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Assessing the ability of deep
learning techniques to perform
real-time identification of shark
species in live streaming video
from drones

Cormac R. Purcell1,2,3,4,5*, Andrew J. Walsh1,5,
Andrew P. Colefax5 and Paul Butcher6

1School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie
University, Sydney, NSW, Australia, 2Sydney Institute for Astronomy (SIfA), School of Physics, The
University of Sydney, Sydney, NSW, Australia, 3School of Computer Science and Engineering, UNSW
Sydney, Sydney, NSW, Australia, 4Trillium Technologies PTY LTD, Eastwood, SA, Australia, 5Sci-eye
PTY LTD, Goonellabah, NSW, Australia, 6Department of Primary Industries, New South Wales
Fisheries, Coffs Harbour, NSW, Australia
Over the last five years remotely piloted drones have become the tool of choice

to spot potentially dangerous sharks in New South Wales, Australia. They have

proven to be a more effective, accessible and cheaper solution compared to

crewed aircraft. However, the ability to reliably detect and identify marine fauna

is closely tied to pilot skill, experience and level of fatigue. Modern computer

vision technology offers the possibility of improving detection reliability and

even automating the surveillance process in the future. In this work we

investigate the ability of commodity deep learning algorithms to detect

marine objects in video footage from drones, with a focus on distinguishing

between shark species. This study was enabled by the large archive of video

footage gathered during the NSW Department of Primary Industries Drone

Trials since 2016. We used this data to train two neural networks, based on the

ResNet-50 andMobileNet V1 architectures, to detect and identify ten classes of

marine object in 1080p resolution video footage. Both networks are capable of

reliably detecting dangerous sharks: 80% accuracy for RetinaNet-50 and 78%

for MobileNet V1 when tested on a challenging external dataset, which

compares well to human observers. The object detection models correctly

detect and localise most objects, produce few false-positive detections and

can successfully distinguish between species of marine fauna in good

conditions. We find that shallower network architectures, like MobileNet V1,

tend to perform slightly worse on smaller objects, so care is needed when

selecting a network to match deployment needs. We show that inherent biases

in the training set have the largest effect on reliability. Some of these biases can

bemitigated by pre-processing the data prior to training, however, this requires
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a large store of high resolution images that supports augmentation. A key

finding is that models need to be carefully tuned for new locations and water

conditions. Finally, we built an Android mobile application to run inference on

real-time streaming video and demonstrated a working prototype during fields

trials run in partnership with Surf Life Saving NSW.
KEYWORDS

aerial survey, drone, remotely piloted aerial systems, RPAS, unmanned aerial vehicle,
UAV, deep learning, computer vision
1 Introduction

The threat of shark bites along coastal beaches is a growing

human-wildlife conflict issue, as the occurrence of unprovoked

shark bites is increasing globally. Typically, white sharks

(Carcharodon carcharias), bull sharks (Carcharhinus leucas)and

tiger sharks (Galeocerdo cuvier) are the species of sharks

considered ‘potentially dangerous’ to beach users in shark

mitigation strategies, as well as any large (greater than 2 m)

unidentifiable shark that may be a potentially dangerous species

(Colefax et al., 2020b). Shark bite events (particularly from these

species) can be fatal, are highly traumatic, and promote fear

through coastal communities (Simmons and Mehmet, 2018;

Taylor et al., 2019). Consequently, there is increasing public

demand and political pressure to extend mitigation measures

for beach safety to prevent shark bites occurring. Traditionally,

global shark-bite mitigation (or bather protection) programs

relied on lethal methods, with drumlines and shark mesh nets

being the most adopted (McPhee and Blount, 2015). Due to

declining populations of many coastal sharks and the

susceptibility for other valued marine species to be caught as

bycatch (such as other sharks, turtles, dolphins, whales, and birds),

there has been a strong social push to implement non-lethal

alternatives that can mitigate shark bites. There is also an

increasing ecological need to continually monitor coastal fauna

populations as indicators of marine ecosystem health (Pepin-Neff

and Wynter, 2018a; Pepin-Neff and Wynter, 2018b). In this work

we explore the application of deep learning computer vision to all

of these challenges. But first, it is important to describe the

practical setting into which the technology will be deployed.
1.1 Drones as a shark surveillance tool

Rapid advancements in computing combined with the

developments associated with unmanned aerial vehicles

(UAVs), commonly referred to as drones (Chapman, 2014),

promise to continue to revolutionise beach monitoring and
02
marine ecology (e.g., see Chabot, 2018; Li et al., 2020; Raoult

et al., 2020; Butcher et al., 2021). Readily accessible UAVs have

the capacity to autonomously follow fixed search patterns and

can deliver high-resolution imagery in post and real-time, which

is often crucial for making robust fauna identifications and

assessments (Burke et al., 2019; Colefax et al., 2019). Indeed

shark-spotting from drones is the current publicly preferred

shark-bite mitigation option in New South Wales, Australia, and

has already achieved baseline success as a management strategy

at several beaches (Butcher et al., 2019; Colefax et al., 2019;

Stokes et al., 2020).

In most areas, current drone-based monitoring operates

within visual line-of-sight of a pilot (typically lifeguards),

with the aircraft flown manually. The live video is streamed

from the aircraft to a tablet device attached to a hand-held

controller, allowing the pilot to visually assess the area for

potentially dangerous sharks in real-time. While this method

has been proven more effective than crewed aircraft (Colefax

et al., 2019), there are significant limitations that require

further development to overcome. In particular, the ability to

detect and identify species of marine fauna relies heavily on

pilot knowledge, skill and experience, which can be

increasingly problematic in sub-optimal environmental

conditions and as surveillance programs are expanded to

more diverse locations. Human-derived hindrances, such as

fatigue, can significantly increase perception error, reducing

the efficacy of the method (Brack et al., 2018). Similar issues

also arise when imagery is post-processed for ecological

monitoring. Although, in many circumstances, systems can

be implemented to reduce error rates, they can be extremely

resource intensive and are not always reliable (Colefax et al.,

2017; Brack et al., 2018).

Maintaining positive public perceptions of shark surveillance

is paramount for successful implementation and continued

operation as a mitigation strategy (Liordos et al., 2017; Stokes

et al., 2020). There are potential consequences for human safety

and subsequent public perception in the event of an undetected or

misclassified target shark. There are also consequences to public
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perceptions for wrongly classifying a harmless species as a target

shark, particularly if it leads to unnecessary beach closures.

Therefore, developing and maintaining methods to obtain

maximum detection and identification reliability of marine

fauna is paramount.
1.2 The rise of the machines

Advancements in computer vision and machine learning

(ML) technology offer vast potential to improve upon the

reliability of detections in real-time, and to automate much of

the surveillance process. Modern intelligent algorithms can learn

to accurately and consistently locate and identify objects in

complex scenes, but do not tire like human observers and can

be orders of magnitude more efficient once deployed (e.g.,

Longmore et al., 2017; Hodgson et al., 2018; Burr et al., 2019;

Eikelboom et al., 2019; Zhang et al., 2022). Concurrently, it is

expected that drone technology and associated systems

(including regulations) will continue to progress rapidly, which

will allow monitoring and surveillance operations to be

automated end-to-end. Efficient and automated aerial surveys

are a paradigm-changing technology with the potential to

change the way ecology and habitat management are done,

including opening up new, wide-area, long-time-duration

parameter space (Colefax et al., 2017).

Earlier efforts at automated marine object detection were

hampered by available computing power and thus confined to

simple algorithms (e.g., Maire et al., 2013; Zhou et al., 2015;

Byles, 2016). One of the first promising studies by Maire et al.

(2014) used a neural network classifier to identify dugongs for

abundance estimation, but was limited by a small training set

and low resolution images. The technology and accompanying

data have now matured and ML-driven computer vision is

routinely used in ecology and other fields. Of particular

interest is the work by Marrable et al. (2022), who built a

generalised computer vision model and machine-assisted

labelling tool for identifying and tracking fish in underwater

habitats1. Similarly, Jenrette et al. (2022) presented a

comprehensive system that can classify 47 species of sharks

with high accuracy in underwater footage. Shi et al. (2022) also

designed an efficient marine organism detector utilising

improved attention-relation mechanisms. The work by Dujon

et al. (2021) on the performance of simple deep learning models

in detecting animals in aerial imagery is very complementary to

the work presented here. These authors analyse the effect of

factors such as spacing, animal morphology and depth, water

turbidity and sun glitter. See also Butcher et al. (2021) for a

general review covering the use of UAVs in shark research.
1 https://www.afid.io/.
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1.3 Machine learning on beaches

In the context of beach management and public safety, ML

algorithms have started to be deployed as decision support

systems, with varying levels of success. The basic premise is

for object detection models to identify sharks and other marine

objects in a live video feed, annotating objects with bounding-

boxes, taxonomy labels and scores that indicate the confidence of

each identification. The Little Ripper Group2 deployed one of the

first such drone-based shark spotting systems in Australia,

utilising desktop-class computing hardware to detect sharks in

streaming video. Their object detection model was developed by

researchers at the University of Technology Sydney who

reported a mean average precision of mAP >90 % when tested

on an internal dataset (Sharma et al., 2018; Sharma et al., 2022).

However, the early system proved unreliable when deployed to

new locations and the computing hardware was not portable or

robust enough for the harsh beach environment (private

communication, Surf Life Saving New South Wales). More

recently, Gorkin et al. (2020) demonstrated the similar

SharkEye platform for processing aerial imagery. This system

avoided the issue of deploying hardware to the beach by

performing inference on remote servers (‘the cloud’), but

required an active internet connection. Gorkin et al. report

accuracies of 91.7%, 94.5% and 86.3% for sharks, stingrays,

and surfers, respectively. However, these reported accuracies

are unlikely to hold when deployed in the field, as the authors

trained and tested on a very limited sample of data (private

communication, Gorkin).

Testing on internal data - data split from the same parent

population as the training set - often leads to significant over-

confidence and inflated expectations for machine learning

algorithms. One excellent example of this issue is the meta-

analysis of ML research to detect COVID-19 in chest

radiographs and CT scans by Roberts et al. (2021). The

authors showed that none of the analysed models were useful

in a clinical setting, primarily due to small sample sizes and

testing on internal data only. Our current work aims to

overcome these types of data and utilisation issues for shark

management, to develop a robust decision support tool that can

be deployed on a rugged mobile device at remote locations.
1.4 Aims and scope of this work

This work is motivated by the following overarching question:

How well can a modern machine-learning computer vision

system identify shark species (and other fauna) in overhead

footage streamed to a mobile device in a beach environment?
2 https://therippergroup.com.
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The focus here is on species-level identification - critical

information for ecologists and beach managers - and deployment

on a mobile device because robust, self-contained and portable

equipment is necessary for use in the harsh marine environment.

The project is enabled by the large archive of marine fauna

videos recorded as part of the Drone Trials under the New South

Wales (NSW) Shark Management Strategy during 2016 – 2020,

which was administered and implemented by the NSW

Department of Primary Industries (NSW DPI).

The paper is structured as follows. In § 2 we describe the data
from the Drone Trials - which amassed one of the largest

collections of shark and marine fauna footage in the world. §3
documents how we prepared the data to be ‘machine learning

ready’ and presents the properties of the labelled dataset. § 4

describes the object detection models and explains the training

procedure. §5 presents the best-fitting models and analysis of

how the models perform at new locations and during new time-

periods. The prototype mobile application is described in §6 and
the results compared to the models run on desktop-class

hardware. §7discusses the results and scope of future work,

and the key findings of the paper are summarised in §8.
2 The NSW DPI drone trial data

This work is built on high-resolution videos of the ocean,

recorded from drones flown just offshore from NSW beaches,

as part of the NSWDPI Drone Trials. Most of the data from the

trials used in this research were collected by the NSW DPI over

the 2016 -2017 summer period (Colefax et al., 2019). Drone

surveillance flights have also been conducted by Surf Life

Saving New South Wales (SLS NSW) on behalf of DPI since

2017 during the autumn, spring and summer school holidays.

In 2020/21 and 2021/22, SLS NSW expanded its area of

operations to 34 and 50 NSW beaches, respectively. The

drones were flown in accordance with, and authorised by,

standardised operating protocols, which included flying at a

height of 60 m, with the camera pointed a few degrees away

from vertically down, to mitigate against glare. High resolution

videos (e.g., up to 4k UHD pixel resolution) are recorded to

removable storage cards on-board the drone. Video is also

streamed to the controller via a 2.4/5.8 GHz digital telemetry

link at a resolution of 1920×1080 pixels (1080p HD). This real-

time video telemetry is displayed on a tablet device connected

directly to the drone controller. Figure 1 presents example

images extracted from the video recording archive for all

animal species targeted here.

Two subsets of video data are used in this work: (1) videos

from the Phase 3 and 4 Drone Trials, recorded during 2016/2017

and (2) videos from dedicated Shark AI Trials conducted as part

of this project during March-June 2020. Table 1 summarises the
Frontiers in Marine Science
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properties of each set of data and Figure 2 shows how objects of

interest were sampled over time. At the start of this project, data

from (1) were already filtered to contain only footage with

positively identified fauna and hence suffer from selection bias.

In contrast, videos in (2) consist of full flights recorded over

many days, leading to a much more robust sample of

flying conditions.
2.1 The phase 3 and 4 trial data

The Phase 3 and 4 Drone Trials data (hereafter P34 data)

consist of 425 videos between ~ 1 and ~ 10 minutes in length.

Almost all videos feature positively identified marine fauna in

addition to beach users (e.g., surfers, swimmers) and marine

equipment (e.g., boats, jet-skis, buoys). These videos were

clipped from original recordings of full flights and are highly

biased to select for environmental conditions where animals

were visible and identifiable to experts. This means that only a

small fraction of video frames are empty of objects. Importantly,

the P34 data does not represent the full range of scenes

encountered over the course of normal flying. Examples of

confusing objects and features (e.g., seaweed, reef, rocks, surf-

wash, brackish water) are essential to train the ML model what

not to pay attention to. Without sufficient negative examples,

ML models trained from only the P34 data will have a very high

rate of false positives when deployed in the field; that is, the

models will fail to generalise.
2.2 The shark AI trial data

Dedicated trials of a prototype mobile shark detection

application were conducted during February-May 2020.

These trials, run in partnership with SLS NSW, provided

essential coverage of confusing objects and recorded a wide

range of environmental conditions, which will help models to

perform better in all weathers. They also added significant

examples of rare species to increase the sampling of

minority classes.

The data consist of full-flight videos taken at five beach

locations by SLS NSW pilots, adding up to 149 days of flying in

aggregate (see Table 1). Videos of each flight were recorded onto

on-board memory and the live 1080p video telemetry was

processed using the prototype Android Shark AI App that

applied a neural network based object detection model in real

time (see § 6 for details). From April 15th 2020 onward the

application automatically logged all detections made by the

model for later offline comparison. A summary of each flight

was also created by the SLS NSW pilots on a paper flight-sheet

and electronically recorded in their flight management system.
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FIGURE 1

Examples of image data used in this work. Top Image: Representative view from the drone at a height of ~ 60m (image has been cropped from
the full-frame view). Here we see a close interaction between a surfer and a white shark C. carcharias. Pink rectangles illustrate the closely-
fitted bounding boxes used to train the object detection model. Lower Images: Each row presents high-, medium- and low-quality images,
respectively, of the animals investigated in this study. The quality assessment was done manually by experienced observers and depends on the
depth of the animal, water turbidity, sun glitter and degree of distortion at the surface.
Frontiers in Marine Science frontiersin.org05
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TABLE 1 Summary of the number of videos, their capture locations and capture resolution for the Shark AI Trial data used in this work.

Resolution 3840 × 2160 (4k) 1920 × 1080 (1080p) 1280 × 720 (720p) Total Videos

Captured Used Captured Used Captured Used Captured Used

Kingscliff 0 0 434 99 0 0 434 99

Byron 53 6 336 56 0 0 389 62

Lennox 0 0 500 114 0 0 500 114

Ballina 0 0 81 47 38 34 119 81

Evans 52 11 433 143 0 0 485 154

Total 105 17 1784 459 38 34 1927 510

The entries are split into ‘captured’ and ‘used’ fields, indicating the total number of videos captured and the number of videos used for training the model. Videos not used in model training
typically contain no animals of interest.

Purcell et al. 10.3389/fmars.2022.981897
3 Preparing the data for
machine learning

Data preparation is a critical step in creating a robust

machine learning workflow - one that is often neglected in the

established literature in favour of covering algorithmic

innovations. However, the programming maxim ‘garbage in:

garbage out’ applies equally to machine learning, and necessary

data preparation can consume in the of order 90% of the effort

dedicated to a project. Operations on the data include: data

exploration and visualisation, quality control, labelling,

correcting for missing values, normalisation, de-biasing and

correcting for in inhomogeneous sampling.
Frontiers in Marine Science 06
3.1 Labelling the data

This project uses supervised learning techniques to detect

and identify objects in each video frame. Hence, the training data

must include rectangular bounding boxes, marking the spatial

extent of objects of interest and their identifier label. Creating

such labels is a labour-intensive process, requiring the close

supervision of a shark expert, so we employed the following

iterative procedure to speed up the process.
1. Play each video forward and use the mouse cursor to

manually follow fauna with a rectangular aperture. The

size and aspect ratio of the aperture can be changed via
FIGURE 2

Illustration of the spread in dates during which objects of interested were detected. Detections during 2020 are less sparse than during 2016/
2017/2019 as the 2020 trials were designed with training and validation of the machine learning algorithms in mind. Each object class is
represented as a three letter code as follows: SUR, surfer; RAY, ray; WHI, white shark; WHA, whaler shark; DOL, dolphin; HAM, hammerhead
shark; TUR, turtle; GUI, guitarfish; SWI, swimmer and BOA, boat.
frontiersin.org
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Fron
the keyboard, resulting in time-series ‘tracks’ of closely-

fitted boxes that are saved to disk in JSON format

alongside each video. Each track has an associated

label indicating object type (e.g., whaler shark, surfer

etc.) and a quality flag in the range 1 – 5.

2. Apply an object-detection model in inference mode to

automatically generate tracks (if a suitable model exists).

This step can be performed in lieu of (1) when the

performance of the model from (6) reaches a suitable

level. This greatly speeds-up the labelling of new videos.

3. Visualise and edit tracks of bounding boxes for each

video using a graphical user interface (GUI). We

developed the custom Shark AI GUI that supports a

wide range of labelling operations, including drawing

new bounding boxes, interpolating between key boxes to

create new tracks and labelling negative images - frames

that contain no objects of interest.

4. Extract a sample of JPEG-format full-frame images from

the labelled videos and create an adjacent ASCII

comma-separated-variable (CSV) file to hold the

coordinates and labels of the bounding boxes. This is

the basic ML-ready dataset that can be used to train an

object detection algorithm.

5. Apply image augmentation, normalisation and over-

sampling, as described in §3.3.

6. Train an object-detection model to detect and localise

objects in new video data (see §4).
The initial models were created using a small set of labelled

data generated by step (1) above. As more data were added to the

training loop, the model accuracy increased and false-positive

rate decreased so that step (1) could be skipped entirely and the

model used to generate new labels in (2). Early efforts displayed

many artefacts, so the graphical labelling tool (3) was essential to

edit the tracks and correct any mistakes. Over time, this iterative

process converges towards a best-performing model.
3.2 Data biases and generalisation

Neural networks suffer from many of the same issues as

simple curve-fitting algorithms. Chief amongst these is the issue

of overfitting or generalisation: does the best fit to the training

data describe new data encountered in the real world? If the

answer is ‘yes’, then the model generalises well. But if the answer

is ‘no’, then the model is likely to suffer from overfitting, where

the model will do a good job of predicting new data with very

similar characteristics as the training data, but will perform

poorly for completely new data. It is common practice to split off

a fraction (e.g., 5 –10%) of training data into a test set, which is

then used to assess the performance of the trained algorithm.

Gauging performance using the test set provides a measure of
tiers in Marine Science 07
how well the neural network has learned features in the data that

correspond to each class. However, if the training data do not

sample the full range of conditions encountered in the field, then

the real-world performance will be worse than testing indicates.

In other words the best fit model will not generalise well to

new data.

Of particular concern are systematic differences between

classes that do not relate to the unique features of individual

object types. Such biases are a common problem for data

collected on rare objects, leading to ensemble properties that

may be highly skewed compared to the median. For example, in

the current dataset hammerhead sharks are present mostly on

sunny days and in clear water. Hence, most training images of

hammerheads are dominated by pixels representing bright green

sea. Without correcting for this class-level bias the machine

learning algorithm would associate the hammerhead label with

dark objects on a bright green background, rather than just

picking out the distinctive shape of the shark. To mitigate against

these sorts of problems, we must normalise the distributions of

each property that we do not want the algorithm to learn from -

in this example the background colour of the images. We note

that our data are well suited to this type of colour correction

because typical images are dominated by the ocean and most

scenes are relatively simple and uncluttered.
3.3 Normalising data distributions

The key to training a robust, accurate and unbiased classifier

is a large and statistically balanced training dataset with accurate

and appropriate labels. No real-world dataset is perfect, so we

use a number of techniques here to mitigate against problems in

the data and make incorporating new data as easy as possible. In

particular, we measure the distributions of size and colour within

each object class and apply transformations to shift their

properties closer to target distributions.

A number of methods exist in the statistical literature to

transform non-normal distributions to Gaussian form (e.g.,

Draper, 1952; Box and Cox, 1964; Gasser et al., 1982; Chen and

Tung, 2003). However van Albada and Robinson (2018) recently

presented a transformation that outperforms the previous

methods, is exceptionally easy to implement and minimises the

required shift for each datum. The method works by sorting the

data into a cumulative distribution function (CDF) and shifting

each data point onto the equivalent curve for the target normal

distribution. For a variable v following a continuous distribution,

Equation 8 of that paper states

y(v) = m + s
ffiffiffi
2

p
 erf−1½2 P(v) − 1� (1)

where P(v) is the CDF of the data, erf-1 is the inverse

Gaussian error function, m is the mean of the target normal
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distribution and s is the standard deviation. The application of

Equation 1 is illustrated in Figure 3 which shows the shift

applied to each datum in a bimodal distribution in order to

normalise it. In practice, the magnitude of the allowed shift

should often be limited (e.g., only positive values allowed for

certain parameters), so data that are shifted outside set limits

are randomly shifted again to fall within the distribution. If a

very narrow clipping range is applied, this can result in the

distribution sitting on a ‘pedestal’, but this has not been an

issue for any transformations applied in this work.
3.3.1 Mitigating colour biases
The largest biases in the DPI Drone Trials Dataset are due to

differences in the ‘background’ sea colour, linked to variations in

environmental conditions between data acquisition flights. We

also know that shape (rather than colour) plays a dominant role

in distinguishing between shark species, as most sharks have

similarly coloured skin. Hence, we normalise the colour

distributions between classes, effectively forcing the neural

network to pay less attention to colour differences and instead

focus on learning shapes and textures in the training images.

We perform colour normalisation on the training images

with colours encoded as hue, saturation and value (HSV). Hue
Frontiers in Marine Science 08
varies between 0°!360° with a smooth transition at the

wrapping point, which allows us to shift the hue distributions

without introducing discontinuities. In practise, all training

images are loaded for a particular class, converted to HSV

encoding and robust statistics (e.g., MADFM) are used to

measure their median HSV values. Equation 1 is used to

calculate the normalisation shift for each image, which is then

applied before the images are written back to disk in

RGB format.

3.3.2 Mitigating size biases
Individual classes of object have characteristic size

distributions that differ significantly from each other.

However, the observed size is a strong function of the altitude

of the drone and we want the detection system to perform

equally well at low (~10 m) and high (~60 m) altitudes. For this

reason, we scale, crop and resize input images to achieve a more

balanced distribution of object sizes across all classes. In the

same way as the colour correction operation, we measure the

distribution of ground-truth box sizes, set a target distribution

based on the median size and calculate a ‘zoom factor’ for each

image that defines the scale and crop to be applied. In crowded

frames we invariably crop out some labelled objects, however, we

minimise the number of dropped objects by carefully selecting

the location of the zoomed frame bounds. We are also careful

not to scale the image data by more than a factor of 3 ×, which

would result in very blurry images. During this operation we also

apply a random rotation in multiples of 90°, which mitigates

against a tendency of pilots to follow fauna from the rear,

meaning that the majority of sharks are filmed swimming

facing ‘up’ in the video footage.
3.4 Properties of the labelled data

Here we present the properties of the labelled training data. In

total, we created 3501 tracks (time-series of a single bounding box)

in 712 individual video files. Figure 4 presents a histogram of the

labelled data broken down by species and location. The number of

boxes labelled in each class varies dramatically, with boats and

swimmers having the least samples and surfers and rays the most.

Guitarfish, hammerhead sharks and turtles are undersampled

compared to the other fauna, and samples are drawn from only

a few independent videos of each. It is notable that most white

shark video data was sourced from Colefax et al. (2020a), which

were from separate locations to the rest of the dataset.

Figure 5 shows the distributions of HSV colours for all

training images in the ten object classes and the effect of the

colour normalisation process. Taking hue as an example, before

normalisation most distributions are centred around a hue H =

0.4 corresponding to the green appearance of sea water from the

air, however, the shapes of the distribution vary considerably.
FIGURE 3

Illustration of how a non-normal distribution is transformed to
Gaussian form via Equation 1. The top-left panel shows the
distribution of raw data (shaded histogram, in this case ‘colour
value’) overlaid by a normal distribution (dotted line) with similar
values for median m and standard deviation s. The equivalent
cumulative distribution functions (CDFs) are shown in the top-
right panel. The bottom-right panel presents the shift necessary
to transform each value onto the target normal distribution.
Note that the vertical spikes present on left and right of the shift
curve are due to clipping at ±2.5 s. The final distribution is
shown in the bottom-left panel and corresponds well to the
Gaussian curve, despite the clipped values.
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The distribution for white sharks (WHI) is very narrow, likely

representing a bias towards particular weather conditions. After

normalisation, the distributions of colour hue in most classes

appear similar with an approximately Gaussian profile.

However, the colour differences for surfers and swimmers are

genuinely different because they are often seen towards foamy

water, therefore we only smooth the distributions for these

classes (rather than shift).

The distributions of colour saturation (middle panel of

Figure 5) were adjusted to broadly sample the full gamut of

values 0 - 1. The most extreme adjustment was applied to white

sharks which exhibited a narrow distribution of saturation

values peaking at S ≈ 0.86, prior to normalisation.

The distributions of colour values (encoding brightness)

were broadened to better sample a range of lighting

conditions. Again, the exceptions were the ‘surfer’ and

‘swimmer’ classes, which we only smoothed as they tended to

occur in bright foamy water.

Figure 6 top presents the distributions of bounding box

geometric size (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
height � width

p
). There is considerable

variation between classes, some of which derives from the

natural size of different object types (e.g., turtles are smaller
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than boats) and some from biases within the data. Hammerhead

and white sharks in particular have long tails of very large

bounding boxes. This feature derives from an over-

representation of videos where the pilots zoomed in on the

animal so that it filled the frame. We attempted to normalise the

distributions of sizes as outlined in §3.3.2, but were limited by

the large tranche of low-resolution (1080p) training data from

the 2020 trials that cannot be resized without degrading quality

significantly. The overlaid unfilled histograms in Figure 6 shows

the final size distributions for the training data. Note also that

images containing large bounding boxes cannot be cropped, so

that skewed distributions of hammerhead and white shark sizes

remain largely unchanged.

Finally, Figure 6 bottom plots the distributions of

bounding box elongation ratio after data normalisation.

Boxes elongated in the horizontal direction are assigned

negative values to distinguish them from vertically

elongated boxes. Almost all of the large targeted animals

(dolphins, guitarfish, hammerhead sharks, whaler sharks and

white sharks) exhibit distributions skewed towards the

vertical because we could not adequately correct the ‘rear

filming’ bias described earlier.
FIGURE 4

Distribution of sampled bounding boxes over the ten classes of interest, divided by sampling location.
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4 The object detector and
training pipeline

Two versions of the pipeline exist with identical steps,

differing primarily in the architecture of the backbone neural
Frontiers in Marine Science 10
network used. We train two RetinaNet single-shot detector

(SSD) models (Lin et al., 2017) with backbone classifier

networks based on the ResNet-50 and MobileNet V1.0

architectures. ResNet-50 is a deeper network than MobileNet

V1, more suitable for deployment on a high-powered mobile
FIGURE 5

Distributions of median colour hue (top), colour saturation (middle) and colour value (bottom) for training images in all ten classes. Hue values
cluster near to H ≈ 0.4, which encodes the average colour of the sea as green. Colour value and saturation encode brightness and colour
intensity, respectively. In each panel the blue-filled histogram shows the distribution before normalisation, while the black outline histogram
shows the distribution after applying the colour normalisation scheme described in § 3.3. After normalisation, colours are more similar between
classes and sample a larger range of parameter space.
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FIGURE 6

Top: Histograms showing the distributions of bounding box size for each class of object on a log scale (y-axis) to emphasize the low-level
structure. Here ‘size’ is the geometric average of the side-lengths √ height × width. In each panel the blue-filled histogram shows the
distribution before normalisation, while the black outline histogram shows the distribution after applying the scaling and cropping scheme
described in § 3.3.2. This offline augmentation technique attempts to normalise the size distributions between classes by cutting out a zoomed
section of image, but this method cannot be used when objects occupy most of the frame, as is the case for significant numbers of
hammerhead and white shark images (labelled HAM and WHI above). Note the different x-axis scales for the ‘before’ and ‘after’ distributions,
reflecting the down-sizing of training images to 1080p resolution. Bottom: Distributions of bounding box elongation ratio for each class in the
training data after augmentation. Vertically elongated boxes have positive ratios (= height/width) and horizontally elongated boxes have negative
ratios (= −1×width/height). Note that boxes around white sharks (WHI) are almost all vertically elongated, indicating animals tracked from behind
by the drone operator. There was limited scope to rotate these data because many animals occupied the full field-of-view. Whaler sharks (WHA)
and guitarfish (GUI) also show similar issues, but to a less extreme degree. Turtles (TUR) and rays (RAY) tend to have ratios closer to unity,
indicating more square boxes.
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device (e.g., an iPad Pro) or a GPU-accelerated desktop

computer. MobileNet V1 is a shallower architecture,

specifically designed for deployment on devices with limited

processing power and lacking hardware to accelerate machine

learning (e.g., phones or tablets with older processors).

Our choice of RetinaNet and these two backbone networks is

motivated by deeply practical reasons. These algorithms are

well-characterised, offered ‘good enough’ performance in other

applications and were in widespread use during 2018 - 2020,

when most of this research was conducted. In addition, the

combination of a SSD with Mobilenet V1 was supported by a

deployment tool-chain targeting Android devices. This was

critically important for developing and field-testing our proof-

of-concept mobile application.
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It is also widely acknowledged (e.g., Mazumder et al., 2022)

that more research is needed on curating high-quality datasets to

support the development of models that perform well when

deployed. We emphasise that the focus of this work is on the

data, rather than algorithms.
4.1 RetinaNet

RetinaNet was developed by Lin et al. (2017) to address the

common problem in SSDs of the ‘background’ (empty) class

dominating the training. This happens because the detector

samples a large set of candidate object locations across each

image, most of which contain nothing of interest. RetinaNet uses
frontiersin.org
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a novel loss function - called Focal Loss - to down-weight these

easily learned examples and allow training to a high-accuracy.

The detector also implements a laterally-linked feature pyramid

for detecting objects at different scales. Even in 2022, RetinaNet

is considered a reasonable choice for a high-performing object

detector: versatile enough for deployment on a mobile device

and accurate enough to approach the best multi-stage detectors

(e.g., Pyrrö et al., 2021). We use two implementations of

RetinaNet for this work: for the ResNet-50 architecture we

employ an open-source Keras-based code developed by

robotics company Fizyr3, while for the MobileNet V1

architecture we use the implementation in the TensorFlow 1.5

Object Detection (TFOD) API4.
4.2 The training pipeline

The training pipeline is configured to run isolated

experiments that feature different data sampling schemes and

training hyperparameters. Labelling, image-extraction and

augmentation tasks are run in the first part of the pipeline, to

produce a static dataset of normalised 1080p resolution images

with bounding boxes (for details see 3.3). This is the fundamental

dataset that experiments draw on. A subset of the data is then

prepared for an experimental training run. Steps include:
3 h

4 h

Fron
• Clipping the maximum number of boxes in each object

class.

• Oversampling minority classes via random replication

while taking care that images containing multiple classes

of object are fully annotated.

• Splitting out separate training and internal validation

sets.

• Filtering for a subset of object classes and merging object

classes into new or existing labels.
As previously shown in Figure 4, some classes are under-

represented leading to significant imbalance in the dataset. This

is a natural consequence of the rarity of some animals and

because the locations are unevenly sampled. Such imbalance can

be mitigated in a number of ways: by targeting a metric other

than accuracy while training; by weighting the loss function with

the inverse occupancy for each class; or by re-sampling the data.

Here we choose to oversample minority classes by randomly

replicating data - early experiments suggested that this is

equivalent to the weighting the loss function. Many of the

ocean scenes contained multiple species, meaning that care

was needed to avoid over-representing some classes when
ttps://github.com/fizyr/keras-retinanet.

ttps://github.com/tensorflow/models/tree/master/research/object.
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replicating another. Images to be replicated were drawn from

the subset that contained no other species and replication was

only attempted if 70% of the images contained boxes for that

class alone (true in most cases). This procedure allowed us to

maximise the information content, while balancing the classes in

each training set and avoiding excessive data repetition. The

models were trained using a target of 20,000 boxes per class and

two percent of data was randomly split off before the

oversampling step, to serve as an unseen internal validation

set. Once chosen, the training and validation data

were randomly shuffled and written to disk in the

experiment directory.

The remainder of the training workflow is standard for this

type of problem. Randomised mini-batches of annotated images

were run through the network in a forward-pass and the loss

calculated. The weights between layers were tweaked in the back-

propagation pass and this training loop was repeated until the

loss plateaued, or a maximum number of epochs was reached. A

snapshot of the weights were saved to the experiment directory

after each epoch. The best fitting model was chosen by

examining the loss and mean average precision (mAP) curves

and selecting the epoch where the curve had just flattened.

Training hyperparameters, such as learning rate, were

tweaked manually until satisfactory results were obtained.

Lower learning rates (~ 0.001) and longer training times

tended to produce the best results. Although we did not have

the computational resources to do a more comprehensive search

of hyperparameter space, we believe the results are close to

optimal for our training setup.

Due to limitations in the TensorFlow implementation, the

MobileNet V1 model was configured to read in an image tensor

of [w, h] = [800,480] during training, rather than [1920,1080] for

the ResNet-50 backbone. However, during testing both networks

performed inference on 1080p resolution images, which was

possible because of their fully convolutional architecture.
5 Results and analysis

The primary aim of this work is to assess how well a modern

neural network based object detector performs at distinguishing

shark species. The results presented here constitute a baseline for

comparison with future algorithmic advances. Equally, the

properties of the current dataset impose limits on detector

performance and we investigate enhancements to the input data

that are required to make a truly robust shark detection model.
5.1 Assessing model performance

We assess the performance of the trained object detector by

running the model in inference mode on unseen test data. Three

main variables affect the model performance at inference time:
frontiersin.org
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1. The non-maximum-suppression (NMS) threshold: this

is the value of intersection-over-union (IoU) IoUNMS

above which boxes in the same frame are considered

duplicates.

2. The confidence threshold s ≥ sthresh at which to accept

candidate detections.

3. The IoU threshold (IoUmatch) used to match detected

and ground-truth boxes.
At the lowest level, the object detection algorithm produces a

list of candidate bounding boxes generated by the model at

anchor points across each image frame. Each box has an

associated label (e.g., HAM, WHI, SUR etc.) and confidence

score s in the range 0 - 1. Boxes are grouped into clusters by

calculating the IoU between pairs of boxes - this is the ratio of

intersecting to unified area. IoU values range from zero (no

overlap) to one (perfect overlap) and boxes are considered part

of a cluster above a threshold IoU value. During the NMS

operation, only the box with the highest confidence score

within a cluster is retained and the others are discarded. Our

experiments show that a threshold of IoUNMS = 0.3 works well

for our dataset.

Figure 7 shows how the average recall of the model varies

with IoUmatch threshold. We see here that recall is not strongly

dependent on IoUmatch between values of 0.1 and 0.4. In practice,

we choose a value of 0.3 for IoU threshold to measure

performance of models and compare between models.

After the NMS step, the list of detections are cross-matched

with the ground-truth boxes via another IoU operation and the

following three catagories are defined:
• True Positive (TP): detections with confidence scores s ≥

sthresh, that overlap a ground-truth box with IoU ≥

IoUmatch and have the same class label.

• False Positive (FP): any detection that does not meet the

above criteria.

• False Negative (FN): a ground-truth box that is not

matched with a detection.
A distinction can be made within the FP class between

correctly localised objects that are assigned the wrong label and

entirely spurious detections. The results are used to build a

confusion matrix, plot precision-recall curves and calculate the

average precision for each class of object, and the mean average

precision (mAP) for the detector. In constructing these metrics,

we follow the method of Padilla et al. (2021), who reviewed

object detection metrics in common use and provided excellent

reference code5.
ttps://github.com/rafaelpadilla/Object-Detection-Metrics.
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5.1.1 Testing data
We test models against two distinct types of dataset:
1. Internal data randomly split from the same pool that the

training data was drawn from.

2. External data deliberately chosen from different

locations, or significantly different times, or both.
Each of these datasets addresses different questions. The

internal data (1) asks the question ‘How well has the model

learned the differentiating features between object types in the

training data?’. However, caution is needed here as some of these

learned features may reflect biases, or correlations, in the data,

rather than the distinguishing features of target objects. Weather

and illumination change are often stable over the course of a

flight, meaning that testing and training images drawn from the

same videos will likely sample similar conditions. This

correlation in conditions will manifest as artificially high

performance scores.

A more realistic test is offered by the external data (2), which

poses the question ‘How well does the model cope with unseen

data, at new times and/or locations?’ Because the data is

separated in location or time, it is much less likely that

significant correlations will occur. Testing against these data

shows how the model would likely generalise to new

environments, without further tuning.
5.2 Performance of ResNet-50

In this section we present detailed performance analysis of

the model architecture with the ResNet-50 backbone. Our

investigations in § 5.4 later illuminate properties of the data

that lead to performance limitations in the model.
5.2.1 Performance on the internal data
We first measured the performance of the trained model by

testing against the internal validation data. Figure 8 presents

three confusion matrices created at confidence thresholds

sthresh = 0.1, 0.5 and 0.9, along with precision-recall curves for

each class of object.

Confusion matrices are a valuable diagnostic tool, pointing

to how and why a detector might be producing a particular

result. The matrix for a model with perfect recall would have a

diagonal where all values are 100%, meaning that all ground-

truth boxes for each class are detected and identified with the

correct label. Indeed, the matrix for sthresh = 0.5 (bottom-left)

displays excellent performance: well above 90% of objects are

correctly detected for most classes. The row for rays (RAY), for

example, has non-zero off-diagonal elements, indicating

correctly localised objects with incorrectly predicted labels. In

this case 2% of rays are incorrectly predicted to be turtles (TUR).
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FIGURE 7

Plot of Recall ( = True Positives All Detections ) versus IoUmatch threshold used to cross-match detections with ground-truth annotations. The
curve shows that recall remains reasonably stable over a range of IoUmatch thresholds from 0.1 to 0.4.
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Our confusion matrices also have an extra row and column

appended to them. The bottom row is used to encode entirely

spurious false-positive detections, while the rightmost column

records ground-truth boxes that were not detected (false-

negatives). At a low confidence acceptance threshold of sthresh =

0.1 (top-left in Figure 8 many spurious detections (false-positives)

are accepted and the bottom row of the matrix has significant

non-zero elements. Conversely, at a conservative confidence

threshold of sthresh = 0.9, most candidates are rejected, leading to

high percentages of false-negative values in the last column of the

matrix (top-right in Figure 8). Dolphins and swimmers have the

highest values here, indicating that the predicted confidence value

for these classes most often falls below 90% (i.e., the object

detector is most uncertain about these classes).

The bottom-right panel of Figure 8 presents the precision-

recall curves for each class. For object detectors the area under

the curve (AOC) is equal to the average precision (AP), which

can be used to directly compare performance between models

and classes. The mean average precision for the ResNet-50

model on the internal testing data is mAP = 96%.

5.2.2 Performance on the external data
The external data presents much more of a challenge to the

trained model. Videos in this dataset were sourced from the

same locations, but at well-separated times (Byron, Ballina,

Evans and Lennox beaches during late 2017), or from
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completely new locations (Forester, Broken Head, Angourie

beaches and South-West Rocks, during 2017/2018). Because

the data sample different conditions and environments, the

results of tests here will be much more representative of

performance in the field.

We measured the performance of our final trained model

against the external data and Figure 9 presents the confusion

matrix at sthresh = 0.5 alongside the precision-recall curves. It is

immediately apparent that the performance on the external data

is worse - as expected. We still see a clear diagonal indicating

reasonable overall performance and the mAP for the model is

51%, representing a fall of 45%. However, the degradation in

performance is not uniformly spread across object types. The

worst performing fauna here are the guitarfish, where 42% of

ground-truth boxes are misclassified as whaler sharks and 19%

vice-versa. Interestingly, whaler and white sharks are often

confused for each other, with 53% of white sharks classified as

whalers and 16% of whalers classified as whites. Also, 27% of

hammerhead shark boxes are confused for whalers. Note that if

we combined the whaler, white and hammerhead classes into a

single ‘dangerous shark’ class, 80% of boxes would be correctly

detected and labeled. We also see a large number of false-positive

identifications of white sharks at 25%. In the human object

categories, the performance of the model correctly detecting

swimmers is very poor with 59% being misclassified as surfers

and 21% not detected at all.
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FIGURE 8

Top row & bottom-left panel: Three confusion matrices for the final ResNet-50 backbone model created at confidence score thresholds of 0.1,
0.5 and 0.9. A common IoU threshold of 0.3 was used to cross-match ground-truth and detection boxes. The model was tested against an
unseen internal test set randomly split from the ensemble data. Each row in the matrix encodes how ground-truth labels (y-axis) were predicted
by the classifier (x-axis). The prominent diagonal shows that most objects were detected and labelled correctly. Off-diagonal elements show
when a particular class is mislabeled as another - an important diagnostic of why a model is failing. The bottom row of the matrix encodes
false-positive (spurious) detections, which are common when the score threshold is low. Note that the bottom row can have percentages
greater than 100, meaning that there are greater numbers of false-positives than ground-truth boxes. The right-most column shows false
negative detections - real objects that were missed by the algorithm. These are common when the confidence threshold is high as the model
rejects a high fraction of candidates. All rows, except FP, add to 100 percent. The mean average precision for the best fitting model is mAP =
0.96. Bottom-right panel: Precision-Recall curves broken down by class. The area under each curve gives the average precision for each class.
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5.3 Performance of MobileNet V1

Here we report the performance of the model based on the

MobileNet V1 network architecture. Note that the version of the

model deployed to the mobile device is compressed by

decreasing the floating-point precision at which the neuron

weights and activations are recorded. We find that this

operation has no significant effect on accuracy and the

following assessment has been done on a desktop-class GPU,

so a direct comparison can be made with the ResNet-50

backbone network.

5.3.1 Performance on the internal data
Figure 10 presents the confusion matrix and precision-recall

plot for the final MobileNet V1 model applied to the internal

testing data. Overall, the performance approaches the larger

ResNet-50 model, with a mAP of 93%, compared to 96%. The

major difference visible in the right-most column is that the

MobileNet V1 model produces more false negatives - real objects

not detected. Interestingly, surfers, swimmers and dolphins are

missed most often.
FIGURE 9

Confusion matrix (left) and precision-recall plot (right) for the final ResNet-5
cross-matching IoU threshold was set at 0.3 and confidence score thresho
harder and more realistic challenge compared to the internal data, as indica
the performance is still reasonable when seeking to distinguish between sh
are confused for surfers and white sharks for whalers over half of the time.
much less often the other way around (19%). Hammerheads are also somet
detected (21%). Analysis reveals that most of these issues are explained by b
testing data.

Frontiers in Marine Science 16
5.3.2 Performance on the external data
As expected, testing the MobileNet V1 model on the

demanding external dataset shows worse performance over the

internal data, with a mAP = 60%. However, this value is better than

the measured value for the ResNet model (mAP = 51%). Most of

the same error patterns are present in the matrix: confusion of white

sharks for whalers, 83% of swimmers misidentified as surfers and a

quarter of whaler sharks as guitarfish. However, only 13% of

guitarfish are erroneously classified as whalers and the

performance on hammerhead sharks is 9% better than the

ResNet-50 model. Again we see larger percentages of completely

undetected objects, appearing in the right-most column. Rays are

the dominant group here, with the model failing to detect 36% of

these animals. Dangerous sharks are detected at an accuracy of 78%,

which is similar to the ResNet-50 model.
5.4 Performance error analysis

In this section we investigate possible reasons for the issues

identified in §5.2 and §5.3, and highlighted in Figures 9 and 11.
0 backbone model applied to the external testing dataset. The
lds at 0.5 for optimum performance. The external data presents a
ted by the mean average precision falling to mAP = 0.51. However,
arks and other objects. Some general patterns are visible: swimmers
Guitarfish are misidentified as whaler sharks 42% of the time, but
imes confused as whalers, and swimmers are occasionally not
iases in the training data, or systematic differences compared to the
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5.4.1 Effect of object size
Figure 12 plots the confidence score versus geometric box size for

each prediction made by the best-fitting MobileNet V1 model on the

external testing data. All classes follow a similar relationship of

increasing confidence with larger object sizes. The detection

confidence drops rapidly below sizes of ~ 55 pixels, falling beneath

the acceptance threshold of sthresh = 0.5 at a size of ~ 45 pixels. The

figure also highlights correctly detected but misclassified objects, most

of which are smaller than 80 pixels in size. The scatter in confidence

for larger objects depends largely on data quality, which also varies

between object classes. Note that object sizes are normalised to a

1920 × 1080 px image size, leading to the recommendation that

objects should occupy at least 13% of the frame height for optimal

performance. A similar analysis for the ResNet-50 backbone network

indicates that most misclassified objects are smaller than ~ 95 pixels

and the confidence drops off below ~ 30 pixels.

The size-confidence relationship also satisfactorily explains

the false-negative objects in the right-most column of the

MobileNet V1 confusion matrix (Figure 11). Here, rays

swimmers and surfers tend to have sizes below the 55-pixel

size threshold, or are present in low-quality images (obscured,

confused or blurred objects).

5.4.2 False positive detections
Although MobileNet V1 exhibits few false-positives, the

ResNet-50 model shows significant numbers of spurious

detections classified as white sharks. On inspection of the

images, we find that they are almost all large areas of dark
FIGURE 10

Confusion matrix (left) and precision-recall plot (right) for the final MobileN
MobileNet V1 architecture performs similarly to RetinaNet 50, despite being
see that the MobileNet V1 model exhibits a few more false negatives (real o
whole, the network performs well on identifying dangerous shark species, w
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seaweed or submerged reef that occupy a significant fraction of

the frame (Panel (a) of Figure 13 shows an example). In these

cases, the issue likely derives from a bias in the current mix of

training data (see §3.3.2). As shown in Figure 6, there are a

disproportionate number of very large white shark boxes from

extreme close-up videos taken by the drone pilots. The model has

learned that the most appropriately class for large objects is ‘white

shark’. This underlines the importance of carefully normalising

distributions of key properties across classes in the training data.

One key innovation that led to a generally low false-positive

rate in or models was the deliberate inclusion of ‘negative’

images in the training data. These images contain no objects

of interest and enable the neural network to learn about

confounding background features, such as reefs, seaweed and

rocks. Models trained before including these ‘NEG’ frames

exhibited high numbers of spurious detections at beaches like

Byron Bay that have complex ocean environments. The negative

training images were chosen to sample a broad range of scenes

and lighting conditions at each beach. During deployment, best

performance will be obtained from models that are similarly

‘tuned’ to new and novel environments.

5.4.3 Incorrect label predictions
In general, both networks do very well at detecting and

localising objects of interest, but sometimes fail to predict the

correct labels. Further insight into the reasons for

misclassifications by both models can be gained by carefully

inspecting the properties of the objects that were mislabelled
et V1 backbone model applied to the internal testing dataset. The
more lightweight. Comparing this confusion matrix to Figure 8, we
bjects not detected) in the rightmost column. However, taken as a
ith a mAP = 0.93.
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FIGURE 11

Confusion matrix (left) and precision-recall plot (right) for the final MobileNet V1 model applied to the external testing dataset. As expected, the
measured performance is worse than on the internal dataset (see Figure 10), but still respectable, with a mAP = 0.60. Most of the same patterns
are visible in the confusion matrix compared to ResNet 50 (see Figure 9), except that MobileNet V1 does less well on smaller objects (e.g., rays).
Interestingly, guitarfish and hammerheads are more reliably identified compared to ResNet50, but this may reflect the longer (and slower)
training regime required for the Mobilenet V1 to converge

Purcell et al. 10.3389/fmars.2022.981897
with the highest confidence. We visually inspected the images

corresponding to off-axis diagonals in the confusion matrices

when the fraction of incorrect labels was over 10% (see Figure 9

and 11) discuss the results below.
FIGURE 12

Plot showing the relationship between detection confidence score and obje
fitting MobileNet V1 model. Detection confidence drops rapidly below a bo
= 0.5 at a size of ∼ 45 pixels. All classes follow a general relationship where
incorrect predictions are outlined in black, illustrating that the model tends
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The worst-performing class in both models is swimmers,

which are commonly mislabelled as surfers. All of these

swimmers appear ‘stretched out’ in the water, presenting an

elongated appearance that is very similar to a surfer lying on a
ct size (geometric average of the annotation box size) for the best-
x size of ∼ 55 pixels, falling below the confidence threshold sthresh
larger objects have more confident predictions. Markers for
to make mistakes on objects smaller than 80 pixels in size
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short board (see Panel (b) of Figure 13). The model is likely

identifying the ‘human shape’ features in the image to classify

the detection. Swimmers are a minority class in the training data

compared to surfers, meaning that adding more training images

of swimmers would help mitigate this issue.

White sharks are very commonly mislabeled as whaler sharks.

The images for the most confident erroneous detections show a

range of qualities: white sharks with both clear and disturbed

morphologies, present in a broad range of lighting conditions (see

Figure 13C). However, most detections have box sizes below 70

pixels making it likely that the issues stems from the size

mismatch between training and testing data. During

development, this difference in size distribution was more

extreme for earlier versions of our models and resulted in

correspondingly worse performance: more mislabelled white

sharks and greater numbers of false-positive detections.

Normalising the size distribution of the white shark training

data reduced both issues, but more work is needed to reach

parity with other classes.

One quarter of whaler sharks are misclassified as guitarfish by

the MobileNet V1 model. The worst examples show very similar

characteristics to training imagery for guitarfish: turbid water,
C

A

FIGURE 13

Four examples of the model making incorrect predictions on the external te
areas of seaweed have been identified as white and whaler sharks. Spurious
to appear in a single frame only. Panel (B) shows two swimmers that have b
elongated shape as surfers, with similar features. Panel (C) shows a white sh
in both models, likely due to differences in size distribution between the tra
mislabeled as a guitarfish due to its disturbed outline and surrounding shallo
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blurry or disturbed morphology and animals present in shallow

water over obviously sandy sea-bed (see Panel (d) of Figure 13).

Guitarfish are bottom-dwelling rays and such characteristics are

an intrinsic part of their environments. Improving these detection

statistics represents a significant challenge, however, guitarfish are

also a minority class in the training data and adding more

independent training imagery will be essential.

Finally, hammerhead sharks are sometimes identified as

whaler sharks, despite their very significant morphological

differences. This is a clear example of mismatch between the

training and testing data. The models fail to generalise on the

hammerhead class because of the small number of training

images sourced from only two locations (see Figure 4). Adding

more diverse training data is highly recommended.

In summary, most cases of mislabelled data have

significantly different properties to the average training image,

or are otherwise outliers in size or quality. The easiest solution

would be to collect a larger variety of videos that can be used as

part of the training data for future models. We discuss the

implications of this analysis in §7, after first placing it in context

by describing the mobile application and field trials conducted

during February-May 2020.
B

D

sting data. Panel (A) illustrates two false-positives, where submerged
detections such as these are generally rare in both models and tend
een mislabelled as surfers. Active swimmers tend to have the same
ark mislabelled as a whaler shark. This happens over half of the time
ining and testing data. The whaler shark in panel (D) has been
w, sandy environment.
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6 The mobile app and field tests

To demonstrate the utility of ML-enhanced shark detector, we

built a proof-of-concept mobile application that applied our

MobileNet V1 model to a real-time drone video feed. The

targeted deployment hardware for the app was the CrystalSky

Android tablet manufactured by DJI https://www.dji.com/au/

crystalsky. During 2018 - 2021 these were the dominant devices

used by SLS NSW to conduct shark-spotting drone flights. The

CrystalSky was chosen because of its very bright screen (2000

cd/m2), which was much preferred for viewing in the sunlit6

conditions often encountered on Australian beaches. However,

these tablets have a relatively slow processor and run a very old

version of Android (V 5.0, released in November 2014). The

newer DJI SmartController7, also deployed by SLS NSW, presents

only a modest speed increase and an update of the operating

system to Android V 7.0. Both devices lack hardware or software

acceleration for machine learning inference, making deployment

of even the lightweight MobileNet V1 model challenging.
6.1 Design of the mobile app

The DJIMavic 2 Enterprise8 drones deployed by SLS NSW can

be flown using just a hand-controller, however, a connected tablet

provides much richer information to the pilot. The tablet screen

can display a real-time 1080p video feed showing the view from the

drone’s main camera, overlaid with essential flight information.

The flight screen of our ML-enhanced app is presented in Figure

14 and is designed to mimic the basic look-and-feel of the native

DJI Go application9. The video image dominates the display,

allowing the pilot to focus on identifying interesting marine

objects. Graphical widgets in the top bar communicate the status

of the global positioning system (GPS) connection, radio signal

strength (controller connection, telemetry feed and WiFi) and the

remaining battery capacity. Widgets on the bottom of the screen

present a map view, a compass and information on distance, height

and speed. The app also provides on-screen controls to start and

stop video recording, or take photographs, and buttons to

automatically fly the drone home and land.

Beyond this standard interface, we augmented the video feed

display with a new overlay showing the results of the object

detector. Detected objects are annotated in real-time with
6 https://www.dji.com/au/crystalsky.

7 https://www.dji.com/au/smart-controller.

8 https://www.dji.com/au/mavic-2-enterprise.

9 https://store.dji.com/guides/dji-go-4-manual/.
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rectangular bounding boxes, predicted labels and detection

confidence scores (e.g., the white box shown in Figure 14).

6.1.1 App development and functionality
The app was developed in Android Studio10, employing the

DJI Software Development Kit11, V 4.15 to build the flight

interface and the Tensorflow Lite12 library (V 2.5) for

performing object detection inference. The DJI SDK provides

many pre-packaged flight widgets for Android and manages the

connection to the drone and controller. However, apps that

make use of the SDK must register with DJI servers via an

internet connection the first time they are deployed after

installation on a new device.

The object detection system was implemented to run in a

background process that runs concurrently with the video

decoding system. During operation, the detector grabs the

latest available frame, pushes it though the neural network,

applies non-maximum-suppression and confidence filtering to

the results, and updates the detection box overlay shown to the

user. Processing each frame takes of order ~ 500 ms on a

CrystalSky CPU, meaning that the detection step is only run

on one frame in 10 or 15. This is perceived by pilots as a slight lag

in the boxes drawn on the screen compared to the location of a

moving target - only an issue if the video scene is

panning rapidly.
6.2 Model performance in the field

In order to assess the performance of the MobileNet model

running on the CrystalSky tablet compared to a GPU-

accelerated desktop, we captured the inference output in real

time13. Each box that was drawn on the screen was also captured

in a CSV file, with information on time, bounding box

coordinates, predicted label and confidence recorded.

Unfortunately, the time stamp saved was local to the

CrystalSky, which in the field proved to be unreliable. This

meant that it was not possible to use time-stamps to accurately

co-register the app-based predictions with the equivalent

desktop-based predictions (i.e., when the model was later

applied to the recorded video by processing on a desktop

computer). Instead, we treated the time stamps as an estimate
10 https://developer.android.com/studio.

11 https://developer.dji.com/mobile-sdk/.

12 https://www.tensorflow.org/lite.

13 Due to time and technical limitations, the version of Mobilenet V1

deployed to the prototype Android application was a ‘reduced width’

model, with a = 0.75.
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FIGURE 14

Screenshot of the mobile application flight screen as seen on a DJI CrystalSky Android tablet. The top bar includes information on (from left to
right), flight status, GPS signal lock, GPS signal strength, telemetry signal strength, video signal strength, WiFi connectivity of tablet, drone battery
status and controller connection status. The widget on the right hand side exposes camera settings and allows the user to record videos, or take
a pictures, that are saved to the drone’s on-board storage. On the left hand side are controls to command the drone to land (upper button) and
return to home (lower button). Along the bottom of the screen is information on drone location and movement. From left to right: map widget,
compass/heading widget, distance from controller, height, horizontal speed and vertical speed. The deep learning model has identified a boat
on the current frame and annotated it with a white box and label ‘BOA 65%’, indicating the confidence of the detection. Note that the location
of the box and the boat do not coincide exactly due a short time lag between detecting the boat and drawing the box.
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and roughly aligned the two prediction time-series. We then

directly compared the location of boxes within the video footage

to find as close a match as possible, taking into account the

inference lag (~ 0.5 s) introduced by our prototype code. Because

of these difficulties in accurately matching outputs, we provide

only qualitative results comparing the performance of the model

in the field to a desktop implementation.

Overall, we found the outputs to be similar, with boxes

reliably drawn over a target animal, together with the correct

classification successfully achieved on most frames. However, we

noticed that the mean confidence score was lower for the model

run on the mobile device (67%), compared to the desktop (77%).

We stress that these numbers should be compared as a guide

only due to the differences in how candidate predictions were

processed on the mobile device compared to the desktop

computer. We also noted that both models had similar levels

of false positive and false negative detections, which were greatly

reduced after the introduction of ‘negative’ fields into the

training data. This gives us confidence that the final

MobileNet V1 model will be a useful tool in the field and the

performance of desktop and mobile models can be brought

to parity.
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7 Discussion and future work

The results presented in §5 and §6 show that ML-driven

object detection models can do an excellent job of distinguishing

shark species - if they have been trained using an accurately-

labelled, diverse and well-normalised dataset. Figures 8 and 10

illustrate the likely performance of moderate and small-sized

neural networks (ResNet-50 and MobileNet V1, respectively)

once they have been tuned to a location and season. However,

the drop in performance on the external testing data (Figures 9

and 11) also shows that the current archive of video footage is far

from ideal. The image ingest size and network architecture of

both models impose fundamental limitations on the size of

objects that can be reliably detected. The key lessons to be

learned from this study are as follows:

From the perspective of the network, not all species are

created equal. Neural network object detectors mimic human

vision systems, so this is an obvious point. Just as expert observers

sometimes struggle to distinguish between shark species, so do

neural networks, and for the same reason: the differentiating

features of similar species are obscured when data quality is

poor. A good example of this is the confusion between whaler
frontiersin.org
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and white sharks when the turbidity or surface distortion is high,

when the animals are deep in the water column, or simply appear

small in the images. A detailed analysis of the factors affecting the

performance of the neural networks is outside the scope of this

work, however, we point to the comprehensive study by Dujon

et al. (2021) as an example of how such analysis could be

conducted. This would require a carefully designed data

collection campaign that measures confounding variables such

as water turbidity, sun glitter and animal depth.

The angular size of targeted objects is a limitation for all

networks and architectures should be chosen appropriately.

While the ResNet-50 and MobileNet V1 backbone

architectures performed very well in this study, smaller objects

are less reliably detected and labelled by both. This effect is

greater for our implementation of MobileNet V1, leading to a

steep drop-off in confidence for objects smaller than ~ 55 pixels.

For best performance, objects should be greater than 80 pixels in

size. For example, to guarantee a reliable identification a 2 m

shark, a Mavic 2 Enterprise drone would need to be operating at

an altitude of 25 m14. This effect was experienced first-hand

during the trials of the prototype mobile application run by SLS

NSW in early 2020. Based on this, we recommend that pilots can

fly at a cruising altitude of 50 m, where we expect smaller objects

to be detected, but not necessarily correctly classified (see Figure

12). Once an object has been detected and the pilot decides

further investigation is warranted, the drone should drop to a

height of 25 m for a reliable classification. A custom version of

MobileNet V1 with a native 1080p ingest resolution would

significantly improve the sensitivity to smaller objects, but we

leave this for future work.

A diverse and well-normalised training dataset is crucial.

The major limitation on detector reliability is imposed by the

small sample size for certain object classes. This can also be a

problem for classes with large numbers of boxes that are

extracted from only a few videos, or from drone flights that

sample a narrow range of environmental conditions. In these

cases, the training data will not be representative of the full

gamut of conditions encountered in the field. Managing and

augmenting the distributions of training data properties is the

most critical step in a supervised machine-learning workflow,

with the largest impact on the real-world performance (see the

movement for Data-Centric AI espoused by Andrew Ng - Ng,

2021). One promising approach to mitigating the class

imbalance problem is to generate realistic synthetic data by

using generative adversarial networks (GANs). In their review,

Sampath et al. (2021) suggest that a blend of real and GAN-

generated images have enormous potential to increase

performance, especially if combined with autoencoders to

perform feature-space manipulations.

A robust end-to-end data collection system is required to

guarantee high quality data. Harvesting data during the 2020
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drone trials was a very labour-intensive process. Videos were

copied from high-capacity memory cards and manually tagged

with meta-data (e.g., location and date), before being added to

the data archive. Unfortunately, the contracted pilots recorded

almost all videos at low resolution, despite the flight checklist

and trial protocol specifying ‘4K resolution only’. In addition, the

video data for an entire beach location was lost and presumed

destroyed. Access to a significant tranche of high-resolution data

would have allowed us to better correct the effects of distribution

shifts between classes (e.g., the size biases in the white shark data

seen in Figure 6).

The data preparation and model training pipeline must be

optimised for fast turn-around times. The pipeline developed for

this work is designed around running multiple experiments in a

research workflow. Discounting the labelling process, the time

required to prepare data and train a model is approximately five

days. This is also a manually driven process, requiring a user to

initiate tasks in a sequence. A production system needs to be

fully automated and significantly faster: continually ingesting

new data, training new models on a daily basis and providing

instant access to reports of model performance and system

health. The system should also allow multiple parallel

workflows and offer a version control system for both datasets

and models. Environmental conditions will drift over time,

leading to a drop in system performance, so the challenge is to

iteratively update models to track this drift. The deployment and

management of ML-models is now recognised as an essential

service known as ML operations, or ‘MLOps’. For excellent

overviews see Sculley et al. (2015) and Paleyes et al. (2021).
7.1 Vision for the future

We believe that ML-driven shark species detectors will be

excellent decision-support tools for beach managers in the very

near future. The technology is already changing the way

ecologists survey marine fauna (e.g., Butcher et al., 2021;

Dujon et al., 2021; Jenrette et al., 2022; Marrable et al., 2022;

Zhang et al., 2022; Shi et al., 2022). Humans will always need to

be included in the decision loop, but the human role will change

as the ML models become more reliable and flight systems

become more automated. Initially, beach managers will be

guided by the results of the ML model, but will be aware of

how the model degrades in poor conditions and will fold this

knowledge into their decision-making process. Over time, new

data will sample unexplored parameter space and - if managed

correctly - the system will learn to make better predictions,

earning trust from experts and users alike.

Note that the system developed during this work represents

a ‘no-frills’ baseline and there are a myriad of ways in which each

component could be improved. For example:
frontiersin.org

https://doi.org/10.3389/fmars.2022.981897
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Purcell et al. 10.3389/fmars.2022.981897

Fron
• Pre-processing the video imagery to enhance salient

features of sharks (see, for example, the image-

enhancement algorithm of Sun et al., 2022).

• Using active learning loops while training, which force

the network to concentrate on the most difficult

misidentified examples.

• Introducing time-domain information, either before

inference (e.g., by selecting the best frames in a time

window), or during inference by using a time-aware

network that can extract information over a series of

frames (e.g., recurrent neural networks, or attention

layers Shi et al., 2022).

• Making the algorithm aware of hierarchical labelling

structures and taxonomic relationships (e.g., Zhu and

Bain, 2017).

• Exploring a wider range of network architecture and

optimizing the training hyperparameters.

• Automatically characterising the properties of new data

when adding to the data archive and continuously

creating balanced training datasets.

• Using generative ML algorithms to carefully create

artificial data to fill sparsely sampled categories or

environmental conditions (see Sampath et al., 2021).
It is also important to note that the system presented here

makes predictions on a frame-by-frame basis and all of the

results reflect this. When deploying the model at the beach, we

recommend that the production version of the mobile

application employ object tracking to average the predicted

labels in time and filter for spurious detections. For example, a

simple IoU-based tracker has been demonstrated by Bochinski

et al. (2017; 2018) to work extremely well for CNN-based object

detectors with high frame rates. Presenting the user with the

most common label in a short time window will mean that an

occasional incorrectly predicted label will not be visible. An

experienced user will also be capable of assessing detection

quality and will naturally give more weight to labels generated

when the conditions are better. For example, a blurry white

shark deep under the surface may be labeled as a ‘whaler shark’

initially, but the label may change to ‘white shark’ as the animal

approaches the surface and its true shape becomes apparent.

7.1.1 Towards full automation
Reliably automating the detection and identification of

marine objects not only offers the potential to alleviate some

of the human error in shark-spotting (Brack et al., 2018), but

creates opportunity to use more advanced drone platforms that

can run surveillance autonomously, and alert beach authorities

when a potentially dangerous shark is detected. Recent

technological developments have allowed such autonomous

drone platforms to be developed (i.e., drones that can operate

beyond line-of-sight from a drone enclosure without human

intervention). Aviation restrictions and associated costs with
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beyond line-of-sight operations have typically limited the use

case in ecological applications (Colefax et al., 2017; Angliss et al.,

2018), however, regulations are adapting to accommodate drone

autonomy (Merkert and Bushell, 2020). This rapidly evolving

space is anticipated to usher in a paradigm change in how

marine ecology is performed, delivering an automated near-real-

time census of marine faunal populations (see also the review by

Butcher et al., 2021).
8 Summary

In summary, we have systematically investigated the ability

of modern machine learning algorithms to correctly detect and

identify species of sharks and other fauna in aerial imagery from

drones. We built a research software pipeline to facilitate the

creation of labelled data, train instances of machine-learning

models and analyse their performance. We also deployed a

quantised model to an Android OS mobile device in a

prototype application that performed inference on a live video

feed. Our key results in this work are:
1. The RetinaNet object detection model, using both

ResNet-50 and MobileNet V1 backbone architectures,

displays excellent performance (mAP ≈ 95%) at

distinguishing between shark species when tested on

an internal testing dataset. In ideal conditions, and with

appropriate training data, these model architectures will

be highly reliable for finding and tracking marine fauna

and other objects.

2. Tests performed on challenging external data give a

better indication of true performance in the field. We

find that the mean average precision of the MobileNet

V1 model falls to mAP ≈ 60%, however, dangerous

sharks are correctly detected 80% of the time. The drop

in performance suggests that the models need to be

carefully ‘tuned ’ to new beach locations and

environmental conditions.

3. Most of the performance issues identified via testing on

the external data can be traced back to biases,

imbalances or distribution shifts in the training data.

We identify the correction of these issues as the best way

to improve model performance in the future. The

current labelled data, drawn mostly from the NSW

DPI Phase 3 and 4 Drone Trials, are not ideal for

training a highly-accurate shark species classifier. New

high-resolution data should be gathered to sample rare

classes, new beaches and a wider range of conditions.

Alternatively, useful artificial data could be created

using generative ML methods.

4. The false-positive rate is low for both models. During

development we found that robust sampling of a

dedicated ‘negative’ class was essential to achieving
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this result. This also means that both models will

function well to locate objects of interests, even if the

predicted labels are sometimes incorrect.

5. The reliability of detections dropped rapidly below a

characteristic object size for both models (~ 55 pixels for

our implementation of MobileNet V1). This is an

intrinsic property of each network architecture

combined with the ingest image size of the network.

We recommend that pilots fly at a cruising altitude of 50

m to initially detect marine fauna, but then drop to a

height of 25 m to secure a reliable classification.

6. The performance of a mobile application running real-

time inference on a live video feed is good enough to act

as a useful decision-support tool for beach managers

and ecologists.
We have shown here that ML-enabled tools offer significant

benefits when carefully deployed as part of a shark management

strategy. Our results show that they can attain high accuracies,

leading to greater reliability of shark-spotting from drones and

have the potential to automate the monitoring coastal health.

However, creating a trustworthy ML-enhanced shark-spotting

system hinges on gathering (or generating) a balanced dataset,

and likely requires an integrated MLOps pipeline for continuous

model tracking and tuning.
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