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There are different environmental pressures in coastal and inland wetlands
resulting in phenotypic variation among plant populations, which might be
related to epigenetic modifications. Phragmites australis is a widespread plant
in coastal and inland wetlands, and the phenotype of the population is selected
by salinity, but the reasons for the population differences in salt tolerance and
phenotype are unclear. We investigated coastal and inland P. australis
populations grown under two salinities and two manipulated DNA
methylation levels in common gardens. The plants were sprayed with 5-
azacytidine (DNA demethylation agent) regularly, and the physiological and
morphological traits of reeds were measured. Plant height, density, and basal
stem of reeds from different sources were significantly different and correlated
with soil conductivity of sampling sites (P < 0.05). Salinity significantly
decreased the biomass (37.04%, P < 0.05) and plant height (24.68%, P < 0.05)
of inland reeds but had no significant effect on coastal populations (13.48%). P.
australis responds to salt stress through phenotypic plasticity, and inland
wetland populations exhibit local adaptation to freshwater. Increased salt
tolerance in inland populations following DNA demethylation, particularly
biomass, plant height, and basal stems (increased 23.62%; 13.08%; 5.35%,
respectively), could provide more opportunities in adverse environments.
This study will provide important insights into the highly adaptive
mechanisms of the large non-model plant.
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Introduction

Coastal wetlands face increasing salinization, but this is not
happening in inland wetlands (Jacqueline et al., 2008; Zhou et al.,
2022). Plants growing in coastal and inland wetlands experience
different environmental stresses. Plants respond to heterogeneous
environments through phenotypic variation resulting from
genetic variation or epigenetic modification, since the dispersal
ability of most plants is limited (Nicotra et al., 2010). Spontaneous
new mutations in epigenetic variation, such as methylomes, are
more likely to occur than in genetic variation (i.e., DNA
sequences) (Herrera and Bazaga, 2010; Becker et al., 2011).
DNA methylation (the best-studied epigenetic mechanism in
plants) has been widely proved to be strongly associated with
adaptive phenotypic traits in natural plant populations (Platt et al.,
2015; Liu et al, 2018). Phenotypic variation related to fitness
should be subject to natural selection, which leads to population
differentiation among different ecological environments.
Epigenetic modifications, very similar to the DNA sequence, are
usually divergent in other plant species and populations.
Methylation alterations of populations associated with
morphological changes and adaptive genetic divergence were
detected in different habitats (Gao et al., 2010; Herrera and
Bazaga, 2010). Thus, DNA methylation variety might be
responsible for the phenotypic differentiation in natural
populations together with genetic variation.

Environmental stimulation could change DNA methylation
patterns in many species (Zhang et al, 2013; Thiebaut et al.,
2019). In different conditions, plant populations have specific
epigenetic (DNA methylation) loci which were inferred to have a
functional role in population differentiation. The adaptive
mechanisms of DNA methylation in stress responses are
reasonably well understood for model plants Arabidopsis
thaliana (Dowen et al., 2012; Schmid et al.,, 2018); for
example, regulated gene expression and DNA methylation in
the promoter play an important role in salt tolerance (Back et al.,
2011). However, the relationship between epigenetics and the
environment might vary from species to species in non-model
species. In the wild plant populations, the 5-methylcytosine of
Spartina alterniflora and Borrichia frutescens was significantly
correlated with salinity gradients (Foust et al., 2016). The
comparison of mangroves (Laguncularia racemosa) in salt
marsh and riverside showed morphological dissimilarities and
DNA methylation levels of polymorphism (Medeiros et al.,
2010). This relationship is consistent in environmental
variation and epigenetics related to water availability and
temperature adaptation in Allopolyploid orchids (Paun et al.,
2010). Methylation and direct environmental relations in stress
resistance, geographical distribution, and species differentiation
are still the focus of research.

Common reed (Phragmites australis (Cav.) Trin. ex Steud.)
is a cosmopolitan species with high phenotypic plasticity (Eller
et al,, 2017; Packer et al., 2017). Salinity is a significant selective
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factor in P. australis populations. With the salinity gradient,
morphological, physiological, or genetically different,
heterogeneous, various ecotypes were formed in the coastal
wetland and inland wetland (Zhao et al., 1999; Zhang et al,
2003; Zhuang et al., 2010). Many studies have found that salt
tolerance in P. australis was related to phenotypic plasticity and
genetic differentiation (Achenbach et al., 2013; Song et al., 2021).
It has also shown that methylation patterns of different ecotypes
of reed vary in saline-alkali meadow habitats in China, and
phenotypic traits were more closely related to epigenetic
diversity than genetic diversity (Liu et al, 2020; Qiu et al,
2021). However, it is still unclear whether the differences in
phenotypic plasticity of different populations of reeds in coastal
habitats are caused by DNA methylation.

The modified DNA methylation triggers phenotypic
plasticity and promotes rapid adaptation and transgenerational
inheritance (Gonzalez et al., 2016; Puy et al., 2021). In recent
years, artificial demethylation methods have been used to study
the significant effects of epigenetic modification on functional
traits, fitness, and ecological interactions. DNA demethylating
agent 5-azacytidine (5-azaC) was a direct inhibition of
methylation by inhibiting transcription and indirect
elimination of methyltransferase (Gurminder et al., 2000;
Bossdorf et al., 2010). Seed soaking methods in previous
studies have inside effects like lower germination and reduced
vigor and survival (Bossdorf et al., 2010). The novel approach of
spraying demethylation has shown a good demethylation effect
with less harm to plants (Puy et al., 2018; Miinzbergova et al,
2019). DNA methylation is unstable, and environmentally
sensitive, high-salinity environments induce genome-wide
DNA hypermethylation, indicating robust epigenome
regulation in the presence of a stressor factor (Miryeganeh
et al., 2021).

In this study, we compared the salt tolerance of coastal and
inland populations of P. australis. We quantify trait variation of
two populations transplanted to two salinity conditions with
specific demethylation treatment. In our study, we aimed to
investigate (1) whether the P. australis growing in inland and
coastal areas are ecophysiological traits different in response to
salinity and (2) whether DNA methylation variation plays a role
in population ecophysiological traits variation in salt adaptation.

Materials and methods
Plant material and cultivation

We collected rhizomes of P. australis from coastal wetland
Yellow River Delta and inland wetland Mata Lake (Figure 1).
The Yellow River Delta and Mata Lake Wetlands are located in
eastern China. Yellow River Delta is the mouth of the Yellow
River and is the youngest estuarine wetland in China. Seawater
erosion makes the soil and groundwater contain more soluble
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FIGURE 1

Map of China (A) highlighting the location of the inland and coastal wetland populations of Phragmites australis (B) collected and used in our

experiment and the location of common garden (Fanggan)

salt, and the soil salinization is serious (Valladares et al., 2014;
Guan et al., 2016). Mata Lake is formed by the convergence of
seven rivers and is known as a typical inland shallow lake
wetland in northern China. Mata lake is low-lying, with 1,334
ha of reed fields, and has good natural ecological resources
(Li et al., 2007). Rhizomes were collected in each wetland as
experimental materials. We also collected the soil samples with a
five-point sampling method for pH, soil conductivity, and
nitrogen and phosphorus content measurement at each site.
Soil conductivity was measured by a conductivity meter (FE38,
Mettler-Toledo, China). Soil pH was measured by a pH meter
(FE28, Mettler-Toledo, China). The total soil N content (%) was
measured by Kjeldahl determination (K9860, Hanon, China).
The full P content (%) was measured with the molybdenum
bismuth photometer and UV spectrophotometer (UV-2550,
Shimadzu, Japan), and the leaf ratio of nitrogen to phosphorus
was calculated.

The rhizomes were taken back to the greenhouse at
Shandong University Fanggan experimental station (36°26'N,
117°27'E). They were propagated in shallow sand for 4 weeks to
preculture and initiate adventitious shoot at the stem nodes. The
adventitious shoots were planted with rhizome when 15-20 cm
high into 16-1 pots (20 cm in diameter and 25 cm in height) filled
with local river sand and 10 g of slow-release fertilizer per pot
(Peters Professional NPK 20-20-20 + Fe, The Scotts Company,
USA). The seedlings were sufficiently watered with tap water
twice a week in the first month and then once a day. The average
temperature of the greenhouse was 25.75°C, and humidity was
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73.23% during the experiment. The pots were placed in random
order to minimize undesired position effects.

Demethylation and salt treatments

The experiment was a 2 x 2 x 2 factorial design with the
factors being “origin” (coastal, inland), “demethylation” (0, 100
pumol), and “salt” (0%o, 20%o). There were five samples from
inland wetland and 10 samples from coastal wetland, a total of
60 pots. The collected plants were preadapted for 1 month with
daily cultivation in the greenhouse. The experiment ran for 106
days after that, from 1 June 2019 to 30 September 2019. Each pot
reproduced asexually multiple plants from the first reed
seedlings and rhizomes during the experiment.

The DNA demethylation process started on 30 June 2019,
and the plants were divided into two chambers, separated by
plastic sheets. The plants in one chamber were sprayed with 100
umol 5-azacytidine solution of DNA demethylation agent and
mixed with 2 ml of surfactant (silicone additive), and the other
plants in another chamber were sprayed with water and 2 ml
surfactant as a control group (Puy et al., 2018; Herrera et al,
2019; Miinzbergova et al., 2019). The treatment was carried out
in the later afternoon every 2 days from June 30 to August 10.
The plants were sprayed around to ensure that each leaf
was sprayed.

The salt treatment was added with 40 g salt (NaCl) on July
30 to half pots of each clone both in the demethylation group
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and in the control group. The salt treatment continued until the
experimental harvest time, when additional salt was added and
watered normally.

Measurement of growth traits

The highest six plant heights in each pot were measured
every month. We measured five shoots’ base diameters for mean
value and counted the shoot number in each pot at the end of the
experiment. The flowering rate and aphid-infected rate were
determined as cumulative flowering number and aphid-infected
shoot number divided by the total shoots in each pot,
respectively. Finally, all pots were harvested and dried at 85°C
to constant weight with an oven for dry stems, leaves, flowers,
and belowground biomass.

Measurement of leaf traits

Three fully developed leaves were chosen in each pot before
harvest for specific leaf area (SLA) analysis. The leaves were
scanned with a scanner (Canon E560) and dried to constant
weight. The leaf area was determined by Image] ver. 1.52. The
specific leaf area was estimated based on the ratio of leaf area to
leaf dry mass.

Leaf chlorophyll parameters were measured at the end of
experiment. Five circle pieces were sampled with a hole puncher
in fully expanded and healthy leaves and measured for fresh
weight. After extraction by 95% ethanol (v/v), the concentrations
of leaf chlorophyll a and b and total chlorophyll (mass-based)
were calculated as below (Lichtenthaler, 1987).

Chl, = 13.95 A665 - 6.88 A649

Chl,, = 24.96 A649 - 7.32 A665

Chl = Chl,+Chl,

To assess the differences in water availability of the leaf, the
relative water content (RWC) was measured. Three pieces of
leaves were cut out in each pot, and the fresh weight was weighed
as Wy with the analytical balance. The leaves were placed in a
sealed ziplock bag and soaked for 24 h in tap water, and the
leaves were gently blotted and quickly weighed as the saturated
water content (W,). The leaves were dried at 85°C to constant
weight with an oven (48 h) for the dry weight (Wy).

RWC (%) = (W - Wo)/(W, - Wy) x100%

Photosynthesis was measured on the third youngest fully
expanded leaf with LI-6800 (Portable Photosynthesis System,
LICOR, USA) in each pot, including net photosynthetic rate
(Pn), respiratory rate (E), and stomach conductance (g). It was
conducted on the morning of a sunny day at a 500-ml s * flow
rate with 70% influx air relative humidity, 400 ppm CO,
concentration, and 1,800 mol m™* s™' PAR. We measured the
gas exchange parameters four times on July 30 (at the
demethylation for 1 month), August 1 (on the first day after
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salinity treatment), August 8 (at the end of demethylation and
continuing salinity treatment), September 17 (before the final
harvest), separately.

Measurement of phenotypic plasticity

The phenotypic plasticity indexes (PPI) of traits were
calculated, and the calculation formula was as follows: PPI =
(Vinax -
value of the trait, and V,,;, represented the minimum value of

Vmin)/Vinax Where V... represented the maximum

the trait. PPI values range from 0 to 1, where 0 means no
plasticity and 1 means maximum plasticity.

Data analyses

We tested the effect of origin, salinity, demethylation, and all
their interactions on all the variables with three-way ANOVA.
Multiple levels of main effects were compared by Duncan’s
multiple-range tests at the 5% significance level. The effects of
5-azaC, salinity, and their interaction were tested as three
variance sources, using the tray mean squares as error term.
The relationship between soil characteristics and plant traits was
analyzed by simple linear analysis. Data analyses were
performed using the SPSS 22.0 software package (SPSS Inc.,
Chicago, IL). Figures were drawn using Origin 9.0 software
(OriginLab Co., Northampton, MA).

Results
Growth traits

Salinity significantly decreased total biomass (inland 37.04%;
coastal 13.48%) and aboveground biomass (Table 1; Figure 2A).
The biomass of the stem, leaf, and flower decreased significantly
with the increase in salinity, and the ratio of root to shoot was
significantly increased (Table 1; Figure 2B). Different origins
mainly produced significant differences in underground biomass
and root-to-root ratio. The underground biomass of inland is
greater than that of coastal. DNA demethylation increased the
biomass of inland and coastal populations, but it was not
statistically significant. There is no interaction with biomass
between salt, source, and demethylation (Table 1).

After adding salt, the plant height decreased in the
demethylation and no demethylation groups and especially
significantly decreased in inland population. There were
significant differences in density, diameter, and height between
reeds from different origins, but the changing trends of plant
height, diameter, and density were different. The inland
population had greater plant height and basal diameter than
the coastal population (Table 1; Figure 3). The density of reeds
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TABLE 1 Three-factor analysis of variance for phenotypic variance of different Phragmites australis origins with salinity and

demethylation treatments.

Parameter Source of variation
Salinity  Origin = Demethylation  Salinity x origin  Salinity x De  Origin x De  Origin x salinity x De

Bleat 12.176* 0.042 1.683 2.926 0.128 1.558 0.007
Bitem 12.394%* 1.568 1.952 0.703 0.182 0.493 0.049
Biower 6.685* 4.496* 0.001 0.543 0247 0.607 0.047
Bpetowground 1.742 9.333%* 1.297 3.338 0.447 0.002 0.161
Biogal 9.104** 2.880 1.845 1.929 0255 0333 0.061
R/S 18.832°%  11.166* 0.012 0.042 0.157 0.830 0.031
Height 20276 6.675* 0.137 1.339 0358 2539 0333
Density 0.009 23.709%% 1.340 0353 0.608 0.589 0472
Diameter 1.021 94.220%%¢ 1.230 2342 0915 0311 2142
Flower rate 16.042%% 2321 0.108 0314 0.656 0572 0.011
Aphid rate 0.015 0.049 0.802 0.119 0.969 0.462 5.075
SLA 1.014 1.934 0.511 0.546 0.051 0.833 0318
RWC 0292 0.013 0321 0.028 0.226 3.694 0.200
Chla 0.421 0.246 0.824 0.000 0.029 0.001 0.031
Chlb 0.840 0.019 0.684 0.303 0.011 0.149 0.011
E;a0 1.303 2.841 2.944 0.814 0.004 0518 1.409
Az 0.655 0.169 11.888* 0.002 0.051 0.262 0.018
8730 0423 4.999* 2.014 1.436 0.071 1.026 2200
Eg, 0329 0.888 3.396 0.027 0.033 6.512* 1.242
Ag, 0935 0.075 5.847* 0.000 1444 2292 0.046
s 0913 0.021 0.369 0.037 0293 6.878* 0.540
Egs 7.091 0.066 3.586 0.090 0.236 0.192 1.071
Agg 3.653 0.545 1.251 0.009 0.033 0.402 0.021
uss 8.048* 0.005 3.394 0.120 0.008 0.484 1.368
Eo 16 4.703* 1.574 0.801 0.056 10.579* 0312 2638
Aose 0383 3235 1.075 0.013 2.068 0.902 0.067
.16 5.644* 2293 1.203 0327 12.005% 0.801 3933

Bieaps biomass of leaf; By, stem biomass; Bgower, flower biomass; Byelowgrounds belowground biomass; Byl total biomass; SER, shoot elongation rate; SLA, specific leaf area; F,/Fy,
maximum quantum yield; J ;. maximum electron transport rate; Chl,.y, relative chlorophyll content; g,, stomatal conductance; subscripts represent different dates; Leaf X, nutritional

element and ion content in leaf; Root X, nutritional elements and ions content in the root.

Statistically significant values in bold: F ratios are significant at **P < 0.001; **P < 0.01; *P < 0.05.

was lower in inland populations than coastal populations.
Density and basal diameter were significantly negatively
correlated Table 2 (r = 0.565, P = 0.000, n = 56). Plant
density was positively correlated with soil electrical
conductivity Table 2 (Pearson correlation, r = -0.599, P =
0.000, n = 56), while reed base diameter was negatively
correlated with soil electrical conductivity at the sampling site
Table 2 (Pearson correlation, r = -0.538, P = 0.000, n = 56). There
was no significant difference in specific leaf area at the end of the
experiment. Except for the flowering rate, the plasticity index of
all phenotypic traits of the coastal population was higher than
the inland population (Figure 4).

The flower biomass, flowering number, and flowering rate
were significantly reduced by the influence of salinity (Table 1).
There were also significant differences in flower biomass of reeds
from different origins. The flowering number of the coastal
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population was larger than that of the inland population, and
the number of aphids in the coastal population was significantly
larger than that of the inland population.

Leaf traits

The demethylation treatment significantly reduced the
photosynthetic rate, and the transpiration and stomatal
conductance of reeds from inland origin was greater than that
of coastal reeds (Table 1; Figure 4). The photosynthetic rate
decreased the next day after salt addition, and the transpiration
rate and stomatal conductance were affected by the interaction
between the origin and DNA demethylation. After 1 week of salt
added, the photosynthetic transpiration stomatal conductance
was significantly reduced, and the stomatal conductance was
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affected by demethylation. After 45 days of salt treatment, the
difference in photosynthesis rate disappeared. Transpiration and
stomatal conductance were affected by the interaction of salt and
demethylation. At the end of the experiment, there was no
significant difference in leaf chlorophyll and relative
water content.

Phenotypic plasticity

The phenotypic plasticity index of biomass (0.3-0.8) was
higher than other parameters (0.1-0.4; Figure 4) in both inland
and coastal origins. The PPI of root biomass, stem root biomass,

leaf root biomass, and total biomass, plant height, density, and
basal stem in the coastal group were all higher than that in the
inland group (Figure 5,).

Discussion

Differential response of P. australis
populations to salinity

In our common garden, we found that the inland population
had a higher fitness (biomass-based) in 0%o salinity; the biomass,
shoot height, and diameter of the inland population were

TABLE 2 Correlation between soil electrical conductivity and Phragmites australis diameter and density.

Factor EC

EC r 1

Sig. - 0.000

N 56 56

Diameter r -0.538**
Sig. 0.000
N 56

Density r 0.599**
Sig. 0.000
N 56

Diameter Density
-0.538** 0.599**
0.000
56
1 -0.565%¢
- 0.000
56 56
-0.565%* 1
0.000 -
56 56

Statistically significant values in bold: F ratios are significant at **P < 0.01.
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negatively affected by salinity. This result showed an advantage
of the inland population in freshwater habitat; this advantage
means a local adaptation to freshwater. In addition, the inland
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(Hanganu et al., 1999; Song et al.,, 2021). We determined the
relationship between morphology and soil conductivity of the
sampling site through correlation analysis. The wild population
of P. australis has a phenotypic differentiation between
freshwater and saltwater. The long-term environmental
differences in the field conditions make the adaptability
differences between the populations, which has also been
found in other studies (Hanganu et al, 1999; Burdick and
Konisky, 2003; Zhang et al., 2003).

There were no significant effects on fitness and traits in the
coastal population before and after salt was added, indicating
no local adaptation to salt. All populations increased
underground biomass to increase water absorption and
maintain osmotic pressure under salt stress. Photosynthesis
decreased in the short term and maintained a normal level after
a long-term response. Reduced flowering rate showed a delayed
reproductive period. In our previous studies, it was believed
that the salt tolerance of P. australis was mainly affected by
phenotypic plasticity (Song et al., 2020; Zhou et al., 2021). In
this study, P. australis adjusted the phenotype in the salt
environment; however, they can still maintain the physiology
without dying, confirming that phenotypic plasticity can
increase the ability of the P. australis population to adapt to
the salinity environment. Although the importance of
phenotypic plasticity and local adaptation differs in
populations, the adaptive phenotypic variation resulting from
the two strategies together influences the actual performance of
the plant.
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DNA demethylation resulted in higher biomass and shoot
height in the inland population after adding salt. The significant
difference caused by salt was weakened after demethylation
(Figures 2, 3A), and this alteration was not found in the coastal
population. The same trends were found in the diameter,
flowering rate, and photosynthetic rate of P. australis. These
showed that DNA demethylation enhanced the salt tolerance of
the inland population. It may be that the higher level of
methylation makes the plant not tolerant to salt. In a recent
study, it has been confirmed that hypomethylation leads to more
significant activation of salt stress-related genes (jasmonic acid
synthesis and signal transduction genes) in tetraploid rice,
enhancing its salt tolerance (Wang et al.,, 2021). Previous studies
have found a correlation between the response of epigenetic
regulation to specific environmental factors and phenotype
through amplified fragment length polymorphism (AFLP) and
methylation-sensitive amplification polymorphism (MSAP)
(Gurminder et al., 2000; Gao et al.,, 2010). The correlation
between 5-methylcytosine and phenotypic plasticity has also
been proved (Fieldes et al., 2005; Gao et al,, 2010; Zhang et al,
2013). This experiment further proved that epigenetic variation is
reversible; this could adjust the salt adaptation of P. australis.
Although the plants were pre-cultured, the maternal effects and
genetic diversity might confound the results; more epigenetic
modifications cross-generational experiments are still needed.
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Experimental DNA demethylation did not affect the traits of
P. australis at the end of experiment, except for short-term
photosynthesis damage. Spraying DNA demethylation agent 5-
azacytidine changed the salt tolerance among reed populations
from different origins but was not harmful to the plant. 5-
Azacytidine has a broad cell expression cytotoxicity when less
than 100 pmol, has no targeted and whole effect on plant
performance, and is expected to increase the gene expression
and transposon variation of transposons (Klaas et al., 1989;
Griffin et al.,, 2016). A similar method used found considerable
intraspecific heterogeneity in the phenotypic and ecological
correlation of plants (Herrera et al., 2019). In other studies,
DNA demethylation by seed soaking strongly reduced the
growth and adaptability of plants and delayed their flowering
(Bossdorf et al, 2010). The toxic effect of 5-azacytidine was
excluded from the experiment. Experimental DNA
demethylation is a useful and practical method to study the
importance of epigenetic modification of the genome for plant
response to the environment. For large plants, experimental
treatment dose and time should be considered.

Conclusion

Although phenotypic differentiation of populations occurs in
heterogeneous habitats and phenotypic changes may be associated
with DNA methylation, it has rarely been demonstrated that
changes in methylation lead to tolerance to induced stress.
Salinity and geographical origin had important effects on the
physiology and morphology of P. australis. The variation of shoot
height, density, and basal stem diameter of reed plants from the
different origins was related to soil conductivity; the population
from inland wetland showed a local adaptation to inland. Plant
biomass and plant height were affected by salinity, and
instantaneous photosynthetic response was also affected, but there
is no difference after long-term adaptation. All P. australis
responded to the salt environment through phenotypic plasticity.
The phenotypic changes observed in 5-azaC-treated plants led to
differences in morphological adaptation, which can provide more
opportunities for reeds in unfavorable environments.
Demethylation did not damage the plant traits. Collaborative
investigations of experimental DNA changes and molecular
methods should be used in plant experiments to understand the
epigenetic variation of plant populations adapting to
heterogeneous habitats.
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