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Theory, practice, and design
criteria for utilizing artificial
reefs to increase production of
marine fishes

Daniel J. Pondella II1*, Jeremy T. Claisse1,2 and
Chelsea M. Williams1

1Department of Biology, Vantuna Research Group, Occidental College,
Los Angeles, CA, United States, 2Department of Biological Sciences, California State Polytechnic
University, Pomona, Pomona, CA, United States
Increasing the production of marine fishes is a tractable goal with wide

socioeconomic and ecological appeal. Ecosystem restoration projects that

increase the amount of suitable habitat in an area and/or habitat quality enhance

both fishery production and ecosystem services. Fortuitously, there are a wealth of

studies documenting the specific examples of restoring these services from

successful artificial reef deployments. Considering the need to create future

structures in a variety of scenarios and locations, it is salient to summarize the

mechanisms through which increased secondary production occurs and the design

considerations. To achieve this objective maximizing ecological processes including

the provisioning of planktonic and epibenthic food resources and related trophic

pathways, and those associatedwith life-stage specific habitat use (e.g., recruitment,

juvenile survival, reproductive output) are critical mechanisms of productive reefs.

We synthesized this information by addressing the structural and ecological theory

of artificial reef design based upon physical attributes such as complexity, vertical

relief, habitat heterogeneity, and spatial scale.Within this frameworkwe summarized

the mechanisms that may be used to increase secondary fish production and

propose a general theory for optimization of these variables.

KEYWORDS

secondary fish production, habitat restoration, shelter, habitat complexity, habitat
heterogeneity, trophic pathways, ecosystem services
Introduction

There is no debate that marine resources are crucial for current and future

socioeconomic processes. Unfortunately, these resources have declined over time due to

a variety of stressors including the depletion of species at higher trophic levels, habitat loss,

pollution, and climate change, dramatically impacting marine ecosystems worldwide
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(Jackson et al., 2001; Worm et al., 2006). Reduced fishery stocks

and deterioration or loss of habitat, compounded by the

increasing socioeconomic need to access marine resources

highlights the theory that current secondary (fish) production

and services were below the potential, and certainly historical

potential, for marine ecosystems. While this theory is generally

not tested directly (i.e., manipulation and/or calculation of a

maximum versus current production potential), it has been

indirectly demonstrated and is at the core of a variety of fishery

management actions to improve stock sizes and sustainability

(Knowlton, 2021). Well-designed ecosystem restoration projects

increase the amount of suitable habitat area and/or quality,

enhancing both fishery production and ecological services.

Similarly, marine protected areas increase fishery stock biomass

within their boundaries (Claudet et al., 2008; Edgar and Stuart-

Smith, 2009), supporting this fundamental concept: current

production is less than potential production in marine ecosystems.

Ongoing macroscale alterations of marine habitats and the

implementation of infrastructure projects challenge us from a

variety of perspectives. For thousands of years ‘human-made’, or

as the literature primarily refers to them ‘artificial’ reefs, were

installed to enhance marine habitats and there are continuous

proposals for future implementation (Whitmarsh et al., 2008;

Seaman, 2019; Tickell et al., 2019; Bugnot et al., 2020). Optimal

artificial reef design is salient for deploying these structures to

adequately restore lost ecosystem services. Herein, we delineate

the theory and applicability of reversing or offsetting these losses,

synthesizing the current empirical evidence for contributions of

artificial reef habitats to local and regional ecosystems worldwide

and the mechanisms supporting this goal. These theoretical

constructs are essential for establishing design and evaluation

criteria for utilizing reefing technology to improve ecosystem

health and associated services.

Artificial reefs deployments have resulted in substantial

increases of local and regional fish and invertebrate

production. Johnson et al. (1994) found the rate of secondary

production for a reef fish assemblage on a quarry rock artificial

reef in southern California, USA was nine times greater than the

sand-bottom fish assemblage the artificial reef replaced (i.e., was

constructed on top of). Similarly, artificial reef habitat in

Delaware Bay, USA supported up to two orders of magnitude

higher secondary production (benthic macrofauna) per unit area

than the comparable soft bottom habitat it replaced (Steimle

et al., 2002). Large-scale artificial reef deployment assessments

provide evidence for regional increases of production in fishes

and invertebrates. In Japan, analyses of catch data revealed

regional increases in octopus production in response to

approximately 50,000 m3 of artificial reef habitat construction

(Polovina and Sakai, 1989). Following the deployment of an

artificial reef complex in Algarve, southern Portugal, Roa-Ureta

et al. (2019) analyzed 27 years of landings data to estimate the

regional carrying capacity (K) of two-banded seabream,

Diplodus vulgaris, increased by 35% (an additional 895 tons).
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This large-scale reefing effort comprised over 21,500 concrete

modules (small 3 m3 or large 174 m3) covering an area of 43 km2

(Santos et al., 2011). The Algarve artificial reef design focused on

adding habitat for high-value (€12–18/kg in 2011) juvenile and

adult fishes, which were targets of an artisanal fishery, to a soft

bottom area where this habitat was previously rare (Santos et al.,

2011). An economic analysis found revenues from fishing the

areas around this artificial reef complex was greater than at

control sites and catch rates and associated revenues had risen

consistently over a 15 year period following deployment of the

reef (Whitmarsh et al., 2008). Additionally, the artificial reef in

Algarve relieved pressure from natural reefs in the region by

redistributing fishing effort across a larger area (Leitao et al.,

2009). These researchers also emphasized the need for additional

fishery management regulations to prevent overfishing (Santos

et al., 2011; Roa-Ureta et al., 2019). Thus, increased regional

secondary production is achievable, but necessitates holistic

design strategies that incorporate local and regional ecological

processes, proper spatial scale and location, and socioeconomic

factors such as management.

Impacts of a given artificial reef project were typically

species- or taxa-specific (or even specific to a life-stage within

a species), because responses to artificial reef habitats depend on

species-specific functional attributes (e.g., diet, habitat use, life

history) (Leitão, 2013; Smith et al., 2015; Cresson et al., 2019).

Impacts were so diverse across taxa that predicting potential

effects for entire assemblages was difficult and therefore a ‘case-

by-case’ approach was generally more accurate (Brickhill et al.,

2005). In paired comparisons between natural rocky or coral

reefs and nearby artificial habitats (e.g., artificial reefs,

shipwrecks, energy infrastructure), fish density, biomass and

richness were often similar, demonstrating that artificial reefs

have the potential to mimic natural reefs, if that is the objective

(Paxton et al., 2020b). Most assessments of artificial reef designs

examining specific objectives concentrated on important focal

species (e.g., fishery or keystone species) and/or functional

groups (e.g., those with specific trophic roles or habitat use

patterns). Similarly, comparing reef success across ecosystems

was highly context-specific and necessitates an understanding of

regional goals as well as fine-scale biological and physical

processes. The goal of increasing local and/or regional

production is feasible, but a “one size fits all” approach is not

advised (Komyakova et al., 2019; Paxton et al., 2020b; Blount

et al., 2021).

Thus, a substantial amount of literature documented specific

effects of individual artificial reef deployments, the mechanisms

through which increased production occurred, and design

considerations for achieving these objectives. Recently there

has been more focus in the literature on the specific

mechanisms, sometimes referred to as “enhanced ecological

functions” (Glarou et al., 2020), that lead to increased

secondary production of fish on artificial reefs, even above

rates observed on natural reefs (e.g., Cresson et al., 2014a;
frontiersin.org
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Glarou et al., 2020; Rouse et al., 2020; Puckeridge et al., 2021).

These mechanisms provide benefits to individual species,

typically through provision of shelter and/or food supporting

survival or growth. While in some instances data were not

available to directly quantify regional or local secondary

production of fishes, evidence of these mechanisms, often in

the context of a focal species’ life history and behavioral ecology,

support an assumption that reefs were contributing to secondary

production. Yet, across ecosystems, there were consistent

elements in artificial reef design that support increased

secondary production and these criteria are useful for

planning, evaluation, and design of current and future projects

and have the potential to increase production on a regional scale.

We posit that the most tractable metric to evaluate ecological

services across habitats is secondary production.
Ecological process considerations of
reef design

Planktonic and epibenthic
food resources

A sizable proportion of the secondary production of fishes

and invertebrates in artificial reef systems is fueled through

planktonic resources, with a lesser proportion being supported

by macroalgae or detritus. In a stable isotope and diet study of

the largest artificial reef complex in the Mediterranean Sea

(RECIFS PRADO program), organic matter of pelagic origin

(i.e., phytoplankton and zooplankton) was the primary source

supporting the system through artificial reef resident fishes

feeding on sessile filter feeding invertebrates or directly on

zooplankton (Cresson et al., 2014a; Cresson et al., 2014b).

Similarly, a study of trophic pathways of fishes on a natural

reef system in Australia observed that planktonic resources

supported 60% of fishes, compared to approximately 30% by

macroalgae and 10% by detritus (Truong et al., 2017). Current

flow that delivers the associated flux of plankton and nutrients

are critical factors supporting secondary production and thus are

essential for overall performance. Therefore, understanding

trophic bottlenecks and maximizing planktonic flux is

necessary for increasing secondary production.

Zooplanktivorous fishes on artificial reefs are often the key

trophic link between zooplankton and the larger reef-associated

community (Bray et al., 1981; Cresson et al., 2014a; Holland

et al., 2021; Puckeridge et al., 2021). Schooling water column and

zooplanktivorous fishes were in greater abundance above higher

relief purpose-built artificial reefs in temperate Australia

(Puckeridge et al., 2021) and wrecks off of North Carolina,

USA (Lemoine et al., 2019), when compared to lower relief

natural reefs within each region. An Australian study directly

documented the trophic link between Bluespotted Flathead
Frontiers in Marine Science 03
(Platycephalus caeruleopunctatus), a resident benthic ambush

predator, feeding on pelagic forage fish above the high relief

artificial reef modules (Holland et al., 2021). This mechanism

has also involved nutrient transfer, such as the case with diurnal

planktivorous pomacentrids in California that increase overall

reef production with their metabolic byproducts being used by

algae (Bray et al., 1981). Many artificial reef systems are therefore

more productive than natural reefs because they provide

sufficient habitat for zooplanktivorous fishes (Champion et al.,

2015; Pondella et al., 2018; Holland et al., 2021).

With this in mind, flux of planktonic resources and even

inducing upwelling to increase primary productivity (e.g., Itosu

et al., 1995; Otake et al., 1995) are important considerations.

Further, for reefs that receive higher current flow, such has

offshore oil and gas platforms in California, this translated to

increased growth rates for mussels (Mytilus spp.), a dominant

filter feeding invertebrate, and the planktivorous Blue Rockfish

(Sebastes mystinus) than individuals in nearby natural nearshore

habitats (Page and Hubbard, 1987; Blanchette et al., 2007; Love

et al., 2007). Similarly, a study of an experimental artificial reef

off of Scotland demonstrated the importance of water flow for

the secondary production of a suspension feeding bryozoan both

on the outer-facing reef surfaces and into internal reefs spaces,

with higher secondary invertebrate production found on reefs

with more complex designs and larger internal reef spaces

(Rouse et al., 2020). Clearly in order to maximize secondary

production, optimizing both benthic and pelagic food resources

is essential.
Shelter

Proper shelter allows fishes to maximize the acquisition of

planktonic and epibenthic food resources while minimizing the

amount of energy needed to maintain themselves. In a system

with underutilized food resources, the increase of shelter and

associated use by various life history stages of fishes theoretically

results in greater production. Beyond increasing appropriate

habitat where it is limited or lost, properly designed habitats

provide a direct survival and metabolic benefit to the fish

sheltering on them. In Atlantic Cod, metabolic rates associated

with reef habitat (as compared to sand) were lower, suggesting

that the energy saved by sheltering contributed to increased

somatic growth and thus production rates (Schwartzbach et al.,

2020). Reef holes and cavities (i.e., void spaces) provide refuges,

and hole size was often positively associated with the body sizes

of fishes found sheltering in them (Hixon and Beets, 1993; Beets

and Hixon, 1994; Friedlander and Parrish, 1998). For example,

smaller reef fishes had higher survival rates on reefs with smaller

hole sizes compared to similar sized fish on reefs with larger

holes (Hixon and Beets, 1993). Some reef designs utilized models

to predict hole/crevice size and number based on the rock size

(Barry and Wickins, 1992), suggesting the possibility of
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designing reefs with appropriate hole sizes for a specific taxa or

life history stages (e.g., Glarou et al., 2020). Survival and growth

of fishes is a function of both predator avoidance and the

reduced energy associated with sheltering from current flow in

appropriately sized holes. Productive reefs have shelter

characteristics enabling fishes to minimize their energy

expenditures from flow regimes and predator avoidance while

allowing them to maximize the flux of energy from the plankton

and epibenthic prey. Theoretically increasing shelter increases

the secondary production a reef supports. This is ulitmately

limited by the carrying capacity of the system (e.g, food

availability, species and life-stage specific survival rates) in a

density dependent manner resulting in an asymptotic

relationship between shelter and production (Figure 1).
Recruitment and juvenile survivorship

The function of artificial reefs as shelter for recruitment,

survivorship, and growth of young-of-year and juvenile reef-

associated fishes is another essential component for increasing

local and regional production. Recruitment and juvenile success,
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the hallmarks of fishery models (Ricker, 1975), are a critical

factor for stock management. There are multiple examples of

artificial reefs providing habitat for newly settled and/or juvenile

fish, which increased recruitment rates and cohort success,

which in turn increased ecosystem-wide services. High

prevalence of newly recruited and/or juvenile fishes on

artificial reefs was common (e.g., Santos et al., 2011; Reubens

et al., 2014; Granneman and Steele, 2015; Krone et al., 2017).

Fish assemblages on more complex, larger-scale artificial reefs

supported a higher proportion of smaller juvenile fishes (e.g.,

Santos et al., 2011; Granneman and Steele, 2015; Love et al.,

2019) suggesting these patterns documented on small

experimental reefs (cm2 to m2) are scalable to larger systems

(10’s to 100’s of m2). Additionally, Komyakova et al. (2019)

found in temperate southern Australia that the location relative

to larger reefs, either natural rocky reefs or large breakwaters,

had a greater influence on fish densities at smaller artificial reef

modules. This was attributed to increased recruitment of young-

of-the-year fishes to these larger reefs and subsequent movement

of those fishes to the artificial reef modules. Undoubtedly,

incorporation of a nursery design is a key component for

successful reefing programs.
FIGURE 1

The asymptotic theoretical relationship between available shelter and secondary (fish) production.
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In a variety of ecosystems, increasing habitat for juvenile fish

resulted in corresponding production increases. Windmill

artificial reefs (WARs), consisting of monopile offshore wind

turbines surrounded by quarry rock scour protection and

deployed in largely soft bottom regions of the North Sea,

supported high abundances of juvenile fishes. Specifically, they

were suitable feeding grounds for juvenile Atlantic Cod (Gadus

morhua) and Pouting (Trisopterus luscus), which fed upon

epifaunal invertebrate prey and showed high seasonal site

fidelity (De Troch et al., 2013; Reubens et al., 2014). Juvenile

Atlantic Cod sheltered on WARs between dawn and dusk

(crepuscular) feeding periods, suggesting sheltering from

predators provides a survival advantage (Reubens et al., 2014),

in addition to metabolic energy savings (Schwartzbach et al.,

2020). In passive acoustic tracking of Atlantic Cod, these

patterns were consistent over 2-5 month periods, with fish

sheltering on the same WAR reef daily (Reubens et al., 2014).

While these increases were in local production and regional-

scale increases had not yet been observed, these juvenile fish

likely emigrated as they matured, benefitting commercial

fisheries. Similarly, in a mark-recapture study, juvenile Gag

Grouper (Mycteroperca microlepis) had high site fidelity

(average 300 days) on an experimental concrete artificial reef

off Florida. Adults then moved further offshore where they

became part of the broader fished stock, with two fish being

recaptured on other side of the Gulf of Mexico in Texas and

Mexico (Lindberg et al., 2006). In the Algarve artificial reef

complex, which was designed to specifically provide shelter for

juvenile fishes of fishery importance (Santos et al., 2011), this

juvenile sheltering effect made an important contribution to the

increases in regional carrying capacity (K) and production of

Two-Banded Seabream (Roa-Ureta et al., 2019). Up to 88% of

the fish assemblage associated with the Algarve reef modules

were juveniles, with consistent recruitment of young-of-the-year

fishes observed for some species. Juveniles were also

documented as sheltering in the structure and feeding directly

on the benthic macrofauna or in the water column near the

structures (Leitao et al., 2009; Santos et al., 2011). These

examples illustrate the progression necessary for increasing

production: creating habitat where appropriate, documenting

the density of critical life stages and their associated habitat use,

then linking this to regional production. Clearly, reducing

habitat and recruitment limitations by increasing nursery areas

has significant benefits.
Reproductive output

In addition to providing a nursery function and sheltering

juvenile fishes with high rates of somatic production, a frequently

overlooked component in artificial reef studies is reproductive

output, or gonadal production. Reproductive output is a function

of the number of larger adult fishes residing on a reef, and is a
Frontiers in Marine Science 05
“major component of energy flow through the fishes in [a] reef

system” (Demartini et al., 1994). In this study, fish gonadal

production on artificial reefs was equivalent to, or a large

multiple of, the somatic production estimates. For territorial

species, reefs with more suitable habitat have a corresponding

greater number of potential feeding and mating territories (Hixon,

1980), which can lead to increased secondary production

compared to less complex natural reefs (Pondella et al., 2002).

These concepts are frequently incorporated in fisheries

management and conservation network designs, such as MPA

connectivity, with the overall goal of increasing localized spawning

stock biomass and exporting it throughout the ecosystem (Russ

et al., 2004; Pérez-Ruzafa et al., 2008; Almany et al., 2009;

Botsford et al., 2009; Cudney-Bueno et al., 2009; Foley et al.,

2010; Berumen et al., 2012; Schmiing et al., 2017; Baetscher et al.,

2019; Marshall et al., 2019). Further, since most fishes have a

pelagic larval stage, understanding gonadal production was a

critical feature in modeling connectivity and the link between

biomass density and recruitment (Pondella et al., 2015).

Particularly well-studied for fishes, gonadal production and egg

quality is a function of female size and age. Larger females have

higher fecundity and allocate more energy for egg production, and

in some instances, produce more fit larvae than smaller females

(Berkeley et al., 2004). Importantly, this relationship was not

linear, instead being hyperallometric with size (Barneche et al.,

2018), and supported the idea that the protection and production

of larger females disproportionately and positively affects stock

structure. Larger adults have lower annual somatic production but

theoretically are a major link to regional increases, especially if

habitats are not limiting recruitment. Thus, habitat design and/or

management actions taking this into account (e.g., the

implementation of MPAs or fishery management practices such

as slot limits and protection of spawning aggregations) have a

greater impact on recovery due to increased gonadal production

and potentially more fit larvae (Claudet et al., 2008; Edgar and

Stuart-Smith, 2009; Marshall et al., 2019). Habitat characteristics

that optimize spawning aggregations, generating larval sources

throughout an ecosystem were also important considerations

(Schmiing et al., 2017). Some studies identified larval production

as a key management action for fishery replenishment (Kough

et al., 2019). Higher quality habitats also support greater densities

of large individuals, magnifying this effect.
Physical considerations of
reef design

Structural complexity

Increasing reef complexity, both externally (rugosity) and

internally (void space), improves secondary production (Blount

et al., 2021). Simply increasing the complexity of reef modules in the
frontiersin.org
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French Mediterranean doubled overall fish species richness,

increased density by ten times, and increased biomass by forty

times (Charbonnel et al., 2002). Experimental artificial reefs across a

broad geographic range consistently found increased fish density,

biomass, and/or species diversity associated with more complex

structures (North Carolina, USA : Potts and Hulbert, 1994, South

Carolina, USA: Kellison and Sedberry, 1998, Gulf of Mexico,

Florida, USA: Sherman et al., 2002, Mediterranean, Italy: Relini

et al., 2007, Scotland, UK: Hunter and Sayer, 2009, temperate

southern Australia: Komyakova et al., 2019). Often fish density

and size structure have a greater impact on rates of secondary

production than relative differences in individual growth rates. For

example, Granneman and Steele (2014) compared somatic growth

rates, estimated from otolith back-calculation, on paired artificial

and adjacent natural reefs in southern California, USA. When

combined with observed density and size structure of the fish

assemblage, they found secondary production rates on quarry rock

artificial reefs were similar to or greater than natural reefs, and

positively correlated with habitat characteristics (i.e., the abundance

of larger boulders on artificial reefs). The authors also found that

size-specific differences in fish density made a large contribution to

the differences in production, while growth rates among sites were

similar. The general mechanism discussed for this phenomenon

relates direct sheltering opportunities for a variety of sizes of fishes
Frontiers in Marine Science 06
provided by the increased number and diversity of sizes of holes and

crevices in the reefs. Further, more rugose reefs are more suitable for

attachment of both algae and sessile invertebrates (Harlin and

Lindbergh, 1977; Walters and Wethey, 1996). As such, there is a

positive relationship between complexity and production. In

addition, three-dimensional complexity adds increased surface

area, elevating the overall abundance of benthic forage resources,

which results in increased fish density, an integral factor in

secondary production models. Theoretically, this relationship

asymptotes with increasing complexity (Figure 2). While

increasing complexity adds structural elements that correspond to

species-specific functional attributes (e.g., diet, habitat use, life

history) of the fish assemblage, similar to within reef habitat

heterogeneity, this is ultimately limited by the surface area to

volume structural relationship and the availability of internal

spaces of a reef of a given size (Kim et al., 1994; Lemoine et al.,

2019; Rouse et al., 2020). Thus, increasing complexity to maximize

production is a theoretical and practical design consideration.
Vertical relief

Vertical relief (i.e., height above the seafloor) is another

commonly investigated factor in reef design and artificial reefs
FIGURE 2

The asymptotic theoretical relationship between reef complexity and secondary (fish) production.
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that provide sufficient vertical relief support greater taxonomic

diversity (Ogawa, 1967; Molles and Manuel, 1978; Bohnsack

et al., 1994). Positive relationships between vertical relief and fish

density and/or biomass were documented at quarry rock

artificial reefs in California, USA (e.g., Ambrose and

Swarbrick, 1989; Pondella et al., 2006; Granneman and Steele,

2015). Studies comparing fish assemblages on shipwrecks (i.e.,

high-relief artificial reefs) with natural reefs and/or concrete

artificial reefs found higher-relief wrecks have higher mean

densities of fishes (northeast Pacific: Bulger et al., 2019, North

Carolina, USA: Lemoine et al., 2019; Paxton et al., 2020a), as well

as differences in trophic guilds. Similarly, Paxton et al. (2020a)

observed wrecks had higher densities of transient predators (e.g.,

jacks, mackerel, barracuda, sharks) than concrete and natural

reefs, and their review of the artificial reef literature suggested

this pattern of more high trophic level (i.e., predatory, typically

transient) fishes on artificial reefs than natural reefs was a global

pattern. Yet, shipwrecks were not necessarily adequate

surrogates for natural reefs (Medeiros et al., 2021). This is

representative of a general pattern of predators being more

common on artificial reefs globally, with transient predators

being observed in higher densities on taller structures (Paxton

et al., 2020a). While there were numerous objective and
Frontiers in Marine Science 07
anecdotal observations of this phenomenon, salient are the

mechanisms and their potential utility in reef design.

Reefs with greater relief perform better than low relief reefs. At

the spatial scale of typical reefs (meters), theoretically this will

asymptote (Figure 3). While many species of fish orient to high

relief structures for feeding purposes (as described previously)

they also utilize them for spawning sites. Such spawning

aggregations were often associated with the highest relief

components within a reef and in some taxa optimal spawning

sites were favored. Additionally, adults return to traditional

spawning sites based upon a learned response, yet in the

absence of this learning, they chose new sites based upon reef

features implying there was an optimization of assessed reef

features to maximize spawning success (Warner, 1988).

Interestingly, on newly deployed reefs adult fishes sometimes

within hours, but certainly within days orient to these

structures, which, since they were just placed in the water, do

not yet have epibenthic resources (Turner et al., 1969). Over the

long term, large predatory fishes migrate and orient to these

vertical features (Barilotti et al., 2020; Burns et al., 2020; Paxton

et al., 2020a). However, very high-relief reefs, particularly those

with an intertidal component (i.e., breakwaters, some shipwrecks,

and oil platforms), had increased ecosystem heterogeneity and
FIGURE 3

The theoretical relationship between vertical relief and secondary (fish) production. For the scale of typical reefs (meters) the relationship
asymptotes (left side on x-axis), and then for very high relief reefs (10’s of meters) and those that include an intertidal component (e.g.,
breakwaters, some shipwrecks, and oil platforms) the relationship is extended until it asymptotes again (right side on x-axis).
frontiersin.org

https://doi.org/10.3389/fmars.2022.983253
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pondella et al. 10.3389/fmars.2022.983253
associated production (e.g., Stephens et al., 1994; Claisse et al.,

2014). For example, breakwaters incorporate the intertidal zone,

increasing habitat heterogeneity and have high rates of secondary

production (Pondella et al., 2002). These processes are consistent

with the inclusion of kelp, whereby a three-dimensional relief

component is extended to the surface by a canopy providing

habitat heterogeneity and trophic resources that support an

increased suite of life stages and species (Graham, 2004).

Structures with these high-relief components also act as fish

aggregating devices (FADs) for more transient pelagic fishes.

This attraction can occur on a non-random consistent basis,

resulting in increased overall production through the inclusion

of planktivores into the system (Smith et al., 2016). Relief is an

attraction mechanism of adults and larval fishes, potential

spawning sites, and food resources. On a typical reef module

without an intertidal component, production as a function of relief

asymptotes (especially if resource dependent), then adding an

additional three-dimensional FAD/kelp/intertidal component

increases production to a theoretical maximum (Figure 3).
Habitat heterogeneity, reef size,
and spacing

In many systems, nursery areas are often decoupled from

adult habitats. Thus, increasing habitat heterogeneity (i.e.,

variability of habitat types across a given landscape area)

(Wedding and Yoklavich, 2015), is a critical step towards

optimizing habitat for multiple life stages. Fishes, either

through ontogenetic changes or during specific life history

stages, often use various habitats within an ecosystem. For

many reef associated species this includes foraging in

surrounding soft-bottom areas. A “halo effect” documented

around artificial and natural reef structures that were

surrounded by soft-bottom habitat largely refers to direct and

secondary effects of the organic enrichment of these sediments.

These halo effects were due to complex processes.

Hydrodynamic changes from the increased vertical relief of an

artificial reef directly affected the composition and size of

sediments, and created a plume of detritus and waste

generated by reef inhabitants (e.g., filter feeding invertebrates,

planktivorous fishes, macroalgae) organically enriching

sediments at scales of meters to tens of meters around an

artificial reef (Heery et al., 2017; Bugnot et al., 2020). Changes

in the composition and densities of sediment infauna (e.g.,

polychaetes and amphipods) at these scales [e.g., out to 30 m

in Reeds et al. (2018) and out to 80 m in Bortone et al. (1998)],

were a result of being fed by the additional organic material and

increased predation from reef-associated fishes and crabs. These

soft-bottom foraging grounds were important in supporting the

diets (i.e., production) of many species that shelter in reefs.

Many taxa utilize these reef/soft bottom ecotones, emphasizing

the importance of the halo effects. Multiple studies have focused
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on assessing the foraging distance of fishes from artificial reefs

(Bortone et al., 1998; Brandt and Jackson, 2013) to minimize the

overlap of foraging areas in reef design (Champion et al., 2015;

Rosemond et al., 2018), which has the potential to limit growth

and reef productivity (e.g., Lindberg et al., 2006). Johnson et al.

(1994) found 20-25% of reef associated fish diets on a California

artificial quarry rock reef derived from sand-rock ecotone

habitats. These ecotones in southern California support

increased densities of a commercial serranid, Barred Sandbass

(Paralabrax nebulifer) (Anderson et al., 1989). Pondella et al.

(2018) increased the amount of ecotone habitat by designing a

reef with offset modules to increase the reef perimeter.

Rosemond et al. (2018) found that reef-associated fish species

were mostly foraging in the soft-bottom habitat up to 30 m away

from a variety of artificial reef types (e.g., concrete pipes, metal

ships) off North Carolina, USA. Reeds et al. (2018) documented

reef fish foraging at elevated densities only out to 15 m from a

steel fishery enhancement, but because the reef had a relatively

small footprint (12 m x 16 m), they calculated that reef

associated fishes were using an area 15 times greater that the

reef footprint itself, demonstrating that for some species, a

relatively large area of these surrounding sediments play an

important ecological role. In the Adriatic Sea, Tyrrhenian Sea,

and southern California, physical factors associated with

artificial reef proximity outweighed the influence of predators

(Ambrose and Anderson, 1990; Danovaro et al., 2002; Fabi et al.,

2002) illustrating the importance of these ‘halos’.

Extending the ‘halo effect’ by incorporating the utilization of

planktonic resources is conceptually a ‘dome effect’, as reefs

extend three-dimensionally up into the water column. Multiple

studies have taken a mechanistic approach in examining how the

amount of shelter a reef provides interacts with the trophic

processes of artificial reef residents who feed in adjacent habitats

(e.g., water column, soft bottom, or a mix of soft bottom and

natural reef). These studies suggested there is a trade-off (and

potentially thresholds) between providing shelter for more

individuals within the artificial reef and competition among

those individuals for planktonic (Champion et al., 2015) or

benthic food resources in the surrounding habitats (Lindberg

et al., 2006; Brandt and Jackson, 2013), or both (Lindquist et al.,

1994). Champion et al. (2015) empirically derived the amount of

zooplankton that flowed across an artificial reef in Australia and

the amount consumed per day by individuals of a resident fish

species (Atypichthys strigatus, a smaller Kyphosidae). They

modeled thresholds at which reefs were able to shelter more

fish than the zooplankton flow could support, suggesting an

optimal reef size exists to balance this tradeoff. They also noted

that reef shape was important. Lindberg et al. (2006) found that

growth was density-dependent in larger juvenile and young

adult Gag Grouper (Mycteroperca microlepis) sheltering in

concrete artificial reefs off Florida, USA and attributed it to

competition for food in the surrounding feeding grounds. When

also factoring in the potential for increased fishing mortality, if
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fish were in higher densities, the authors argued that most

positive effect on stocks was achieved through widely scattered

patch reefs with appropriately sized cavities, as that should

increase growth rates of individual fish while they were

residing in the reefs. It is also important to note that this

species used these reefs during an older juvenile/younger adult

stage prior to moving further offshore, again emphasizing that

habitat use patterns associated with artificial reefs are species and

life stage dependent. For example, adult wrasses (Labridae)

shelter nocturnally in sand proximate to reefs. Some wrasses

on coral reefs have a post-settlement stage where they shelter in

the sand prior to recruitment to the reef (Hamilton et al., 2008).

For overall fish productivity, there are tradeoffs between distance

between reef modules, size, spacing, and maximization of the

halo and ecotone effects, as these effects are synergistic to overall

performance (Figure 4). But adding more structure without

optimizing spacing criteria may have diminishing returns. As

such, in a particular reef system, the heterogeneity of subhabitats

has a maximum (Figure 4). Theoretically, each increase in

subhabitat type theoretically increases the production to

a maximum.

Construction logistics, available funding, engineering,

regulation restrictions or boundaries, and costs constrain reef

size and associated local and regional effects (Lan and Hsui,
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2006). Often it is necessary to weigh the benefits of one or a few

larger reefs versus many smaller reefs optimizing the use of

limited resources (e.g., Pondella et al., 2018). Some studies that

have directly addressed reef size suggested intermediate sizes

were most productive (reef volumes from 400-4000 cubic

meters, (Ogawa et al., 1977), as cited and discussed in Glarou

(et al. 2020). For example, on reefs constructed with concrete

cubes with holes in Taiwan, the biomass of resident fish species

increased sigmoidally when compared to reef size, indicating

that intermediate sizes produced the best ratio of standing stock

biomass to construction cost (Jan et al., 2003). Further, reefs that

are too large will reduce habitat heterogeneity and ultimately

reduce production for the suite of species that depend on these

varied resources (Figure 5) The trade-offs between costs and

design criteria are important considerations for maximizing fish

production with available resources.
Additional considerations for
realizing benefits

There are species-specific timescales for expected fishery

benefits, based on life history and behavioral ecological traits.

These benefits follow periods of good larval survival and
FIGURE 4

The theoretical step relationship between habitat heterogeneity and secondary (fish) production.
frontiersin.org

https://doi.org/10.3389/fmars.2022.983253
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Pondella et al. 10.3389/fmars.2022.983253
recruitment. In Algarve, the Seabream fishery regional carrying

capacity increased by 35% eight years post construction

(construction took five years) as new production attributed to

the artificial reef spilled over to the surrounding continental

shelf. It followed multiple strong recruitment years, and then a

four year lag for the species to enter the fishery (Roa-Ureta et al.,

2019). An earlier economic analysis for the initial pilot-scale

deployments of artificial reefs in this region also demonstrated

fishery value (i.e., revenue) per unit effort slowly increased over a

15 year period following reef deployment and was higher near

artificial reef modules when compared to fishing near control

areas (Whitmarsh et al., 2008). These are consistent with

timelines reported for maturity in Marine Protected Areas

(MPA). Typically, post-closure fish densities and biomass

asymptote at an interval of at least 15-20 years with older

reserves outperforming younger reserves (Abesamis and Russ,

2005; Claudet et al., 2006). These time frames for maximizing

reef contribution on both local and regional scales parallel

typical age at maturity, the significantly greater gonadal output

for larger females, and overall longevity for many focal species.

The installation of an artificial reef complex took pressure off

natural reefs in the region by redistributing fishing effort across a

larger area (Leitao et al., 2009). As such, spacing and

connectivity to other reefs are important design criteria. In

some instances, reef development and spacing protect soft-
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bottom species by acting as barriers to bottom trawling

(Guillen et al., 1994). Shallow anthropogenic seafloor

structures influence the foraging of marine mammals

(Arnould et al., 2015; Todd et al., 2020). The interplay among

the potential to redistribute and/or enhance mammal

populations as well as attracting these predators to artificial

reefs (Fernandez-Betelu et al., 2022) is an open question

necessitating further investigation as these predators could

increase the natural mortality of fish and invertebrate

populations. Determining mechanisms for (or direct evidence

of) increased survival or growth of fishes also provided evidence

that artificial reef systems are not functioning as ecological traps

(Reubens et al., 2014). In such traps, an organism is attracted to

and settles preferably in a habitat with suboptimal conditions

relative to other available and more suitable habitats (Robertson

and Hutto, 2006). If an ecological trap occurs, growth,

recruitment and survival rates are lower than at reference

habitats, as was recently described for Reef Ball reefs in

Australia (Komyakova et al., 2021). Although better alternative

habitats are available, the suboptimal habitat is unfortunately

chosen, resulting in reduced production. While there are few

examples of this in the literature, demonstrating a net benefit to a

species with certain characteristics (e.g., life history, habitat use

or movement patterns, trophic traits/groups) is critical. There is

also the potential for artificial reefs to support or expand the
FIGURE 5

The theoretical relationship between percent of area covered, as a metric of reef spacing criteria and secondary (fish) production.
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range of invasive species (Dahl and Patterson, 2014; Dafforn,

2017; Schulze et al., 2020). In heavily overfished populations (i.e.,

the current standing stock is not producing enough reproductive

output to begin with), adding additional, even higher quality,

habitat will not realize increased production if recruitment levels

are low (Powers et al., 2003). In these cases, considering larger

location-specific integrative coastal management approaches

(Komyakova et al., 2019; Paxton et al., 2020b) and additional

fishery management is necessary to achieve or sustain positive

outcomes (Powers et al., 2003; Whitmarsh et al., 2008; Roa-

Ureta et al., 2019).

Artificial reefs have a long history of use in fishery

management (Bortone et al., 2011). An emerging concern in

the literature was the consideration of artificial reefs as part of

larger location-specific integrative coastal management

approaches (Komyakova et al., 2019; Paxton et al., 2020b) and

the potential necessity of additional fishery management for

achieving or sustaining positive outcomes (Powers et al., 2003;

Whitmarsh et al., 2008; Santos et al., 2011; Roa-Ureta et al.,

2019). While not a concern when artificial reefs are primarily

providing a nursery function to life stages with sizes below those

targeted by fisheries (e.g., oyster reef restoration in estuaries in

southeastern USA: Peterson et al., 2003, WARs in the North Sea:

Reubens et al., 2014), this was a consideration when artificial

reefs are being used by adult stages of species targeted heavily in

local fisheries. On one hand, if an artificial reef or complex is

relatively large (with respect to natural reefs in the area), then it

may take pressure off natural reefs in the region by redistributing

fishing effort across a larger total area reef habitat (Leitao et al.,

2009). There are complex interactions within habitats, for

instance reviews cite many studies where artificial reefs

essentially stop bottom trawling in the area and may have

positive impacts for soft bottom species (Relini et al., 2007;

Brandini, 2014; Heery et al., 2017; Glarou et al., 2020). However,

if the artificial reefs instead aggregated existing biomass in the

region making target species easier to exploit (the goal of Fish

Aggregating Devices [FADs]), and if this fishing mortality was

not counter-balanced with a proportional increase in localized

production (Lindberg et al., 2006; Smith et al., 2015), essentially

the crux of the ‘attraction vs production’ debate (Osenberg et al.,

2002), then consideration of additional fisheries management

actions is prudent. In the case where an artificial reef serves as a

spawning aggregation site (Schmiing et al., 2017), this

necessitates potential permanent or reproductive season

fishing closures. Balancing this against the potential secondary

production increases due to increasing gonadal production are

the challenges managers face. More broadly though, if objectives

include amplifying regional impacts of deploying an artificial

habitat (e.g., population recovery or increasing regional carrying

capacity), then considerations including additional management

actions focused on spawning stock biomass recovery, and

particularly the protection of larger/older individuals, like in

the implementation of MPAs and size limits, were practical
Frontiers in Marine Science 11
(Claudet et al., 2008; Edgar and Stuart-Smith, 2009; Barneche

et al., 2018; Marshall et al., 2019). Thus, incorporating an

ecosystem-wide approach in reef design is necessary.

Overall successful reefing projects optimize all these discussed

criteria (shelter, complexity, heterogeneity, relief and spacing) to

maximize reproductive output and recruitment success. These

parameters are ecosystem- and taxa- specific; thus, wherever

possible a thorough and understanding of the geographical,

ecological, and socioeconomic context is necessary.
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