then appears in November 2017 at 15°N,

which is consistent with the results in Figures 4–5. The

associated SSHA signals also exhibit pronounced phase-lagged

features with latitudes (Figure 6A). The meridional gradient of

this phase-lagged SSHA explains the delayed signal in the

velocity anomalies shown in Figure 6C, and the reason for the

phase-lagged SSHA will be given in the next section.
Mechanism of the meridional phase lag

Interannual variations of SSHA in the western Pacific have

been investigated in many previous studies, which were
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attributed to the basin-scale wind stress curl forcing. SSHA

signals are induced by anomalous wind stress curl forcing in

the central Pacific through Ekman convergence or divergence

process, and then propagate westward in the form of baroclinic

Rossby wave and modulate the SSH in the western Pacific (e.g.,

Qiu and Joyce, 1992; Qiu and Lukas, 1996; Qu et al., 1998; Kim

et al., 2004; Kashino et al., 2009). Considering the different phase

speed of the baroclinic Rossby wave at different latitudes, similar

Rossby wave signals at low latitudes arrive to the western Pacific

earlier than that at high latitudes due to its faster propagation

speed, which may explain the meridional phase lag of velocity

variations at different latitudes. We plotted the time-longitude

diagrams of SSHA at 8.5°N, 12°N and 15°N during 2014-2018 in

Figure 7. Obvious westward propagating signals could be noticed

at all the latitudes, and positive/negative SSHA signals are

induced by anomalous wind stress curl in the central Pacific,

which arrive to the western Pacific earlier at 8.5°N than that at

15°N, reflecting the faster phase speed of the baroclinic Rossby

wave at lower latitudes.

To further investigate the effects of different baroclinic

Rossby wave propagation speeds at different latitudes on the

meridional phase lag of SSHA, we considered a linear wind-

driven first-mode baroclinic Rossby wave model with zero

background flow (e.g., Meyer, 1979; Kessler, 1990; Hsin and

Qiu, 2012). Qiu and Chen (2006) pointed out that the east

boundary forcing was important for capturing the observed

SSHA at low latitudes, especially during strong ENSO events.

Therefore, besides the wind stress curl forcing, the eastern

boundary forcing is also included in the model, and the SSHA

is estimated as follows,

h 0
m (x, y, t) =

g 0

gr0

Z x

xe

1
CR(x 0, y)

∇�
~t(x 0, y, t + (x−x 0 )

CR(x 0 ,y) )

f (y)
· e

ϵ(x−x 0 )
CR (x

0 ,y)dx

+ h 0
m (xe, y, t +

x − xe
CR

) exp½ eB
CR

(x − xe)�

, h 0
m (x, y, t)) denotes the modeled SSHA, and h 0

m (xe, y, t) is

for the observed monthly SSHA near the Pacific eastern

boundary (Fu and Qiu, 2002). CR is the phase speed of the

first-mode baroclinic Rossby wave. ~t is the wind stress vector,

which is derived from the wind data of ERA5. g and r0 are the
gravity constant and background potential density of 9.807 m/s2

and 1025 kg/m3, respectively. g’ is the reduced gravity. e is the

Newtonian dissipation rate, and eB is the Newtonian dissipation

rate associated with the boundary-forced signals. The selection

principle of g’, e and eB is to make sure the difference between

model results and observations reaches the minimum. For the

baroclinic Rossby wave speed CR, the value estimated by Chelton

et al. (1998) based on the global climatological atlas offirst-mode

baroclinic gravity wave was used, which was further modified

with a latitude-dependent amplification factor a(yÞ = 1 + 0:06

�(y-10 °N), to make the estimated CR closer to the satellite

altimeter observations, as suggested by Qiu and Chen (2006).
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The simulated-SSHA and corresponding geostrophic

velocity are shown in Figures 6B, D, respectively. The

simulated-SSHA also displays meridional phase lag signals

between 8°-16°N (Figure 6B), which is generally consistent

with the satellite altimetry results (Figure 6A). The slight

discrepancy between the observed and simulated SSHA could

be related to energetic mesoscale eddy activities in this region.

Mooring observations at 130°E revealed significant intraseasonal

variations and active eddy activities (Zhang et al., 2017a), and

mesoscale eddies could modulate the SSH variations through

eddy momentum flux forcing (Qiu et al., 2015a). However, the

reduced gravity model used here only captures the wind-driven

SSH signals and misses the eddy-driven parts, which probably

explains the difference between the observed and simulated

SSHA (Figures 6A, B). In terms of the simulated velocity

anomalies, the meridional phase lag signal with latitudes is
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obvious (Figure 6D). This result coincides well with the lag

time demonstrated by the ADCP observations and satellite

altimetry products. Above consistency between the model

results and observations confirms that the interannual

variation of the currents and SSHA at 130°E in the western

Pacific is primarily determined by the wind stress curl variation

through westward propagation of Rossby wave, and the different

phase speed of the baroclinic Rossby wave at different latitudes

accounts for the meridional phase lag of SSHA and associated

geostrophic currents observed at the fixed longitude of 130°E.

To distinguish the contribution of wind forcing in different

longitude bands, several wind-shield sensitivity experiments

were performed with the 1.5 layer reduce-gravity model, which

was forced by wind stress curl in the western (120°E-150°E),

central (150°E-160°W) and eastern (160°W-110°W) Pacific,

independently. The effect of eastern boundary forcing was also
A

B

D

E

C

FIGURE 5

Vertically averaged zonal velocity (m/s) between 50-100 m derived from mooring ADCP measurements (red) at (A) 17.5°N, (B) 15°N, (C) 12.5°N,
(D) 11°N and (E) 8.5°N during 2014-2021, compared with the zonal geostrophic velocity (m/s) at the same locations derived from satellite
altimetry (blue). All the time series have been smoothed with a 1-year low-pass filter.
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investigated with the model. The wind-shield sensitivity

experiments at 8.5°N were displayed as an example

(Figures 8A–F), and the time series of SSHA at 130°E derived

from these experiments were shown in Figure 8G. The relative

contribution of each regional wind forcing was further estimated
Frontiers in Marine Science 09
as the standard deviation of the simulated time series divided by

the sum of all the standard deviations. The results show that the

wind forcing in the western, central, eastern Pacific, and the

eastern boundary forcing explains 22.2%, 58.7%, 16.6% and 2.6%

of the total interannual variations of the currents at 130°E,
A B

DC

FIGURE 6

Time-latitude diagrams of the SSHA (a, m) and zonal geostrophic velocity anomalies (c, m/s) at 130°E derived from AVISO products.
(B) and (D) are same as (A) and (C), but from reduced gravity model simulations.
A B C

FIGURE 7

Hovmöller diagrams of the SSHA (m) along (A) 8.5°N, (B) 12°N, and (C) 15°N from AVISO products during January 2014 and December 2018.
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respectively. In addition, the wind-shield sensitivity experiments

were also performed at 12.5°N and 15°N. The wind forcing in the

western, central, eastern Pacific, and the eastern boundary

forcing explains 20.4%, 56.8%, 17% and 5.8% of the total

variance at 12.5°N, and explains 22.1%, 49.7%, 22.3% and

7.8% of the total variance at 15°N, respectively. Generally

speaking, the wind forcing in the central Pacific plays a

dominant role in the NEC variation at 130°E, and the wind

forcing in the western and eastern Pacific also show substantial

contributions, while the effect of eastern boundary forcing

is limited.
Mechanism of vertical variations

Mooring ADCP records reveal that the NEC/NEUC at 130°E

exhibits pronounced vertical variations in the upper 900 m on

interannual time scale. To investigate the vertical structure of

this interannual variation, we calculated the empirical

orthogonal function (EOF) mode of the velocity time series at

different latitudes, and the pattern of the first EOF mode was

shown in Figure 9. For zonal velocities at all the five mooring

sites, the first EOF mode captures most part of the total velocity

variance, which explains 93.3%, 45%, 86.5%, 73.6% and 96.4% of

the total variance at 8.5°N, 11°N, 12.5°N, 15°N and 17.5°N,
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respectively. Obviously, the first EOF mode of the currents at

8.5°N seems intensified below the thermocline with the strongest

signal appearing between 300-500 m. This subsurface-intensified

signal also exists at 11°N, and gradually turns into a surface-

intensified signal with increasing latitudes.

Furthermore, we conducted EOF analysis to the time series

of zonal velocity over the full depth by combining the ADCP

measurements in the upper 900 m with the CM records between

1000-4000 m at 8.5°N, 11°N and 15°N (Figures 9A, B, D). The

first EOF mode still plays a dominant role in the total velocity

variations, which accounts for 86.7%, 48.1% and 65.3% of the

total variance at 8.5°N, 11°N and 15°N, respectively. Both the

surface-intensified signal at 15°N and subsurface-intensified

signal at 8.5°N, 11°N are reflected in the first EOF mode over

the full-depth, which coincides well with the EOF analysis in the

upper 900 m mentioned above.

In fact, oceanic response to the wind forcing could be

represented by the combination of signals with different

vertical modes (e.g., McCreary, 1981; Kessler and McCreary,

1993). To explain the prominent difference of the first EOF

mode among 8.5°-17.5°N, the vertical mode decomposition

analysis was performed. Figure 10 shows the vertical structure

of the barotropic mode and first three baroclinic modes at 8.5°N,

11°N, 12.5°N, 15°N and 17.5°N, which was estimated with the

climatological mean density profile from the WOA18.
A B D E F

G

C

FIGURE 8

Hovmöller diagrams of SSHA (m) at 8.5°N derived from (A) altimeter observation and (B–F) model experiments with period longer than a year.
(B) is forced by the wind stress curl from 130°E to 90°W and eastern boundary forcing. (C–E) are only forced by the wind stress curl between
130°-150°E, 150°E-160°W, and 160°-90°W, respectively. (F) is run with the eastern boundary forcing. (G) displays the time series of SSHA at 8.5°
N, 130°E derived from above model experiments.
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Obviously, the first EOF mode at 15°N and 17.5°N show similar

vertical structure to the first baroclinic mode, and the first EOF

mode at 8.5°N, 11°N, and 12.5°N seem to be dominated by the

combination of the first and second baroclinic mode (Figures 9

and 10).

We further projected the zonal velocity from ADCP and CM

observations onto those vertical modes, and obtained the time

series for each vertical mode. Considering the vertical mode

projection needs the time series of velocity profile within the full-

depth, the current meter records at 8.5°N, 11°N and 15°N were

used due to their better vertical coverage and temporal

continuity. The contribution of each mode was derived

through calculating the standard deviation of each time series

divided by the sum of all the standard deviations. The

contribution of the first three baroclinic modes at each latitude

was recorded in Table 2. Notably, the variance contribution of

the first and second baroclinic mode reaches 45.38% and 13.81%

at 15°N, demonstrating the dominance of the first baroclinic
Frontiers in Marine Science 11
mode and accounting for the surface-intensified interannual

variation of the NEC/NEUC velocity at this latitude

(Figure 9D). While the contribution of the first baroclinic

mode is comparable to that of the second baroclinic mode at

the southern part, which reaches 32.99% and 29.9% at 8.5°N, and

32.76% and 23.59% at 11°N. It indicates that the second

baroclinic mode substantially modulates the interannual

variation of the currents, accounting for the subsurface-

intensified characteristics of the interannual variation as

revealed by the first EOF mode (Figures 9A, B).

In general, above analysis indicates that interannual

variations of the NEC/NEUC velocity along 130°E between 8°-

18°N are primarily dominated by surface-intensified signals with

a vertical structure of the first baroclinic mode, while that in the

southern part (8.5°N and 11°N) is also modulated by the second

baroclinic mode, exhibiting subsurface-intensified features. We

reconstructed the time series of velocity profile at 15°N with the

first baroclinic mode and corresponding time series, and that at
A B D EC

FIGURE 10

Vertical structure of the barotropic mode and first three baroclinic modes at (A) 8.5°N, (B) 11°N, (C) 12.5°N, (D) 15°N, and (E) 17.5°N along 130°E
calculated with the climatological mean density profile from the WOA18.
A B D EC

FIGURE 9

First EOF mode of the zonal velocity (m/s) time series at (A) 8.5°N, (B) 11°N, (C) 12.5°N, (D) 15°N, and (E) 17.5°N from mooring ADCP records in
the upper 900 m (red) and ADCP-CM records in the upper 4000 m (blue).
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8.5°N and 11°N with the first two baroclinic modes and their

time series (Figure 11). The reconstructed time series at 8.5°N,

11°N and 15°N exhibit features consistent with the original time

series from the moorings in Figure 4, further demonstrating the

dominant role of these baroclinic modes in the interannual

variation of the currents.

Previous studies have investigated the excitation of different

baroclinic vertical modes in response to wind stress forcing.

Iskandar et al. (2006) adopted the wind stress coupling

coefficient to examine the efficiency of the wind stress in

exciting the vertical modes in the Indian Ocean, and

concluded that the first mode was more favorably excited in

thicker and milder thermocline regions, while the second mode

was more efficiently excited in thinner and sharper thermocline

regions. In this study, the basic density stratification along 130°E

from 8°N to 18°N varies with latitudes. Hydrographic

observations at 130°E indicated that the thermocline was

thinner/sharper at 8.5°N, and thicker/milder at 15°N (Wang

et al., 2015). Therefore, it is reasonable to hypothesize that the

first baroclinic mode is excited more favorably at 15°N, while the
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second baroclinic mode is excited more favorably at 8.5°N,

which to some extent explains the different vertical structure

of the interannual variation observed by mooring ADCPs at

different latitudes.
Relationship with ENSO

Interannual variations of the NEC are generally modulated

by ENSO events (e.g., Qiu and Joyce, 1992; Qiu and Lukas,

1996), while the relationship between NEUC and ENSO events is

not clear yet. Thus, this section attempts to discuss the

relationship of NEUC with ENSO based on mooring

observations. In fact, the mooring array used in this study well

covers the NEC, but it seems insufficient to capture the NEUC

branches due to their narrow width and active meridional shifts.

Also, there are lots of gaps in the ADCP data due to instrument

failure (Figure 2). These factors make it difficult to resolve the

interannual variability of the multiple NEUC jets. Nevertheless,

the ADCP data at 8.5°N is relatively continuous, and the jet
A

B

C

FIGURE 11

Reconstructed zonal velocity (m/s) time series in the upper 900 m during 2015-2021 with the first baroclinic mode at (A) 15°N, with (B) and
(C) the first two baroclinic modes at 11°N, and 8.5°N.
TABLE 2 Contribution (%) of the first three baroclinic modes at different latitudes.

8.5°N 11°N 15°N

First baroclinic mode 32.99 32.76 45.38

Second baroclinic mode 29.9 23.59 13.81

Third baroclinic mode 8.04 11.11 7.83
frontiers
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appears stable, so this site is taken as an example to analyze the

variability of the NEC/NEUC. Figure 12 displays the time series

of NEC velocity vertically averaged between 50-150 m and

NEUC velocity between 300-800 m derived from ADCP

measurements at 8.5°N. The result indicates that the NEC

variation is tightly correlated with Niño 3.4 index, which is

weak during El Niño and strong during La Niña, considering

that NEC is a westward flow. Previous studies demonstrated that

the NEC migrated northward during El Niño and shifted to the

south during La Niña (e.g., Qiu and Lukas, 1996; Kim et al.,

2004; Qiu and Chen, 2010), which might be responsible for the

interannual variation of NEC observed by ADCP at 8.5°N.

Furthermore, the interannual variation of the NEUC branch at

8.5°N displays different features compared with that of the NEC,

and it is intensified during the mature phase of El Niño and

reaches the maximum velocity during the decay phase

(Figure 12). When the NEUC velocity lags Niño3.4 index by 6

months, their correlation reaches maximum of 0.89, significantly

above the 95% confidence level.

To further demonstrate their interannual variations, the

Hovmöller diagram of temperature anomalies in the NEC/

NEUC layer (0-150/300-800 dbar) at 8.5°N was examined with

Argo data (Figure 13). The temperature phases in the upper

ocean are basically consistent with the interannual variation of

the NEC (Figures 12 and 13A): cooling during the weakened

phase of NEC (July 2014-July 2016 and July 2018-September

2019), and warming during the intensified phase of NEC

(January 2017-April 2018 and January 2020-June 2021). For

the NEUC layer, the temperature anomalies are relatively weaker

but the pattern is similar to that in the NEC layer (Figure 13B).

Westward propagating signals are noticeable in both the NEC

and NEUC layer, indicating that the interannual variation of
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both the NEC and NEUC is influenced by the remote wind

forcing through Rossby waves. Nevertheless, the positive

temperature anomalies in the NEUC layer west of 150°E

during August 2016-March 2018 and April 2020-April 2021

exhibit features generated locally (Figure 13B), implying that the

interannual variability of the NEUC is probably also modulated

by local factors besides the remote wind forcing.
Conclusion and discussion

Based on mooring observations along 130°E between 8°-18°

N in the northwestern Pacific during 2014-2021, combining with

AVISO products, the interannual variability of the NEC and

NEUC was investigated. Seven years of mooring ADCP

measurements in the upper 900 m indicate prominent

interannual variations of the NEC and NEUC, with the

interannual signal in the north lagging that in the south.

Satellite altimetry also demonstrates consistent phase-lagged

features with increasing latitudes. Utilizing a 1.5-layer reduced

gravity model, interannual variations of the SSH and associated

currents in this area were simulated. It is suggested that the

meridional phase lag of velocity at different latitudes on the

interannual time scale is related to the different propagating

speed of baroclinic Rossby wave, which propagates faster at

lower latitudes and slower at higher latitudes. Further model

sensitivity experiments suggest that the wind forcing in the

central Pacific plays a dominant role in the SSHA variation at

130°E, while the effects of wind forcing in the western and

eastern Pacific are not ignorable.

EOF and vertical mode decomposition analysis indicate that

interannual variation of the NEC/NEUC velocity structure at
FIGURE 12

The normalized zonal velocity time series of NEC (blue) and NEUC (red) at 8.5°N derived from mooring measurements during 2016-2021.
Shading denotes the Niño3.4 index. Here the normalized NEC velocity is defined as the mean zonal velocity averaged between 50-150 m,
which is scaled by its standard deviation. The definition of normalized NEUC is same as the NEC but for the depth range of 300-800 m. All
curves are smoothed with a 1-year low-pass filter.
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130°E is mostly dominated by the first baroclinic mode with a

surface-intensified structure. At 8.5°N and 11°N, the second

baroclinic mode also modulates the interannual variation of the

currents substantially, and the contribution is comparable to the

first baroclinic mode, inducing the subsurface-intensified

vertical structure of the interannual signal at these latitudes.

The excitation of different baroclinic modes at different latitudes

is probably related to the stratification change crossing the NEC/

NEUC along 130°E.

The NEUC exhibits pronounced relationship with ENSO.

Mooring measurements at 8.5°N indicates that the NEUC

branch is intensified during the mature phase of El Niño, and

reaches the maximum velocity during the decay phase. Its

correlation with Niño 3.4 index reaches 0.89 when the NEUC

lags by 6 months, and both the locally generated and westward

propagating signals are important for the interannual

modulation of NEUC at 130°E.

Previous studies associated the zonal velocity and

temperature variations below the equatorial thermocline with

vertically propagating equatorial Rossby waves (e.g., Kessler and

McCreary, 1993; Marin et al., 2010; Ishizaki et al., 2014; Ma et al.,

2020). Yang et al. (2020) utilized the linear continuously

stratified model to investigate the oceanic response with

different vertical modes and concluded that the seasonal

variability of the subsurface currents in the northwestern

tropical Pacific was more correlated to the vertical propagation

of off-equatorial Rossby waves associated with low-order
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baroclinic modes in the stratified ocean than that of the

equatorial Rossby waves. Statistical analysis (EOF and vertical

mode decomposition) in this study indicates that interannual

variations of the NEC/NEUC reflect the low-order mode

baroclinic response of the ocean to wind forcing, but it is

ambiguous what role the vertical propagation of off-equatorial

Rossby waves plays in that process on interannual time scale.

Therefore, a linear continuously stratified model will be

employed in future works to examine the interannual

variability of NEC/NEUC and its relationship with the vertical

propagation of off-equatorial Rossby waves.
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